.13...17A

1996PASA. .

Publ. Astron. Soc. Aust., 1996, 13, 17-21

Remote Control of Astronomical Instruments via the Internet

Michael C. B. Ashley!, Paul W. Brooks! and James P. Lloyd®

18chool of Physics, University of New South Wales, NSW 2052, Australia
mcba@newt.phys.unsw.edu.au
2University of Chicago, Amundsen-Seott South Pole Station, Antarctica

Recetved 1994 December 7, accepted 1995 May 29

A software package called ERIC is described that provides a framework for allowing
scientific instruments to be remotely controlled via the Internet. The package has
been used to control four diverse astronomical instruments, and is now being made
freely available to the community. For a description of ERIC’s capabilities, and how
to obtain a copy, see the conclusion to this paper.

Keywords: automated software — Internet

1 Introduction

In the last five years the bandwidth of the Internet

has increased to the point where it is feasible to use

it for remote control of astronomical instruments.

At the University of New South Wales (UNSW) we

have designed and built four instruments that can

be remotely operated:

e The Infrared Photometer Spectrometer (IRPS),
a near-infrared single-detector system that has
been operating at the US Amundsen—Scott South
Pole Station since January 1994.! The Internet
reaches the South Pole via geostationary satellites
that have drified away from a low-declination
orbit (and hence are visible from the Pole).

¢ The Automated Patrol Telescope (APT) at Siding
Spring Observatory. This is a 0-5m Schmidi
telescope equipped with a CCD (Carter et al.
1992, 1994a.b). It is connected to the Internet
via a 64 kbps ISDN link shared with the other
telescopes on the mountain.

e The UNSW TInfrared Fabry-Perot {UNSWIRF), a
tunable near-infrared filter used at the Cassegrain
focus of the Anglo-Australian Telescope. In this
case the control console is only 100m away
(although the instrument could be controlled
from any Internet site), and the method of
communication with the instrument is a single
Ethernet cable. The advantage of using Ethernet
for control is that a single cable replaces the
multitude of cables that are traditionally used.

¢ A 3-Tm radio telescope (Storey & Lloyd 1993;
Storey et al. 1994) on the roof of the School
of Physics, UNSW, designed for undergraduate
laboratory courses in radio astronomy.

1 The IRPS originates from the Anglo-Australian Observatory
(Barton & Allen 1980)—at UNSW we winterised and
computerised the instrument, and designed and rebuilt most
of the electronics {Ashley et al. 1995)

We began work on a remote-control kernel for
our software specifically for the IRPS, since we
needed to be able to control this instrument,
and receive data back from it, while it was making
measurements during the Antarctic winter. Following
this successful use of the software, we isolated the
IRPS-specific modules, and rewrote the remainder
to be independent of the type of instrument being
controlled. Thus was ERIC (Extensible Remote
Instrument Control} born. We have since applied
the software to control of the other three instruments
mentioned above.

2 Design Constraints

Since ERIC was originally written to control the

IRPS, it is worth describing the design constraints

of this instrument since they strongly influenced the

direction of the project.

e The data-rate to the South Pole was very low
(9600 baud for a few hours per day), so the
communication had to be concise.

o The intermittent nature of the connection to the
South Pole made it desirable for the software to
be able to communicate via e-mail (in addition to
the direct Internet connection, when available).

o Budgetary and time constraints restricted the
choice of hardware to an IBM PC-compatible,
with National Instruments controlling cards. The
potential difficulties associated with writing device
drivers for these cards argued against using a
UNIX operating system on the PC.

e The possibility that the PC might be subjected
to extreme cold (—70°C) meant that we couldn’t
rely on hard disk drives. We therefore purchased
a solid-state disk, which forced us to keep the
software (including the operating system of the
computer) under 2 Mbytes. The obvious choice
for the operating system was, at the time of

© Astronomical Socicty of Australia = Provided by the NASA Astrophysics Data System

.13...17A

1996PASA. .

18

development, MS-DOS version 6-2. We also

had in mind the possibility of running future

low-power experiments from palm-top computers

(such as the HP200LX), which again dictated

the use of MS-DOS. Without these copstraints,

a good choice of operating system would have

been a UNIX system such as Linux.

The major disadvantages of using MS-DOS are
that it is not multi-tasking, does not have built-in
support for Internet communication, and the 640
kbyte limit to executable program size is a nuisance.
Fortunately it is possible to extend the operating
systern with interrupt-driven programs that act
relatively independenily, like background processes.
To communicate over the Internet, a module that
implerents the Internet TCP/IP communications
protocol suite was required. We chose to use the
TTCP package from TurboSoft Pty Ltd. This
provides TCP/IP services in a DOS environment,
using the industry standard ‘BSD sockets’ interface,
which makes it very easy to program.

