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INTERFACE STRUCTURE AND CRYSTAL GROWTH FROM THE MELT — A MODEL THEORY
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A simplified atomic model is developed which displays the essential characteristics of a two-phase system, one of
the phases being highly disordered (quasi-liquid) and the other nearly completely ordered (crystalline). This model
is applied to discuss the equilibrium structure of the interface between the two phases and it is shown that this intes-
face will either be sharp or diffuse depending on the entropy of fusion and on the coherence length for cooperative
structural effects in the liquid. The interfacial free energy is typically in the range 2 to 10 times k7, per surface atom,
where T, is the melting temperature, and is contributed largely by entropy loss in liquid layers near the interface.
Finally the model is applied to the crystallization of the liquid, and the concentration of defects quenched into the
crystal is calculated as a function of crystallization velocity.

1. Introduction

In a recent paper [1], to be referred to as I, the
present author proposed a new approach to the dis-
cussion of interface structure and crystal growth
based, not upon the usual treatment in terms of sur-
face steps, dislocations and interfacial roughness, but
rather upon an examination of the structure of the
liquid near the interface. This new approach was seen
as complementing rather than replacing the usual
treatment but, as an initial exercise, the liquid view-
point was adopted exclusively.

The treatment presented was an heuristic one and
suffered from many defects, some of which arose
from the fact that the formulation was couched in
continuum terms, like diffusion theory, despite the
fact that the characteristic lengths involved were only
a little greater than the elementary stochastic steps.
This shortcoming, as well as reducing the quantitative
validity of the resuits, could actually be taken to cast
doubt upon some of the basic conclusions of the
treatment.

The purpose of the present paper is therefore to
redevelop the whole argument using an entirely dif-
ferent technique to treat the liquid structure and the
process of crystal growth. It is not claimed that the
model adopted is necessarily a good approximation
to reality for physically interesting cases, but it should
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exhibit the same general behaviour. The model, it is
hoped, is sufficiently simple and explicit that both
its assumptions and their implications are clear.

2. The equilibrium phases

One of the major difficulties in formulating the
crystal growth problem, for the case of a crystal
growing from its melt, is that of setting up a single
atomic model which can consistently represent the
crystalline and liquid states, as well as the transi-
tion region across the interface, without introducing
such poorly defined concepts as “liquid-like” and
“solid-like” states for the interface atoms. To set up
such a universal structural model in the general case
is obviously very difficult, since it must exhibit the
proper structural properties for simple liquids and
crystalline solids as well as describing the transition
between these two bulk phases. We shall therefore
be content with a very simple model which achieves
the same results without necessarily providing a re-
fined structural account of the liquid state.

Consider an assembly of N atoms and their rela-
tionship to K lattice sites of unspecified geometry
in some region of space. We postulate two possible
states for the atoms — normal states in which they
occupy one of the lattice sites and defect states in
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which they are displaced to some sort of interstitial
site, leaving a lattice site vacant. If we choose the
zero of energy to be that for an atom on a lattice
site then we can associate a positive energy € with
each atom in a defect state, and introduce coopera-
tive effects by assuming that € depends upon the
fraction of atoms in defect states. This model then
has some relation to the “hole” theory of melting
discussed long ago by Frenkel [2] and subsequently
extended by other workers.

Suppose that, at a given temperature 7, n of the
total N atoms occupy defect states, the number of
accessible lattice sites and interstitial sites each being
N . The number of configurations possible is

W= [N Yn!(N — n)!]2 1)

and the associated entropy can be evaluated as

S =k In W which, using Stirling’s approximation as
usual in the factorial functions, leads to a total free
energy

F=ne - 2kT[ N InN —~nlnn - (N—n) In(N—n)].
(2

If we define f= F/ N to be the free energy per par-
ticle and ¢ = n/ 9 to be the fraction of defects, then

f=ce—2kT[cIn(c™! — 1) —1In(1 —¢)] . (3)
We now introduce a further assumption by making
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Fig. 1. The free energy per atom, f, as a function of defect
pair concentration ¢ for different values of kT shown as a
parameter. The inset shows, on logarithmic scales, the be-

- haviour near the origin. Other parameters are given in table 1.

