Astron. Astrophys. Suppl. Ser. 118, 385-390 (1996)

seeing at the South Pole ${f Antarctic\ site\ testing-microthermal\ measurements\ of\ surface-layer}$

R.D. Marks¹, J. Vernin², M. Azouit², J.W. Briggs³, M.G. Burton¹, M.C.B. Ashley¹ and J.F. Manigault²

Sydney 2052, Australia Joint Australian Centre for Astrophysical Research in Antarctica, School of Physics, University of New South Wales,

Center for Astrophysical Research in Antarctica, University of Chicago, Yerkes Observatory, Williams Bay, WI Département d'Astrophysique de l'Université de Nice, U.R.A. 709 du C.N.R.S., F-06108 Nice Cedex 2, France

Received October 23, 1995; accepted January 15, 1996

inversion alone. Further analysis of the data should provide some predictive power about the likely optical turbulence a large and highly variable temperature inversion, the behaviour of which is often well correlated with the observed turbulence profile. The results can be roughly separated into four or five categories, characterised by the temperature 0.46" measured in the upper (17-27 m) and lower (7-17 m) sections respectively. These measurements coincide with there is often a significant decrease in the optical turbulence over the height of the mast, with mean values of 0.37" sensors placed at 3 levels on a 27 m-high mast. The seeing contribution from this region was quite large in comparison profile of the surface layer in given observing conditions. with similar experiments performed at other sites, with a mean value measured over this period of 0.64". are presented. Seeing measurements were taken over 49 data runs between April and August 1994, using microthermal Results from experiments measuring the optical seeing in the surface layer at the South Pole Station

Key words: atmospheric effects — instrumentation: miscellaneous — methods: observational — site testing

1. Introduction

et al. 1994; Ashley et al. 1995b). vatories at any other site on earth (Vernin 1994; Burton inland regions of the continent could out-perform obserto the possibility that an observatory stationed on the high ability to perform long continuous observations, all point wind speeds, low integrated water vapour, as well as the nomical site. The dry, cold air, high altitude, low surface the potential quality of the antarctic plateau as an astro-There has been increased recognition, in recent years, of

sphere, and other instruments (both planned and curseeing contribution of the surface layer and free atmo-(U.S.A.), at the Amundsen-Scott South Pole Station. This gram, a collaboration between the University of New South Wales (Australia), the Université de Nice (France) the IR to the near-UV regions of the spectrum al. 1995a) measuring the atmospheric transmission from rently operational, see, e.g., Vernin et al. 1994; Ashley et program consists of a suite of experiments measuring the and the Center for Astrophysical Research in Antarctica This has led to the development of a site-testing pro-

so that this layer will be of more significance to the seeing occur in the surface layer, up to an altitude of ~100 m, sulting in the absence of strong wind shears in the upper of the plateau, the circumpolar circulation patterns (reage degradation caused by atmospheric turbulence above sites, such as Domes A and C (see Storey et al. 1995). site in Antarctica. It is expected, however, to give an indithat very large and unstable temperature inversions may gions (~8 km, Schwerdtfeger 1984). However, it is known atmosphere), as well as the low tropopause over polar remay reveal exceptional seeing (Gillingham 1993; Vernin the South Pole. It is expected that the free atmosphere The aim of the project reported here is to measure the imin general, before similar site testing experiments can be the highest points on the plateau, may not be the best than at other sites. variation, low surface wind speeds in the higher regions 1994). The reasons for this include the negligible diurnal performed at more favourable, but currently inaccessible, cation of the properties of the atmosphere on the plateau The South Pole, due to its location "downhill" from

surement of The experiment has been divided into two parts: mea-

Send offprint requests to: R. Marks

- the seeing contribution of the atmospheric surface layer during the 1994 season, and
- 2. the contribution from the boundary layer and free atmosphere, being carried out through the 1995 season, using balloon-borne microthermal sensors.

This paper presents the results from the surface-layer experiments, which were performed using a 27 m-high mast in place at the Station. 49 data runs were obtained over the course of the 1994 winter, between April and August. These data allow us to determine the overall seeing produced in this 27 m layer, as well as the vertical profile of the turbulence strength. Temperature, pressure and wind speed measurements taken from the same mast were used to check the calibration of our instruments, and also allow some comments on the seeing caused by this layer in different weather conditions.

