Vibrational modes of partly filled wine glasses
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Time-average holographic interferometry has been employed to study how the vibrational modes of
a singing wine glass change when it is filled with a liquid. While the liquid clearly lowers the
resonance frequencies, it does not change the vibrational mode structure in a first approximation. A
more detailed analysis, however, reveals that the presence of the liquid causes the simultaneous
excitation of two orthogonal modes that are well resolved for the empty glass. © 2006 Acoustical

Society of America. [DOI: 10.1121/1.2198183]
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I. INTRODUCTION

It is a common game. You take a wine glass and you rub
your moistened finger around its rim. Besides enjoying a
generally rather pure tone emitted by your singing wine
glass, you might even take pleasure in observing some
ripples on the liquid surface that follow your rotating finger.
On a less playful level, many famous composers such as
Mozart, Berlioz, or Saint-Saéns have written master music
pieces for instruments based on glass vibrations, also called
“musical glasses.” The ethereal sound they produce has been
much appreciated for many centuries. These instruments can
be divided into two main groups depending on the way the
vibrations are produced.1 The first group is composed of per-
cussion instruments like bells, cymbals, and balaphones
made of glass. The second group consists of bowed instru-
ments, like the glass harmonica and seraphim, that are ex-
cited by a “stick and slip” technique which is also at the
origin of the sound production for our singing wine glass.
The pitch can simply be tuned by pouring some liquid in the
glass. This technique is, for instance, successfully used to
tune seraph instruments. Another way to change the pitch is
to use other glasses with a different thickness or diameter;
glass harmonicas are commonly based on this second tech-
nique. The growing interest in glass musical instruments has
already led to several papers on the acoustics of wine
glasses.%5 In this paper, we present experimental results ob-
tained with simple wine glasses filled to various levels. We
first show how the glass resonance frequencies vary with
liquid quantity. Using time-average holographic interferom-
etry, we then investigate the question whether the vibrational
mode structure also becomes influenced by the presence of
the liquid. We demonstrate that the latter one actually re-
mains unchanged in a first approximation. A more detailed
analysis, however, reveals that the liquid introduces an over-
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lap of the two, previously well resolved, orthogonal mode
frequencies leading to their simultaneous excitation.

In the next section, we describe our experimental setup.
In Section III, we present a simple analytical model to ex-
plain the pitch lowering with increasing liquid quantity. Sec-
tion IV is devoted to our experimental results and discussion.

Il. EXPERIMENTAL SETUP

The experimental setup for holographic interferometry is
shown in Fig. 1. The optical configuration we use for holo-
graphic recording is a modified Mach-Zehnder configuration.
The laser beam originating from a 7-mW multi-mode He-
Ne laser is split into two beams with equal intensities. The
reference beam is filtered and expanded through a spatial
filter consisting of a X40 microscope lens and a 10 um pin
hole. The object beam is expanded by a diffuse glass and its
length is chosen to equal the optical path length of the ref-
erence beam at the holographic plate in order to guarantee
maximal temporal coherence. The position of the diffuser is
chosen in such a way that the intensity of the reference beam
is about three times higher than that of the object beam at the
place of the holographic plate. In order to minimize vibra-
tions the whole optical part is set on a properly isolated op-
tical table. We determined the optimal exposure time to be
about 50 s for our ABSYS BB-640 holographic plates. More
experimental details concerning the holographic setup can be
found in Refs. 6 and 7.

We placed a microphone approximately 2 cm below the
glass rim and at a distance of about 2 mm from the glass.
This microphone was then connected to a computer to record
frequency spectra and to detect the resonance frequencies of
the glass. The impulse response of the glass-liquid system
was obtained by hitting the glass gently with a metal rod.
The selective excitation of a particular vibrating mode was
obtained by using a stabilized low frequency generator con-
nected to the input of a 50-W amplifier with a loudspeaker.
The accurate resonance frequency was obtained by compar-
ing the amplitudes of the acoustic signal obtained for a
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FIG. 1. Experimental setup for time-integrated holographic interferometry.
L: laser, BS: beam splitter, M: mirror, SF: spatial filter, D: diffuse glass,

MIC: microphone, LS: loudspeaker, P: holographic plate, G: wine glass, and
S: beam stop against stray light.