Table 1
Assumed values

Defect energy limit in liquid €1 = 1.5 units
Defect energy limit in crystal €2 = 30 units
Defect energy variation parameter « =10
Thermal energy at melting point kT, =0.6 units
Coherence length in liquid A =2
Layer separation in liquid d =3X 10'B cm
Activation energy parameter % =
Fundamental frequency 0 =103 5!
0 — 1013 1

Fundamental recombination rate

explicit the dependence of the defect energy € upon
the defect concentration ¢. We expect physically that
€ is large when c is small and that it decreases to a
smaller value, which does not depend greatly uponc,
when ¢ becomes large. An appropriate form is thus

e=€; +(e) —€7) exp(—ac), 4

where € > € and, since 0 <c < 1, we expect > 1.
We can now determine the equilibrium state of
the system at any given temperature T by substituting

(4) into (3) and then varying ¢ to minimize f. The
dependence of f on c is shown for several different
temperatures in fig. 1. For high temperatures the
equilibrium state is liquid-like, in the sense that it
has a large entropy and a defect fraction near 0.5.
For low temperatures the equilibrium state is crys-
talline, with a defect fraction near 10~11 for the
particular parameter values given in table 1. There
also exists an equilibrium temperature T, at which
these two states can coexist, having equal free ener-
gies f. This model, though crude, thus reproduces
the features of the liquid and solid states and of the
transition between them which are of importance
for our discussion.

3. The equilibrium interface

Once we leave the bulk phases and consider the
nterface region, we must allow for the fact that the
concentration ¢ of defects will depend on position.
This position may conveniently by specified by ref-
erence to the lattice, which is assumed to extend
through both crystal and liquid and, to make our
analysis simpler, we shall suppose that the “interface”
(soon to be defined) lies parallel to a low index plane
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of this lattice. Thus, though our model is three-
dimensional, its average properties are one-dimen-
sional and are specified only for discrete values Nd
of the coordinate z, normal to the interface, corre-
sponding to the positions of the lattice planes.

The energy €y associated with defect statesin a
given plane V must now also be recognised to depend
not only upon the defect concentration ¢y, in that
plane but also, to some extent, upon the concentra-
tions ¢y, ; in neighbouring planes. The weightings
‘0 be given to these neighbouring defect concentra-
ions is a property ot the liquid which depends upon
ts structure and upon the nature of the interatomic
potential. Let us simplify matters by assuming an ap-
propriate exponential weighting so that

oo

e = lew +LZ=>1 (ensr +en_r) e LA +2LZ=>1

X e~L/A] (%)

where the €y are the energies characteristic of bulk
material with the defect concentration of layer V.
The quantity Ad, where d is the interplanar spacing,
has the character of a coherence length for the par-
ticular liquid involved and we might expect X to lie
typically in the range 0.3 to 3. As discussed in more
detail in I, the coherence length normal to a plane
crystalline interface is probably significantly greater
than the coherence length apparent in the radial dis-
tribution function. For simplicity in our calculation
we assume A to be independent of ¢ so that it has
the same value for both solid and liquid phases.

The equilibrium structure of the interface, as
measured by the variation of ¢y with N, can now be
determined by minimizing the total free energy func-
tion for the interfacial region at the melting temper-
ature T,

M

M
F= 22 fN=NZ) (6)

N=_M =—M

X [ey&(ey) — kT, ey In(ey ! —1) — In(1—cp)].