The final decision was which programming lan-
guage to use. We chose the Microsoft Visual C+4
V1-0 compiler, but wrote only in ANSI C, without
any of the C++ extensions. On the UNIX end {the
computer doing the remote-controiling was envisaged
as heing a UNIX box) we used Perl, due to its ease of
use and richness of functions to access the operating
system. In fact, we had thought of writing the PC
program entirely in a specially compiled version of
Perl with built-in functions to handle the low-level
instrument control. However, the urgency of the
IRPS project prohibited exploring this interesting
route.

3 Sockets

The concept of a ‘socket’ arose from the Berkeley
Software Distribution UNIX system (for a guide to
using and programming with sockets, see Comer
and Stevens 1993). Basically, a socket is a
logical communications ‘endpoint’, consisting of
the computer’s Internet address and a logical port
number. Each computer can have a number of open
sockets, and each socket can initiate a connection to
another socket on another computer, which forms
a channel for data commumication. Data can be
transferred bi-directionally, and data are guaranteed
to be delivered in order, free of errors, with no
duplication. The TCP/IP protocols are specifically
designed to operate in environments that are hostile
to data communications; they do this by checking
the data and retransmitting should errors occur.
Also, connections can be dynamically re-routed
if an intermediate link fails, which is a common
occurrence for noisy radio links. All this occurs
in the background, inside the TTCP module, and
requires no attention from ERIC.

M. C. B. Ashley et al.

A UNIX computer can treat sockets as just
another type of file, to which a stream of bytes
can be written/read. Under MS-DOS, life is not so
easy, although various BSD socket implementations
provide functions which closely mimic the UNIX
behaviour.

We decided to use sockets as the basic means of
communicating between the instrument-control PC
and the remote UNIX computer. In our current
implementation, the UNIX computer runs a daemon
process that is willing to accept connections that
are initiated from the PC on a particular pre-agreed
{and hard-coded) port number. Once a connection
has been established, the PC listens to the socket,
and any characters that are received are treated
just as though they were typed on the keyboard
of the PC (the keyboard is still active while the
socket is open). ERIC sends any requested data
back along the socket—which is often more efficient
than using NFS, even for large image files such as
those generated by CCDs, since the transfer does
not have to be synchronised with writing to disk
(as it does with most implementations of NFS).

In order to provide additional feedback to the
remote computer, all text written to the PC screen
is also sent down a second socket interface to the
remote computer.

4 The ERIC Command-set

ERIC commands are simple ASCII tokens, delimited
by spaces or newlines. If a command requires one or
more arguments, they are given immediately after
the command. If an argument is not supplied,
ERIC will prompt you with a description of what
is expected.

A set of standard commands is provided with
ERIC (see Table 1}. These are expected to be useful
regardless of the type of instrument being controlled.
For examples of instrument-specific commands, see
Table 2, which is taken from the software used to
control the APT.

5 Log Files

A useful feature of ERIC is that all commands are
time-stamped (to the nearest second) and logged in
a log file on the PC. Any command arguments, and
some types of data from the instrument (basically,
anything that does not require too much space), are
also placed in the log file. The log file is written in
a compact binary form, with each command being
abbreviated to a single byte. A companion program
exists to decode the log file and display its contents
as normal ASCII text.

A new log file is usually created each time the
instrument conirol program is started. Facilities
exist for reading the currently open log file (or any
of the previous log files) from the remote computer.

© Astronomical Socicty of Australia = Provided by the NASA Astrophysics Data System

.13...17A

1996PASA. .

Remate Control of Astronomical Instruments

19

Table 1. Generically useful functions built inte ERIC

sdf set default parameters

rpf read parameter file

wpf write parameter file

dlym delay by milliseconds

dlys delay by seconds

st sleep till modulo

stt sleep till time

alarm set/clear/list alarms

log write a message to the log file
onlf open new log file

rel read current log file

ts write time-stamp to log file
sel select error level

ple print last error

peh print error history

pae print all errors

pei print error information
quiet makes ERIC less verbose

ee enable error

de disable error

rf read file

rbf read binary file

whi write binary file

free print fee diskspace
intr allow interrupts
comm establish socket link
if flow control

beep sound terminal bell
echo display message
spawn execute subprocess
exec exit, and Tun program
settime set the PC's time
help display help message
man access UNIX-like man pages
q quit the program