2. Experimental method

2.1. Principles of seeing measurement

The theory of atmospheric turbulence (e.g., Tatarski 1961), and in particular its relation to astronomical seeing (Roddier 1981), is very well established. The "Fried parameter", τ_0 , represents the telescope aperture diameter, for which the diffraction-limited image resolution is equal to the FWHM of the seeing-limited image. The relationship between this parameter and atmospheric turbulence was determined by Fried (1966) to be:

$$r_0 = \left(16.7\lambda^{-2} \int_0^\infty C_N^2(h) dh\right)^{-3/5} \tag{1}$$

where h is the height through the atmosphere, $C_N^2(h)$ is the refractive index structure constant and λ the wavelength.

Following the work of Roddier (1981), the angular size in arcseconds of the FWHM of the images point spread function is given by Dierickx (1992) as:

$$\varepsilon_{\text{fwhm}} = 0.98 \frac{\lambda}{r_0}$$
(2)

and hence:

$$\varepsilon_{\rm fwhm} = 5.25\lambda^{-1/5} \left(\int_0^\infty C_N^2(h) dh \right)^{3/5} \tag{3}$$

The refractive index structure constant in this case can be taken to represent the sum of the contributions from all turbulent layers in the atmosphere. These can be directly related to the corresponding temperature structure constant as follows:

$$C_N^2(h) = \left(80.10^{-6} \frac{P(h)}{T(h)^2}\right)^2 C_T^2(h) \tag{4}$$

where P(h) is the pressure and T(h) the temperature

The method used to determine C_N^2 involves measurement of the temperature structure function, $D_T(r,h)$, defined as the mean square of the temperature fluctuations between two points separated by r, where r lies between the inner and outer scale of the turbulent motion. As derived by Obukhov (1949), this is related to $C_T^2(h)$ by:

$$D_T(r,h) = C_T^2(h)r^{2/3} (5)$$

2.2. Instrument design

The experiment was performed using the tallest mast available at the South Pole Station, a 27 m-high mast set up by the National Oceanographic Atmospheric Administration (NOAA) for meteorological measurements. This mast is located on the up-wind side of the Station (the wind direction being in general from within a quadrant facing towards the higher regions of the plateau), and hence the effect of heat generated by the base itself is minimal.

 C_T^2 measurements were taken using pairs of microthermal sensors ¹, the resistance of which vary in proportion to the very small and rapid temperature fluctuations associated with the turbulence. The sensors were placed at three levels on the mast, at 7, 17 and 27 m above the surface. Additional sensors were placed at each level to measure the temperature differences and variation between levels, as well as the absolute temperature at the 17 m level. We also had access to the NOAA data from the mast during our data runs; in particular the temperature at 2 and 20 m, wind speed and direction, and pressure. These data were used to perform the C_T^2 to C_N^2 computations (see Eq. 4), as well as providing an additional check on the accuracy of our vertical temperature profile.

The C_N^2 measurements tend to decrease sharply and nonlinearly with altitude, and so the calculation of the seeing produced between each pair of levels on the mast was performed (via Eq. 3) assuming a power law variation with altitude over each 10 m slice.

The sensor couples were placed on horizontal beams pointing in the upwind direction, to avoid the possibility of local effects due to the mast. In addition, two pairs of sensors were used at each level, separated from each other by ~ 2 m, to give an additional check on the reliability of the data in the case of unusual weather conditions.

The sensors were connected by cables back to the Clean Air Building (the centre for NOAA operations), some 100 m away. The signal processing equipment used was similar to experiments done to measure microthermal turbulence at other sites (Vernin & Muñoz-Tuñón 1992). The raw sensor voltage output is sent to an amplifier which also performs the mean-square calculation of D_T^2 , then on

¹The sensors and electronic instrumentation we deployed at the South Pole were developed by M. Azouit and J.F. Manigault at the Département d'Astrophysique, Université de Nice.

to a PC, using a 16-channel A/D converter to digitise the data.

Data were recorded from all sensors at intervals of 1 s, and integrated over 60 s. Data runs were performed by one of us (JWB) at irregular intervals throughout the season, in a wide range of weather and cloud-cover conditions.

