Th rmi ion of r M f Ton

Shear moduli are normally difficult for the amateur to measure.
They are not of primary importance to the instrument maker but
~.may become so in the future. Shear deformation is important in
some vibration modes and increasingly at high frequencies in
other modes. They are required for Finite Element calculations.
However, there is a simple method of measurement that can be used
if high precision is not required. It uses a torsion pendulum
made of parts relatively easily obtained. The determination of
shear modulus depends on a knowledge of the oscillating inertia
which is made to be much larger than that of the specimen so that
oscillating frequency is about one per second. The specimen must
he.accurately made and since it forms the slender suspension, the
lateral dimension appears in the 4th power thus magnifying
errors. The frequency of oscillation is low enough for the swings
to be counted and timed with a stop clock.

Pendulum Setup

A stout rod fixed vertically to a firm base forms the framework
for the pendulum. Laboratory clamps enable the parts to be
assembled. A small tap wrench forms the top support for the
specimen; if a cylindrical rod, directly; if a wire, via a pin
vice; 1f rectangular in cross section a small aluminium adapter
piece is used so that the axis of the specimen coincides with the
axis of the apparatus. Another tap wrench is clamped to the lower
end of the specimen, having determined its centre of balance and
using spacers for adjustment. The lower edges of the sample are
bevelled to fit the tap wrench jaws. The ends of this tap wrench
are machined to take the inertia weights which are an equal
distance from the specimen axis. In this study the specimens are
wood samples so below the torsion bar another clamp holds a cork
through which passes a needle positioned on the pendulum axis.
This axis is determined with a plumbob, the base having been
levelled. A machinists scriber is used to indent the specimen end
to coincide with the axis and the needle is used to align the
pendulum on the instrument axis and is then partially withdrawn
during operation. The alignment is necessary and allows the
specimen top clamping to be properly adjusted. All this setting
up is done before the inertia weights are added. During operation
the needle at the bottom provides lateral stability without any
significant damping. A card on which is marked a scale, is
supported on the handle attached to the needle in this pendulum.
A vertical line on the inertia weight passes over the scale which
is marked with a zero line and marks representing a suitable
swing amplitude and 0.368 of this amplitude. The time taken for
the number of complete oscillations between these amplitude
limits (or any other limits) enables the frequency to be found,
but, in this case, as a bonus, the Q value which is TIN; N being
the number of swings between these two amplitude 1limits. A
photograph, figure 1, shows the set up of the pendulum.

P u P ters
The inertia weights are mild steel discs 81 mm dia., 12.7 mm
thick weighing 0.5 Kg each. They slide onto the 6.35 mm dia.




reduced ends of the torsion bar being located against shoulders
that separate their centres by 178.5 mm in this case. The inertia
of each weight was found by calculation using the equation;

Im = M(h®/12 + r=/4 + R=®)

where M is the mass of each weight, h the 1length of the
cylindrical weight, and r its radius. R is the distance of the
centre of the weight to the pendulum rotation axis. The total
inertia is twice this value plus the inertia of the weight
support bar i.e. the tap wrench; the inertia of the specimen was
ignored without serious error.

The inertia of the support bar was found by difference since it
was of an awkward shape for calculation. The equation;

Gars = BTY 1 1,f=/ra*
where Gers 1is the shear modulus, 1. and re. are the length and
radius of the wire specimen used, f the oscillation frequency and

I the total inertia acting. By determining the frequency with and
without the inertia weights we can use the identity;

G.ff = BrT I; 1.f;2/r.4 = BfT Iz l-fzzlr.4
which reduces to;

I;/Iz = fzzlflz

Where IL = Iw.xeht- + Itar-ien bear
Iz = JTecoreton oar
fi = frequency with weights added
f= = frequency with torsion bar only.

For the 0.5 Kg weights used we have the following resultsj

Total inertia Im fa fz I>
weight
1 Kg 0.0084424 0.230 1.47 0.0002119

The total inertia I. is then 0.008654 Kg m=
rthotropic rials

The determination of shear moduli for orthotropic materials i.e.
wood, the subject of this study, makes use of a procedure
outlined by J.Bodig and B.A.Jayne (1). The elastic properties of
anisotropic materials are dealt with in detail by R.F.S.Hearmon
(2).