The interface is nominally located near NV = 0 and
the summation is taken over M planes on each side
of this position, M being sufficiently large that the
last planes are effectively in bulk crystal and bulk

liquid respectively. The minimum value of Fj, multi-
plied by the number of atoms per unit area in the
plane of the interface, gives the interfacial free energy
o;-

The minimization of F; is most easily accom-
plished numerically, assuming particular values of
the parameters in € and performing a relaxation cal-
culation over the 2M + 1 layers with ¢_y, held at the
crystalline and ¢y at the liquid equilibrium defect
concentrations. The results of such calculations are
shown in fig. 2, both for the case of a sharp interface
(A =0.5) and that of a diffuse interface (A = 2). Other
parameters are as in table 1.

It is interesting to pursue the distinction between
sharp and diffuse interfaces in a little more detail. We
can state an appropriate criterion for diffuseness to
be that the defect concentration ¢ across the interface
changes from plane to plane by an amount which is
always less than a small fraction of the defect con-
centration ¢y in bulk liquid. This in turn means that
the energy € changes from layer to layer by an amount
which is less than about kT, and, by (5), this leads
to an approximate criterion for diffuseness as

(63 — €)/2A<KT,, . )

The quantity (e, — € ) is essentially CQ_I times the
enthalpy of fusion and X typically lies in the range
0.3 to 3, so that this criterion is very closely related
to that of Jackson [3], derived from an entirely dif-
ferent starting point. It is also very similar to the
results of the multi-layer treatment of Temkin {4]
and to the less explicit criterion derived in 1. Because
of the averaging (which we interpret as ensemble
averaging) over all configurations in the x,y plane in
our simplified treatment of our model, we make no
distinction between diffuseness and roughness, and
one generally implies the other.

In fig. 3 we show the local free energy function f
for each layer near the interface, and again we find a
distinction between sharp and diffuse cases. For a
sharp interface there is a high free-energy barrier
separating the crystalline and liquid states, and a
nucleation process is involved for each layer to crys-
tallize. For the diffuse interface several layers near
the interface have configurations distributed across
the free energy hump. While the free energy barrier
to crystal growth may not be strictly zero in this
case, it is quite small, and layers can make the transi-
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Fig. 2. Variation of defect concentration ¢ across (a) a diffuse (rough) interface (A = 2), and (b) a sharp (smooth) interface
(A = 0.5). Other parameters are given in table 1. In each case the open circles refer to the logarithmic scale on the left and the

filled circles to the linear scale on the right.
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Fig. 3. The local free energy f as a function of position across (a) a diffuse interface (A = 2), and (b) a sharp interface (A = 0.5).

An appropriate interpolation is given in each case.

tion from liquid to crystal continuously without
greatly raising the free energy of the total system.
The distinctions between rough and smooth inter-
faces and between nucleation and direct growth that
are familiar in conventional treatments of the inter-
face problem thus have almost exact counterparts

in our present approach.

Finally we note the absolute values of the inter-
facial free energies for the two cases calculated.
These amount to 2.2 kT, and 11.3 kT, respective-
ly for the sharp and diffuse interfaces. If we assume

about 1015 atoms per unit area in the surface and
T, = 300 K, then these figures are equivalent to
about 100 and 500 erg cm™2 respectively, which are
reasonable values.

Because we have not assumed any volume change
associated with the defects, there is no surface excess
for any position of the Gibbs dividing surface and
the interfacial free energy is a uniquely defined quan-
tity. Both the energy and the entropy of the interface
depend, however, upon the location of this dividing
plane, and the most reasonable place to locate it is
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at the position where the gradient |9¢/9z| is a maxi-
mum. If we maintain an atomic viewpoint, then the
location is only significant to the extent that it is to
the right or left of a particular atomic plane. Adopt-
ing this convention we then find that the major contri-
bution to the interfacial free energy comes from the
entropy loss in the liquid phase near the interface,

the energy term being relatively insignificant. Again
this conclusion agrees with that reached in I.