The durations of the data runs were limited due to ice formation on the microthermal sensors in some weather conditions. This problem was overcome by the use of tin covers to protect the sensors when not in use, and by a small current being passed through the filaments to sublimate the ice between data runs. The presence of ice could be readily determined by noting where the signal from the detectors decreased due to their increased time constant.

3. Results

Microthermal data from the mast were taken on a total of 49 occasions during the 1994 winter, between April 26 and August 10. The duration of the runs varied from 1 to 14 hrs depending on the condition of the sensors. Any data where ice on the sensors appeared to have had an effect were rejected. The data runs took place under a wide variety of weather conditions, in terms of wind, cloud cover, temperature and temperature inversion. For the purpose of calculating an average value for the seeing, only the first hour of integrated data was used from each run, so as to avoid a bias towards the weather conditions where long runs were possible. These results are shown in Table 1.

Table 1. Turbulence contributions to surface layer seeing (7-27 m), for separate and combined levels, measured on the NOAA mast over 49 data runs between 26 April and 10 August 1994

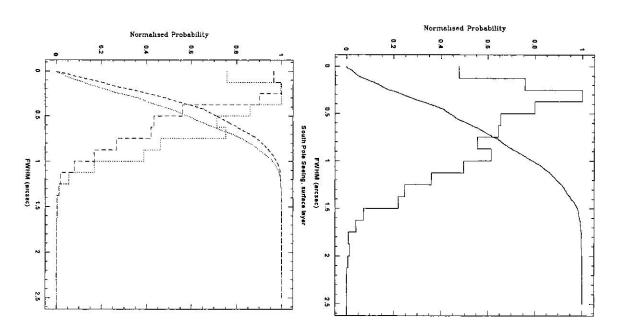
total (7-27 m) 0.64	upper (17-27 m) 0.37	lower (7-17 m) 0.46	Height range $ar{arepsilon}$ (are
			arcsecs)
0.59	0.31	0.42	Median (arcsecs)

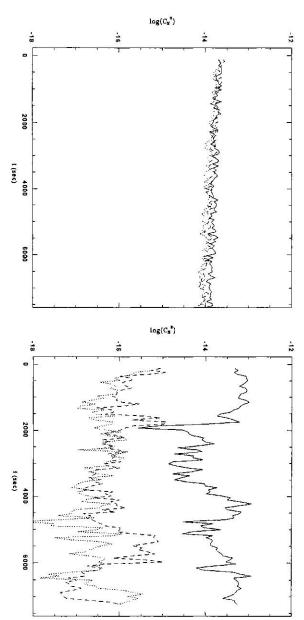
It should be noted that the seeing contributions from the two levels do not add linearly since from Eq. (3):

$$\varepsilon_{\text{total}} = \left(\sum_{i} \varepsilon_{i}^{5/3}\right)^{3/3} \tag{6}$$

The results are summarised in Fig. 1, which shows the probability distribution of seeing for the combined levels and for the two levels separately, and the associated cumulative distributions.

Temperature inversions measured with our data range from $0-9^{\circ}C$ between 7 and 27 m, with large variations in




Fig. 1a and b. Seeing data statistics: FWHM probability distribution and associated cumulative distribution for: a) combined levels (i.e., 7-27 m), b) the two separate levels, 7-17 m (dotted line) and 17-27 m (dashed line)

the relative contribution from each of the two levels. No negative temperature gradients were observed.

The correlation between the readings of the two pairs of sensors at each level is very good, with a correlation function of > 0.9 generally being obtained. Due to the widely separated positions and relative orientations of the sensors, this indicates that local effects from the mast or the sensor supports themselves are virtually absent, and the readings from each sensor couple are a true measurement of the undisturbed atmospheric turbulence.

These results show that the contribution of the surface layer to the overall seeing is quite significant, in contrast to sites such as La Palma (Vernin & Tuñon-Muñóz 1994)

and short dashes the 27 m level Fig. 2a and b. C_N^2 vs. time: a) for 23/05/94, b) for 20/05/94. Solid lines represent the 7 m level, long dashes the 17 m level

and La Silla (ESO-VLT working group 1987), where night-time seeing contributions of $\lesssim 0.1''$ were measured over a similar vertical range at the surface. However, the temperature and turbulence structure observed at different times varies markedly, and clear conditions are seen quite often. For example, in Fig. 1b it can be seen that the contribution from the upper layer is < 0.2'' around 35% of the time.