The principal directions in wood where the properties have
limiting values are L, along the grain parallel to the axis of
the tree, R, radial and normal to the tree axis, and T,
transverse i.e. normal to the axis and the radial direction.




€Elastic moduli, E_, Em, and E+ measured in these directions are
characteristic of the material. They are related through
Poisson’'s ratio.

Shear moduli occur on the three principal planes and these
concern us in this paper. G.m and Gur can be determined on
samples cut from violin tonewood using the method of Bodig and
Jayne. Figure 2 shows the principal directions and planes.

Specimens were cut in the longitudinal direction with rectangular
cross section, one with the long side of the rectangle in the R
direction and the second with the long side in the T direction.
The frequency of oscillation of the two samples was determined
and substituted in turn in the equation;

Ges = 4TIZI1f2/k,ab™

where I is the imposed inertia, 1 is the sample length, f is the
frequency of oscillation, a the long side and b the short side of
the cross section and which should have a ratio not less than 4:1l
and ki is a constant obtained from a table, originally due to
St.Venant, of ki versus a/b(G.+/GLm)*”*. For accurate results the
values of a and b should be constant over the length of the
sampe and known precisely. The value of ka for the two samples

should be similar in value. A graph of k. is shown in figure 3.
Gum and G.r are obtained by substituting ki back into the
equation.

The remaining shear modulus Gmr requires two specimens cut with
the length in the radial direction and the long side of the cross
section, of one specimen, in the transverse direction so that Ger
would be the dominant modulus. The other sample would have the
long side of the cross section in the L direction. The Gum
modulus determined here should agree with the previous
determination. Two lengths could be joined by glueing to make a
specimen long enough.

Example of Calculation

The following is the tabulation of the results of the calculation
0f GLm and G_+ for spruce using the experimental determination of
frequency for the two samples required. Figure 4 shows the
necessary geometry.

Sample f(s—%) 1(m) a(m) b(m) a’/b ab>
GLm 0.348 0.40 0.0083 0.0021 3.932 0.769%x10~2°
Gu~r 0.300 0.40 0.0084 0.0030 2.80 2.268x10—*°®
Gum = (4TI211f2)/(kiambs™) Gor = (4TI=11f2)/(k.arbn™)
= 0.2178x10%/k, = 0.1507x10%/k,
Ger = (0.1507/0.2178)6GuLm (GL+/GLm)27= = 0.8318




Sample a/b(G_+/GLm)*’= ka(from graph)

G 3.287 0.268
Go+r 2.329 0.245
Av. 0.256

GLm 0.2178X10%/0.256 0.85X10% Pa

0.59x107 Pa

0.1507x10%/0.256

GI—T

Discussion

It must be remembered that this method measures a dynamic shear
modulus which is that operating during vibration. 6.~ would
dominate in quarter cut plates vibrating in mode 1. Tests carried
out on 10 samples of European spruce showed no significant
correlation with density for either shear modulus. The results
fell in the range 0.5 to 1.0x10” Pa. For 11 samples of European
maple a correlation of both shear moduli with density was found.
GL.m was generally 50% higher than G.+ and both had a similar
trend line to Em, with change in density. G.Le for the maple was
about twice that for the spruce. More samples need to be measured

for a difinitive result. As for the @ values, the tentative
results are: for spruce the values ranged from 45 to 60 (Av.
51.7) for QLm, and 5040 $Av. 47.0) for Qu+r; for maple the

values ranged from 45 to 72 (Av. 56.8) for Que, and 47 to 53 (Av.
50.3) for Q_-~.
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Figure 1. Torsion Pendulum setup.
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Figure 2. Principal Directions and Planes in an orthotropic

material.
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Figure 3. Graph of ki versus a/b(GrrT/GLr)1/2 from Bodig and
Jayne. :




Figure 4. Principal Directions and Shear planes in Spruce.