clamped and an unclamped glass. Subtracting the acoustic
response of the glass and the loudspeaker system from the
one produced by the loudspeaker alone excited by a modu-
lated sinusoidal signal gives an alternative method to obtain
the acoustic response of the glass-liquid system. Both meth-
ods result in identical experimental resonance frequencies.
Finally, the excitation of the quasi-degenerate (2,0) quadru-
pole modes* can also be produced by the simple finger rub-
bing technique. In this case, however, the vibrational struc-
ture of the glass follows the exciting finger. Consequently, it
becomes impossible to use time-average holographic inter-
ferometry with this excitation scheme. We chose, therefore,
the excitation method with the metal rod only for the impulse
response measurements while loudspeaker excitation was
used for all the other experiments.

lll. THEORY

A rigorous treatment of the vibration of liquid-loaded
wine glasses is a complex matter for several reasons. Even
for an empty glass, the profile is not simple and is different
for every glass type: red-wine glasses, chardonnay glasses,
champagne glasses, etc. In addition, the wall thickness varies
progressively from relatively thick at the base to thin at the
top edges. A solution for mode shape and frequency could, of
course, be obtained for an arbitrarily shaped partly filled
glass by using finite-element numerical analysis, but this
would lead to specific rather than general understanding. The
aim of the present analysis, in contrast, is to provide a simple
treatment in which the underlying physics is made clear.

A. Fundamental mode

The shape of the wine glass under study is intermediate
between that of a paraboloid of revolution clamped at its
peripheral center, a cone clamped at its vertex, and a cylinder
clamped around its base. Even the solution of these idealized
cases is very complex,8 but our initial concern is only with
the fundamental mode which is a simple elliptical deforma-
tion of the glass cross section, so that general approximations
based on very simple considerations’ can be made. Suppose
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that the tangential coordinate, measured from the base of the
cup, is s, that the azimuthal coordinate is ¢, and that the total
length of the cup surface is L. The fundamental mode can
then be written as

s, p,t) = f(s) cos 2¢ sin wt, (1)

where o is the angular frequency of the vibration and f(s) is
an unknown function of the coordinate s. To determine an
approximation to this function we proceed as follows. The
clamping constraint at the base requires that

=0, Z

ds =0, @

5s=0

while the fact that the rim is free requires that

z| o

=0. 3
as? s=L s’ ®)

s=L

Since we are concerned here with the fundamental mode,
which has no nodal rings, it is a good approximation to ex-
pand f(s) as a power series and to retain only the first term,
so that

fls)=— (4)

which satisfies the condition (2) though not (3). Because of
the other approximations necessarily involved in the analysis
to follow, however, this will be regarded as adequate.

It is now necessary to convert the tangential coordinate s
into a vertical coordinate z, and this depends in detail upon
the shape of the glass. If the glass profile is cylindrical, then
z=s and there is no problem. Similarly for a conical glass
z=As cos 0 where 0 is the cone semi-angle and A is a con-
stant. For a glass with parabolic profile, which is actually a
closer approximation to the vessel studied, z=As? close to
the base where the wall slope is small and more nearly z
=As higher up the glass where the slope is large. Since the
real wine glass profile is somewhere between these extremes,
and the glass thickness is not constant, an adequate approxi-
mation for the present purpose is to write the mode function
f(s) of (1) as z# so that (1) becomes

Wz, ,1) = zP cos 2¢ sin wr. (5)

This approximate result can be compared with experiment by
examining the positions of the fringes on the holograms of
the vibrating glass surface and correcting for the local slope
of the surface in the observation direction. This comparison
is shown in Fig. 5, which will be discussed in detail in Sec.
IV. The data are taken from two holograms made of a glass
vibrating in the first and second modes, respectively. 8 does
not depend on the scaling of the glass height. The plot indi-
cates a best-fit value of B~2.1 for the fundamental mode
and B=3.6 for the hexapolar (3,0) mode, which has three
nodal diameters and no nodal circles.

In the next stage of the analysis it is assumed that addi-
tion of liquid to the glass does not have a significant effect
upon the vibrational mode shape. This is the standard as-
sumption of first-order perturbation theory. In a more accu-
rate second-order perturbation treatment, the effect of the
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liquid loading upon the mode shape would be included."”
This refinement is not attempted in the present case since the
treatment already involves major approximations, so that un-
due mathematical refinement is not appropriate. It is, how-
ever, discussed briefly later.