4. Kinetic considerations

Our discussion of the equilibrium interface has
made no mention of time as a parameter but the
equilibrium is, in fact, maintained by a balance be-
tween competing dynamic processes. Crystal growth
or melting occurs when this balance is upset by a
change in temperature. Before going on to consider
the crystal growth process, let us look briefly at
processes near an interface in equilibrium.

In layer &V the defect concentration is maintained
at its equilibrium value ¢ by two mechanisms: dif-
fusive interchange with neighbouring layers V + 1
and N — 1, and direct generation and destruction of
defects in layer N by thermal fluctuations. It is this
second term which distinguishes the present problem
from that of segregation near an interface in an alloy
system.

The frequency v of diffusive jumps depends upon
the local environment in the usual manner so that

p=10 exp(—ep/kT) , (8)

where »0 is an infrared frequency and the activation
energy ey, is a structure-sensitive quantity. As a
general rule in our present problem we expect ep to
be large for a jump between two states A and B if
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Fig. 4. Energy relations for diffusion.

the energies of the defects at A and B are large, as in
the solid state, and small if the energies A and B are
small, as in the liquid. This behaviour can be approxi-
mated by assuming, with reference to fig. 4, an energy
barrier € between states A and B of

ec = (e Y €p), )

with v = 1. This gives, for the activation energies for
diffusive jumps in the two directions,

A—B

ED =€c—€A=('y-1)EA+7€B, (10)
BD_)A=EC—€B 7€A+(‘)/~—1)6B, (11)

where €, and ep are given in terms of local defect
concentration by (5). For our purposes here we shall
assume y = 1 for simplicity and neglect the differen-
ces in behaviour of the two component defect types.
Half the formation energy € of (4) is then ascribed
to each defect.

The rate of recombination of defects within a
given layer NV depends upon their concentratlon cy
and the local equilibrium concentration % - It also
depends upon some of the assumptions made about
the nature of the defects. For simplicity let us assume
at this stage that the defects can disappear only by
recombination with each other. The recombination
rate is then

[aCN/at]recomb. = _K(CNCN - C?v"?v) ’ (12)

where k is a kinetic coefficient. The activation energy
associated with k is most appropriately taken equal
to the activation energy for diffusion in layer &, se
that

k = k0 exp(—eN/kT), (13)

where k9 is of the order of ©9, and for our present
discussion will be taken equal to it. It is interesting
to note that the recombination rate in (12) is ef-
fectively monomolecular 1f Cy — CN < c?v and bi-
molecular if cpy — CN > ¢ The effective adjustment
rate for small disturbances of ¢ in the liquid (for
which ¢, ~ 0.5, ep ~ kT, ) is of the order of micro-
wave frequencies, while in the crystalline state
(e ~ 10-11, e ~ 25T, ) times of the order of
days or longer are involved, even at the melting
temperature.

The fundamental differential equation governing



44 N.H. Fletcher [ Interface structure and crystal growth from the melt

the concentration ¢ of defects in plane V can now
be written as

dcp /0t = —k pleyey — c?vc?v)
—enNon-1 T NS NeD)

ey UN_ 1N YN PNtion - (14)

If the frequencies v, _, g have been appropriately
calculated (which would not be closely true of our
crude model) then solution of the set of equations
dcp /0t = 0 with appropriate solid-like and liquid-like
boundary conditions at N = *M should yield the
equilibrium interface configuration calculated in the
previous section.

5. Crystal growth

To examine the crystal growth problem we should
first impose a temperature gradient 37/9z or 3T/0N
normal to the interface. This will locate the interface
position unambiguously but will otherwise make
little structural difference in the region near 7,,. We
then cause this temperature profile to sweep through
the system with velocity v by imposing the additional
requirement

T/dt = —v dT/dz . (15)

When a steady state has been achieved the interface
will also sweep through the system with velocity v
but will be located, not at the plane T'= T, but
rather at T= T, — AT. The extent of the interface
supercooling AT will be proportional to the growth
rate v and will depend also on the magnitudes of the
kinetic coefficients vy _,g at T=T .