Table 2. The additional commands used to control a telescope and CCD

expose expose the CCD

dark take a dark frame

readout readout the CCD

stats print statistics of the image
clear flush the CCD

time set the exposure time

gain set the CCD preamp gain
shift set the CCD bit-shift

speed select lo- or hi-speed readout
chip specify the CCD dimensions
sra set the readout area

dra make a delta change to the area
bin set the on-chip binning

6 Error Handling

The ability to handle errors is a crucial part of
instrument control software, particularly when the
instrument is to be operated remotely. In common
with many software systems, we decided to give
each possible error a unigque numeric code and an
alphanumeric symbol (which hopefully is reasonably
descriptive of what caused the error). In addition,
each error has a one-line descriptive message (up to
80 characters long) associated with it, and possibly
a paragraph or more of detailed description. The
user can select which level of description is displayed
when an error occurs.

When an error occurs, it is logged in the log file
with a time-stamp, and is also stored in an internal
history buffer. At any time the user can examine a
list of all the errors that have occurred, in reverse
chronological order.

To avoid the possibility that a non-serious er-
ror occurs so frequently that it disrupts the use
of the instrument (simply due to the amount
of verbiage on the screen, and veolume of log-
ging sent to the log file), the option exists to
disable any given error message from being dis-
played /logged.

focus adjust the telescope focus
calra calibrate the RA axis

caldec calibrate the Dec axis

caltel calibrate the telescope position
coord give a new RA, Dec

slew move to the new coordinate
offset offset from the current position
move move an object on the CCD
centre centre an object on the CCD
open open the CCD shutter

close close the CCD shutter

status display all CCD parameters
park move the telescope to its park position

7 Macros and Flow Control

ERIC includes a very simple macro expansion
capability that helps reduce the amount of typing
involved in controlling the instrument. For example,

go = coord 12 34 45-6 — 3121 34
slew time 10 expose readout

Henceforth, typing ‘go’ would result in the
commands to the right of the equals sign being
executed, from left to right. Macros can be nested
to any depth.

Loops can also be used, and nested; for example,

go2 = 5(go 3(stm 60 beep))

Finally, there is a simple ‘if-then-else-fi’ construct
available that allows internal variables within the
program to be tested against other variables or
numbers, and for different commands to be executed
depending on the result. This can be used, for
example, to set the gain on a preamp so that the
signal is not saturated, for example,

if average gt 100 then decgain else echo gain OK fi

© Astronomical Socicty of Australia = Provided by the NASA Astrophysics Data System

oo e

.13...17A

1996PASA. .

These macro and Aow-control capabilities are very
rudimentary, and could be greatly improved. One
possible approach would be to rewrite ERIC in Perl,
which would immediately make the full richness of
the Perl interpreter available.

8 Timing and Alarms

ERIC has many built-in commands dealing with
timing. For example, ‘dlym’ will delay by a
user-specified number of milliseconds (the delay is
generated by a self-calibrated software timing loop),
‘stm’ will sleep until the current time is zero modulo
a user-specified number (this is very useful for
synchronising data-taking), and ‘alarm’ allows you
to specify commands to execute at times in the
future (either absolute times, relative to the current
time, or repeating at a regular interval). Here is
an example of using the ‘alarm’ feature to take a
CCD image every 300 seconds:

doit = expose readout
alarm maodulo 300 ‘doit’

9 E-mail Interface

The e-mail interface to ERIC is based on the
remote computer, which is assumed to be a UNIX
machine running some version of the UNIX ‘sendmail’
program. A user-account is established on the UNIX
computer specifically for e-mail communication with
the instrument. This account should comtain a
“forward’ file in its login directory that redirects all
incoming e-mail to a Perl program {part of the ERIC
software distribution). This program performs the
following tasks: strips the e-mail header information
from the message, checks for the presence of a
password in the message, checks that the ERIC
communication daemon process is running on the
UNIX machine (if not, it is restarted), and then
sends each line of the message to the daemon (this
is done by writing the message to a specially-named
file, and sending a ‘kill -HUP’ signal to the daemon,
which then reads the file and forwards its contents
to the instrument computer).

ERIC also has the ability to automatically
compress and ‘fip’ data files back to the remote
computer.

The e-mail interface is particularly useful in the
case that the instrument is not available at all times
for direct Internet connection, as is the case for
sites such as the South Pole. One has to be aware,
though, that e-mail can arrive in a different order
from that in which it was sent.