In any simple harmonic vibration, the mean kinetic en-
ergy and elastic strain energy are equal. If it is assumed as a
first approximation that the vibrational mode shape of the
fundamental mode is independent of the liquid loading, then
the elastic strain energy for a given amplitude can be as-
sumed to have the constant value E and the kinetic energy of
vibration of the glass walls the value Kw?, where K is a
constant and w is the vibration frequency. The kinetic energy
of the contained liquid can be written Waw?, where W de-
pends upon the depth i of the liquid in the glass and is
proportional to the density of the liquid. From this it then
follows that

) E

The form of the kinetic energy function W(z) of the
liquid depends upon the glass shape and the shape of the
vibrational mode, both of which are complicated. To a rea-
sonable approximation for the fundamental mode, however,
this mode shape can be assumed to follow the mode shape of
the glass walls as given by (5) with an additional two-
dimensional internal flow of proportional amplitude. The
mass of co-moving liquid at a given height z is proportional
to the cross section S(z) of the glass at that height, and so
depends upon glass shape. The general expression for W(h)
is then

h
W(h)OCJ S(z)z*P dz (7)
0

and we must evaluate the integral for each glass shape. For a
cylinder, S(z) is a constant independent of z, for a paraboloid
of revolution S(z) <z, and for a cone S(z) <z?, so that the
integral in (7) is easily evaluated and has the form BA" where
B is a constant depending upon the glass dimensions and n
=2B+1 for a cylinder, n=28+2 for a hemisphere, and n
=2+3 for a cone. Substituting this into (6) gives the result

2
2 Yo

w=—,
1+ ah”

(8)

where w, is the mode frequency for the empty glass, « is a
constant proportional to the liquid density and also depend-
ing upon glass shape and wall thickness, and n is determined
as discussed above.

Since the shape of the wine glass studied is complex, the
theory can only predict approximate values for the parameter
n. For a cylindrical glass 3<n=<35, for a paraboloidal glass
4<n=<6, and for a conical glass 5=n=<7, with the upper
limit in each case being most nearly appropriate for a glass
of uniform wall thickness. Since the shape most closely con-
forming to that of the experimental glass is paraboloidal, we
expect to find that n= 6 gives the best fit to the experimental
data, and indeed a value of n=5.5, as shown in Fig. 2, does
give an excellent fit.
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FIG. 2. Experimentally measured eigenfrequencies for the quadrupolar
mode (2,0) as a function of water height. The dashed gray line results from
the model for a cylindrical shaped shell while the black dotted line is the
best-fit spherical curve and the gray continuous line the best-fit spherical-
cap curve. The black continuous line shows the least-mean-square fit.

B. Higher modes

The analysis above considers only the fundamental
mode which has two nodal diameters and no nodal circles. It
is normal to refer to this as a (2,0) mode. A higher mode
(p,q) with p nodal diameters and ¢ nodal circles has the
general form

Uy (5, .1) = f4(5) cos psin w, 1, 9)

and f),, will generally increase about as s” near the origin and
then become oscillatory for larger values of s if ¢ # 0. Such
oscillations associated with the presence of nodal rings
greatly complicate the analysis and experiment. If, however,
there are no nodal rings, then the form of the mode function
in (9) suggests that 8=~ p so that, since n in (8) lies between
2B+1 and 23+3 and is actually about 5.5 from the experi-
mental results for the (2,0) mode, we should expect values of
about 7.5 and 9.5, respectively, for (3,0) and (4,0) modes.
There is another complication, particularly if many
nodal diameters are involved, and this is that vibrations in
the liquid will be increasingly localized near to the glass
surface, so that the moving-mass term will increase more
nearly as the glass perimeter rather than as its area. This has
not been taken into account in the simplified analysis above.

C. Limitations of the present theory

Despite the success of this analysis in explaining the
experimental results, it is useful to mention briefly the limi-
tations of the predictions. In the limit of a fluid of infinite
density, the second-order perturbation leading to changes in
mode shape cannot be neglected, since the walls of the glass
would be effectively clamped below the surface of the liquid.
For the case of a partly filled glass this would lead to an
increase in mode frequency with increasing liquid depth
rather than a decrease. For this reversal of behavior to occur,
it is necessary that the mass of the vibrating fraction of the
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FIG. 3. Amplitude spectrum of the impulse response of an empty (a) and a
full (b) glass. Insets: the associated orthogonal (2,0) modes.

liquid be very large compared with that of the vibrating
walls. The determination of the threshold density above
which this process reversal will take place certainly presents
a challenging task for both experiments and theory, but
clearly goes beyond the scope of our present work.