Almost the same result can be obtained by simply
lowering the temperature of the whole system by an
amount AT, which will then determine the growth
velocity. This near-equivalence comes about because
the temperature differences between adjacent layers
are, in any case, small and because the free energy of
the interface between two areas of differing defect
concentration imposes a nucleation barrier which
allows the liquid to be maintained in a supercooled
state, except for the steady crystal growth.

We have already pointed out the distinction be-
tween sharp (smooth) and diffuse (rough) interfaces

in terms of the necessity for a nucleation step in the
crystal growth process in the former case. This neces-
sitates a three-dimensional treatment of the problem
which we shall not pursue here. In what follows we
therefore explicitly limit ourselves to the discussion
of crystal growth in cases where the interface is dif-
fuse so that quasi-continuous growth processes
operate.

If we possessed an adequate model for the diffu-
sion process involved, we might now proceed to solve
the set of equations (14) over a set of planes spanning
the interface and at a temperature T'=T,, — AT. We
do not possess such an accurate model, but fortunate-
ly a simple approximation technique can be made to
serve the same purpose.

From fig. 2a, for the case of a diffuse interface,
we see that the calculated equilibrium defect concen-
trations C?V can be interpolated unambiguously by a
continuous function ¢%(z), the coordinate z being
related to V by

z=Nd, (16)

where d is the interlayer spacing. We can use this
same technique, along with eq. (5), to define a con-
tinuous approximation &(z) to the defect energy in
layers at various positions relative to the interface.
This in turn allows k(z) and the various jump frequen-
cies v, _,p to be approximated for planes in any
position. Strictly speaking these are all equilibrium
values but, since we shall deal primarily with small
departures from equilibrium, the small changes which
these make can be neglected without invalidating the
argument to follow or significantly altering its quan-
titative conclusions.

Now instead of concerning ourselves with the
subtle adjustments which lead to crystal growth, we
simply assume that the interface advances at a uni-
form rate v so that

z->z —ur. (17)

This coordinate change is immediately reflected in
an explicit time variation of the equilibrium defect
concentrations ¢%(¢). The problem is now reduced
to solving the set of equations (14), given the explicit
functions cR,(t) and, deduced from them, the ex-
plicit approximations k 5/ (¢) and v _, 5 (¢). As a first
step we note, however, that if the concentrations N
have their equilibrium values and the interface is
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stationary, then acN/Bt =0 at all equilibrium posi-
tions of the interface and also, by our interpolation
approximation, at all interface positions. From (14)
this gives

0 0
~Cey(WNn_1 T VNS YO PNo 1N

R4t Pnatn =0 (18)

which can be combined with (14) to give

8CN/61‘ = —KN(CNCN — C]Q/C?v) - (CN - C?v)
X (Unsn-1 ¥ PN N+

0 0
t(ey_1 —eN_1VN_1oN T N1~ C DV 1N

(19)

This form of the equations eliminates the possible
effects of inaccuracy in our values of the v, _, -

Solution of the system of eqs. (19) is now a straight-
forward numerical procedure, given the explicit va-
riation of the C?v with time. As an initial condition
we choose ¢ = CR; everywhere and then follow the
time evolution until the c/(#) behaviour has become
cyclic.

Before carrying out such an explicit solution, how-
ever, we can see the general nature of the behaviour
from (19). A plane ¥ initially deep in the liquid has
ey = cR, until it enters the diffuse interface region.
cg, then begins to fall towards the very small equi-
librium value which it has in the solid, and ¢y, fol-
lows through the combined relaxation mechanisms
of defect recombination and defect exchange with
neighbouring layers. Because v, _, 5 decreases rapidly
as we go through the interface region towards the
solid, the major interchange is with the layer ¥V + 1
on the liquid side of V. The defect concentration ¢y,
is, however, always larger than c?v to an extent de-
pending upon the growth velocity v. In the nearly-
liquid high-defect region of the interface the relaxa-
tion time is short but in the nearly solid region it
becomes very long, so that an excess concentration
of defects remains trapped nearly permanently in
the growing crystal. Even more importantly, as we
shall see when we come to the final discussion, we
should not expect the concentrations of the two
components of a defect (e.g. vacancy and interstitial
atom) to be exactly equal in number or to have iden-
tical jump probabilities. It is therefore likely that

one defect type will be included preferentially in
the growing crystal so that there is no possibility of
complete annealing-out of the defects.