10 Making Software Changes Remotely

It is straightforward to set up the PC running
ERIC in such a way that software updates can be
sent to it from the remote computer, and the PC
can then exit ERIC, recompile the software, and

M. C. B. Ashiey et al.

re-run it. To do this, the PC's AUTOEXEC.BAT
file should do the following:

1 Recompile the software if it has been altered.
2 Run ERIC.
3 Reboot the PC when ERIC exits.

The software modifications can be written to the
PC using ERIC’s ‘wbf’ (write binary file) command.
Then, exiting ERIC will cause the PC to reboot,
and the software to be recompiled and executed.
Alternatively, if the data-rate available is very low,
it is possible to send all the changes as patches (i.e.,
the difference between the old source code and the
new), compressed with a program such as ‘gzip’,
and then to use ERIC’s ‘exec’ command to exit
ERIC and run a batch file containing commands
to decompress the patches, apply them (using the
public domain ‘patch’ program), and then reboot
the PC to recompile and execute the new program.

This latter technique has been successfully used
to update the software running IRPS at the South
Pole. Needless to say, one has to be absolutely
confident that the new source code will recompile
correctly.

11 Caveats

ERIC is a fairly simple program (roughly 3500
lines) that is useful for controlling instruments. It
would need more work before being considered for
control of a major facility such as a large telescope,
but could be used immediately for controlling a
subsystem such as a weather station or a single
instrument.

12 Conclusion
To summarise, ERIC is a remote-control kernel
written in Microsoft Visual C++, designed to be
incorporated into an instrument-control program. It
runs on an IBM-compatible PC, for communication
with a UNIX hosi. ERIC provides the following
functionality:

e The instrument is controlled by a stream of
ASCII commands, which can originate from the
keyboard of the PC, from a file that is local to
the PC, or from a ‘socket’ connected to a remote
computer.

s Whatever is printed on the PC sereen can also
be sent to the remote computer for display.

e A set of standard commands (see Table 1) is
available, regardless of the instrument being
controlled.

e All commands sent to the instrument are logged
in a compact form to a file on the PC, with
time-stamps to the nearest second.

¢ ERIC incorporates a framework for handling error
conditions.

» A macro-expansion capability is included, together
with a simple if-then-else-fi construct and the
ability to execute loops.

© Astronomical Socicty of Australia = Provided by the NASA Astrophysics Data System

.13...17A

1996PASA. .

Remote Control of Astronomical Instruments

e Any file on the PC can be read or written, and
the PC can be remotely rebooted. These features
can be used to update and recompile the control
program itself.

s On-line help is available through a UNIX-like
‘man’ command.

» Some degree of security against unauthorised access
is given by hard-coding the IP number of the
controlling computer, and by requiring passwords
to be sent when initiating communication.

e Commands can be sent to ERIC via e-malil, and
ERIC can respond similarly. Currently, this is
implemented by software running on the remote
computer, although it could be transferred to the
PC.

ERIC is available on the WorldWide Web at URL,

http://www.phys.unsw.edu.au/ " mcba/eric.html.

TTCP is available from TurboSoft Pty Ltd,

21

579 Harris Street, Ultimo 2007, NSW (e-mail
salesturbosoft.com.au).

Ashley, M. C. B., Burton, M. G., Lloyd, J. P., & Storey, J.
W. V. 1995, SPIE, 2552, 33

Barton, J. R, & Allen, D. A. 1980, PASP, 02, 368

Carter, B. D., Ashley, M. C. B., Sun, Y-S, & Storey, 1. W,
V. 1992, PASA, 10, T4

Carter, B. D., Bembrick, C. S., Ashley, M. C. B,, & Miichell,
P. 1994a, Exper. Astron., in press

Carter, B. D., Ashley, M. C. B., Bembrick, C. S., Brooks,
P. W., Mitchel, P., & Storey, J. W. V. 1994b, in
TIAU Colloquium 148, ed. R. D. Cannon & B. Hidayat
{Dordrecht: Kluwer), in press

Comer, D. E., & Stevens, D. L. 1993, Internetworking
with TCP/IP, Vol. III, BSD Socket Version, {(New York:
Prentice Hall)

Storey, J. W. V., Lloyd, J. P. 1993, PASA, 10, 225

Storey, J. W. V., Ashley, M. C. B., Naray, M., & Lloyd, I.
P. 1994, Am. J. Phys., in press

© Astronomical Socicty of Australia = Provided by the NASA Astrophysics Data System