IV. RESULTS AND DISCUSSION

Figure 3 shows the typical spectra associated with an
impulse response for the empty glass (a) and a glass filled
with water (b). The insets show the spectra of the two or-
thogonal quadrupolar modes for each system. For the empty
glass, only a few resonance frequencies are visible in the
displayed spectrum. They can be attributed to the flexural
(m,0) modes with m=2 to 6.° For a filled glass, the reso-
nances are shifted toward lower frequencies. This is also true
for higher modes. Therefore more resonance peaks appear
within the frequency window of Fig. 3.

In the inset (a), the frequencies of the two orthogonal
quadrupolar modes are clearly resolved for the empty glass,
although the splitting is only about 4 Hz. This splitting is due
to small imperfections in the glass structure (variation of
thickness, presence of impurities, etc). In the case of a full
glass [see inset of Fig. 3(b)], these two modes become de-
generate. The reasons for this interesting result will be dis-
cussed in more detail below.

In Fig. 2, we present the measured resonance frequency
for the (2,0) quadrupolar mode versus the water height in the
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FIG. 4. Photographs of the holographic images of the vibrating wine glass:
(a) empty, (b) half-filled with water, and (c) full. In all cases, the glass was
excited by a loud speaker at the eigenfrequency of its quadrupolar (2,0)
mode.

glass. While a careful parameter fitting might begin with n
~6 near the base and progress through n=35 at medium
heights to n =4 near the top of the glass, such a refinement is
not really justified, and we find a fit with n=5.5 as being the
most appropriate.

Figure 4 shows the photographs of the holographic im-
ages of the vibrating glass for three different filling levels:
(a) empty, (b) half-full, and (c) full. The glass is always
excited with the loudspeaker at the eigenfrequency of its
quadrupolar (2,0) mode determined as described in Sec. II.
The brightest fringe corresponds to the nodal line of the
eigenmode in each hologram. Skeldon et al. showed glasses
being intentionally broken by excitation (Fig. 10 in Ref. 4).
The crack route most probably corresponds to an antinodal
line where the bending stress is greatest. This line is dis-
placed 90° from the nodal line for the case of the (2,0)
vibration visible in our holograms.

From the number of fringes readily counted in Fig. 4, it
is possible to deduce the vibrational amplitudes. Let the
point M of the glass vibrate sinusoidally with an amplitude A
and a pulsation w in a direction toward the holographic plate.
Its displacement is thus given by x(M,)=A(M) sin (wt).

Since the exposure time 7> 1/w, the intensity (M) of
the reconstructed hologram is given by

(M) IS(M)J%)(%A(MQ (10)

where I4(M) is the intensity of the reconstructed hologram
scattered by the point M when it is not vibrating, J,, is the
Bessel function of the first kind of order zero, and \ is the
light wavelength.6 Dark fringes are consequently centered at
each point on the object surface where the Bessel function
becomes zero for a given vibrational amplitude A(M).
Figure 5 shows the vibrational amplitude normal to the
surface of the empty glass f versus the height z. The data are
calculated from the holograms taking into account the geom-
etry of the incident beam and the observation direction. This
analysis gives a regression of z=Af"*’ for the fundamental
mode. This implies that S~2.1 which gives a value of n
between 5 and 7, these extreme values being those for a
cylinder and for a cone, respectively. Examining the shape of
the glass used in the experiment, it is clear that, except for
very small liquid levels such that #<0.3H, where H is the
total height of the glass cup, the glass profile is much more
nearly cylindrical than conical, so that it is to be expected
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FIG. 5. Vibration amplitude ¢(z) in units of A/2, as measured by the pro-
gression of the bright fringes corrected for wall angle, plotted against height
z above the base (in arbitrary units as measured from an enlarged photo-
graph) for the fundamental (2,0) mode with different liquid levels and for
the (3,0) mode. The straight lines are power-law regressions =Az” as in
Eq. (5). Note that the slope of all the (2,0) mode regressions is the same,
indicating that addition of the liquid does not significantly modify the mode
shape. Differing heights for corresponding bands for the (2,0) mode arise
from different excitation efficiencies.

that the best-fit value of n will be closer to 5 than to 7. As
shown in Fig. 2, the best-fit value derived from the micro-
phone experiments is in fact about n=5.5. The same analy-
sis has been done for the (3,0) mode which leads to 8~3.6
and therefore 8.2<n=10.2. This is in good agreement with
the value n=8 taken from the respective hologram.