Two illustrations of the types of conditions are given in Fig. 2.

The first example shows practically identical microthermal variations at each of the three levels, with an average value $\varepsilon=0.53''$ over this run. The weather on this day was quite hazy with occasional blowing snow, and a very small temperature inversion measured between 7–27 m (< 0.5°C). Under these particular conditions we thus have quite even mixing of the atmosphere up to at least 27 m, and possibly much higher, which indicates poor conditions for astronomy.

The second example shows conditions where the microthermal turbulence decreased rapidly from 7 to 27 m. The average seeing for the lower and upper slices was 0.117" and 0.019" respectively. The weather conditions were very clear, with a significant temperature inversion (around 4°C) over the height of the mast. The difference between the raw output at each of the levels can be seen quite clearly. It is evident here that the turbulent layer terminates somewhere between 7 and 17 m and, barring the presence of a second layer above the height of the mast, the surface layer contribution to the seeing above this point is very low.

These examples illustrate the importance of the behaviour of the temperature inversion to surface layer see-

cant component of the overall seeing, this information will comparing the relative intensities of the high frequency scale fluctuations reveals a strong relationship between ing at the South Pole. Other parameters such as the wind structure of the turbulence in given weather conditions. give a very valuable indication of the likely strength and If the surface layer contribution turns out to be a signifitemperature fluctuations on the 0.3 m and corresponding to different conditions. This is observed by outer scale of the turbulence, and in its power spectrum lence measurements. There appear to be variations in the changes on a scale of 10 m, and the corresponding turbuthe strength and frequency of the vertical temperature tionship with the turbulence. Analysis of the short timedifferentials) ber (which is derived from temperature and wind speed speed and direction, air pressure and the Richardson numdo not seem to have any consistent rela-10 m scale.

Here we will outline some of the major effects observed. The data fit roughly into four categories, as described in Table 2.

The first case in the table represents a large proportion of the runs where poor seeing was measured. At these times the ε and ΔT measurements were highly correlated, as were their relative strengths between levels. In fact the seeing values obtained by simply analysing the vertical temperature fluctuations (although these sensors are not as sensitive to high frequency variations) are very close to those derived from measurements on a 0.3 m scale, indicating that L_0 , the outer scale, extends to at least 10 m.

In the second case, while the temperature inversion and optical turbulence measurements are both very low and stable, the corresponding weather conditions are

1996A&AS..118..385M

and lower (7-17 m) levels respectively. $\bar{\varepsilon}$ is the mean value of the seeing

	E	$\Delta T(^{\circ}\mathrm{C})$	Comments	Fraction of Data
i)	<u>ω</u> ! \$>	$1 \lesssim \Delta T_{1,2} \lesssim 2$	$1\lesssim \Delta T_{1,2}\lesssim 2$ Average to poor seeing. Can occur in all types of weather. $\varepsilon_1/\varepsilon_2\sim \Delta T_1/\Delta T_2$	40%
ii)	$\varepsilon \ll \bar{\varepsilon}, \varepsilon_1 \simeq \varepsilon_2$	$\Delta T \lesssim 0.5$	Very good seeing. Usually occurs during bad weather.	20%
iii)) $\epsilon_1 < \epsilon_2$	$\Delta T_1 \ll \Delta T_2$	Generally good weather, large uneven inversion. Good seeing above $\sim\!17$ m.	20%
iv	iv) $\varepsilon_1 < \varepsilon_2$	$\Delta T_1 > \Delta T_2$	$\varepsilon_1/\varepsilon_2 < \Delta T_1/\Delta T_2$. Good weather, large, uneven inversion, temp. gradient increasing with height. Good seeing, esp. above ~ 17 m.	10%

almost always poor for astronomy, with significant cloud cover and occasional lower level blowing snow, which evidently suppresses turbulent mixing of the atmosphere in the surface layer.

The third case shows the most common example of the occurrence of low optical turbulence simultaneously with good weather. Here again the behaviour of ε is closely linked with ΔT .

In the fourth (less common) case we also observe a small seeing contribution in conjunction with good weather. This appears to represent an entirely different surface layer structure, since the gradient of the temperature inversion increases over the height of the mast.