About 25 dark fringes are visible in Fig. 4(a) which
gives an approximate amplitude of A, =4 um; for Figs. 4(b)
and 4(c), A, =1 um (seven dark fringes) considering the em-
ployed recording geometry. The amplitude clearly decreases
with the liquid level, presumably due to the increased inertia
and the less efficient coupling of the loudspeaker to the glass
as the frequency decreases.

The parameter « in Eq. (8) is proportional to the density
of the liquid filled into the glass. In order to check formula
(8) we measured the resonance frequencies for liquids with
different densities. Figure 6 shows the data for liquids with
three different densities, dichloromethane (1.32 kg/1), water
(1 kg/1), and isopropanol (0.79 kg/1). From a fit according
to formula (8) we obtain the ratios @gich: @water: Fiso
=1:0.80:0.59, which is in good agreement with the real den-
sity ratios of 1:0.75:0.60.

We can directly conclude from Fig. 4 that the presence
of the liquid does not markedly modify the vibrational shape
of the quadrupolar eigenmodes. It is, for instance, impossible
to determine from the photographs up to which level the
glass was filled. A plot of the positions of the bright fringes
in the patterns of (b) and (c) of Fig. 4 for a partly and a
completely filled glass using the logarithmic scale of Fig. 5
in fact gives straight lines closely parallel to that drawn for
the (2,0) mode of an empty glass, showing that the assump-
tion of little change in the vibrational mode function is jus-
tified. The main difference arising from the liquid is the fact
that the nodal line no longer reaches the rim of the glass. In
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FIG. 6. The plot shows the resonances of the glass filled with dichlo-
romethane, water, and isopropanol, respectively. The density of the liquid in
use is proportional to the parameter a.

spite of the relatively high vibrational amplitude for the
empty glass, the bright white nodal line clearly reaches the
rim of the glass, while in the case of the half-full glass the
upper part appears entirely dark. In the case of a completely
filled glass, this phenomenon is even more pronounced. We
attribute this effect to the fact that the coupling of the two
degenerate modes should lead to an energy exchange be-
tween them. The resulting modulation of the vibrational
modes, which is expected to have a frequency of a few Hz,
however, darkens the image of the glass completely over the
integration time of 50 s if the modulation amplitude is larger
than N/2.

Splitting of the resonances in degenerate modes, as
shown in Fig. 3(a), is almost certainly due to asymmetry in
the thickness of the glass so that the sine and cosine versions
of Eq. (1) have slightly different frequencies. When liquid is
added to the glass, this reduces the asymmetry because there
is an equal liquid mass added to all parts of the wall. Con-
sequently, the additional mass appears to shift the two reso-
nance peaks to a point where the two nearly degenerate
modes cannot be resolved anymore [compare Fig. 3(b)],
leading to their simultaneous excitation. This phenomenon
can also be nicely demonstrated by the use of the rotating
finger excitation: The amplitude of the signal emitted by the
empty glass as recorded with our microphone is strongly
modulated since the excitation follows the finger. As the
node passes in front of the microphone the amplitude be-
comes nearly zero when a sufficiently directional micro-
phone is employed. When filled with water, however, the
amplitude never vanishes entirely. Tentatively, we attribute
this change in modulation amplitude to the simultaneous ex-
citation of the two orthogonal quadrupolar modes which be-
comes possible due to the presence of the liquid. As a con-
sequence, the coupled liquid-glass system clearly behaves
differently from an empty glass. A similar behavior has al-
ready 1ll)egn reported for cylindrical steel tanks filled with
water.
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V. CONCLUSION

In conclusion, we showed that the presence of a liquid
does not change the vibrational structure of a singing wine
glass in a first approximation in spite of the obvious lowering
of the resonance frequency, i.e., the vibrational movement of
the glass continues nearly undisturbed below the level of the
liquid. A more detailed analysis of our experimental results
reveals, however, that the nodal line becomes modified near
the glass rim: using time-average holographic interferometry,
we showed how two well-resolved orthogonal quadrupolar
modes of an empty glass become degenerate due to the pres-
ence of the liquid causing their simultaneous excitation.
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