Most of the data fit broadly into one of the cases outlined in Table 2. The remaining 10% of data runs generally contained transitions from one state to another over the course of the run, which caused ε and ΔT values intermediate between two of these cases.

plex. These studies also identify a number of classes of within which the turbulence structure may be quite comcal data are available). We need to know, of course, the in the inversion layer (which are much easier to measure ten good seeing occurs at the South Pole, to the extent at higher levels. Data from the 1995 balloon launches will making predictions about the strength of the turbulence aim of identifying common meteorological features and analysis of the microthermal data is in progress with the and structure of the temperature inversion. More detailed characteristic conditions, and their relation to the height which indicate a varying inversion height of $\sim 50-500$ m, ies (Neff 1981) have been performed at the South Pole free atmosphere at these times. Acoustic sounding studcontribution from the rest of the boundary layer and the than the microthermal behaviour, and for which historithat it can be This information may help us to determine how ofpredicted by the temperature gradients

also provide important information about the turbulence structure from ~100 m to the top of the boundary layer.

4. Conclusions

These results summarise the data collected during the 1994 winter season at the South Pole. Although the measured seeing contribution from the atmosphere up to 27 m is very large on average, the optical turbulence often decreases significantly over the height of the mast. If the results from microthermal balloon launches in 1995 are encouraging with regard to the free atmosphere and upper boundary layer seeing, there may be substantial benefits in placing telescopes on raised platforms.

Our analysis shows that on average around 0.6" of seeing occurs in the lowest 27 m of the atmosphere, with much lower values in favourable conditions. However, it remains to be determined how often these conditions occur, as well as the behaviour of the rest of the surface layer at these times.

Acknowledgements. It is a pleasure to acknowledge assistance from Al Harper and Bob Pernic from CARA, and John Storey from the University of New South Wales. We are grateful to Peter Gillingham for his role in the development of this collaboration. Logistical support at the South Pole was provided by the US National Science Foundation. Funding for all instrumentation was provided by l'Institut National des Sciences de l'Univers, France. Support from the Australian Department of Industry Science and Technology's Bilateral Program is gratefully acknowledged.

References

ESO-VLT working group on site evaluation, 1987, VLT report No. 55.. In: Sarazin M. (ed.)

Ashley M.C.B., Burton M.G., Lloyd J.P., Storey J.W.V., 1995 SPIE 2552, 33

Ashley M.C.B., Burton M.G., Storey J.W.V., Bally J., Briggs J.W., Harper D.A., Lloyd J.P., 1996, PASP (to be published

1996A&AS..118..385M

- Burton M.G., Aitken D.K., Allen D.A., et al., 1994, Proc. Astron. Soc. Aust. 11, 127

- Dierickx P., 1992, J. Mod. Opt. 39, 569
 Fried D.L., 1966, J. Opt. Soc. Am. 56, 1372
 Gillingham P.R., 1993, ANARE Res. Notes 88, 290, Australian Institute of Physics 10th Congress, University of Melbourne, February 1992 (publications of the Antarctic Division)
- Neff W.D., 1981, An Observational and Numerical Study of the Atmospheric Boundary Layer Overlying the East Antarctic Ice Sheet (PhD Thesis), Wave Propagation Laboratory, Boulder Colorado U.S.A.
- Obukhov A.M., Geofis. 13, 58 1949, Izv. Akad. Nauk SSSR, Ser Geograf.

- Roddier F., 1981, Prog. Opt. 19, 281 Schwerdtfeger W., 1984, Weather and Climate of the Antarctic.
- Elsevier Science Pub. Co. NY Storey J.W.V., Ashley M.C.B., Burton M.G., 1996, Publ. As-
- tron. Soc. Aust. 13, 35 Tatarski V.I., 1961, Wave Propagation in a Turbulent Medium. McGraw-Hill, New York
- Vernin J., 1994, Recherche de site pour l'astronomie en Antarc-
- tique, Colloque Acad. Sci. Paris, 16-18 Dec. 1992, 92-96 Vernin J., Marks R., Ashley M.C.B., Azouit M., Briggs J.W., Burton M.G., Manigault J.F., 1994, Optical Turbulence at the South Pole: First Measurements and Future Plans, XXI-Hrd SCAR Meeting, Rome, Aug. 29-Sep. 1
- Vernin J., Muñon-Tuñóz C., 1992, A&A 257, 811 Vernin J., Muñon-Tuñóz C., 1994, A&A 284, 311