6. Numerical solution

The specific interface for which the calculations
were performed is that discussed above for which
the equilibrium properties are displayed in figs. 1, 2a
and 3a. The assumed values of the basic parameters
are given in table 1. This interface satisfies our as-
sumptions by being adequately diffuse so that the
transition region extends over about 10 atomic layers.

To carry out the calculation, a region containing
50 atomic layers was considered, with the interface
lying initially near the left-hand end, N = 0. By fit-
ting the data in fig. 2a the following interpolation
function for the defect concentration across the
interface was developed.

c0(z) = ¢y +(cq — ¢q) exp(—Pz/d) , z>0, (20)

Inc0@z) =Incg +1n (cy/cy) exp(Bz/d), z<0.(21)

With the parameter values given in table 2, this fits
the calculated values for z = Nd to adequate accuracy.
The interface was then allowed to sweep through the
system with velocity v, as discussed in section 5, and
the defect concentration in each layer followed as a
function of time. For the velocities considered, a
steady state is achieved after a relatively small amount
of motion, and the configuration is clearly periodic
in time with period d/v. Fig. 5 shows typical inter-
polation curves c(z) across a growing interface.
Suppose ¢ is the defect concentration at a dis-
tance of several times Ad behind the interface, where
the kinetic coefficient x has essentially its solid state
value k. Then if the crystal is annealed at its melting
temperature, the defect concentration will fall ac-
cording to (12). Since ¢ is initially much greater
than the equilibrium defect concentration ¢9, solu-
tion of (12) shows that ¢ remains nearly constant at
¢, for a time about (¢1k¢)~1, which is of the order
of hours, after which it decreases as t—1. After a time
(c%%¢)~1, which may be of the order of days or
years, the defect concentration begins to approach

¢0 and does so exponentially with a time constant
(2c0k )~ 1.
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Table 2
Interpolation parameters

Defect concentration in bulk liquid ¢y =0.44

Defect concentration in bulk solid cg =7.6X 10712
Intermediate defect concentration - c’s =0.010
Exponential parameter in liquid g =0.2
Exponential parameter in solid g =05

In ordinary crystal growth, the crystal is held near
the melting point for a time only of the order of
minutes or hours, so that we may expect the concen-
tration of quenched-in defects to be within about
an order of magnitude of its initial value ¢; . We can
therefore take ¢y as a convenient measure of this
quantity, subject to the qualifications to be made
later in the discussion.

When ¢, is calculated for several different growth
velocities v, the values shown in table 3 are found.
We see that, to a reasonable approximation, ¢ is
proportional to growth velocity over the range 10—
to 10=3 c¢m s—1. This is exactly the conclusion to

o]

log,, ¢

Fig. 5. Steady-state interpolation curves ¢(z) across an inter-
face moving with velocity 1075,10%,10% and 102 em 571
The interpolation curve ¢~ (z) for the equilibrium interface

is shown for comparison as a broken curve.

Table 3

Quenched-in defect concentrations

Growth velocity v (cm s 0 107°
Defect concentration ¢ 8x 10712 8x 107!
Defect number density 7 (cm ™) 3% 101 3x 10'?

which we were led in [. The constant of proportionali-
ty will clearly depend quite strongly on the param-
eters listed in table 1 but, for the reasonable values
assumed there, we find

¢, ~10"5 0, (22)

if v is in centimeters per second. In terms of number
densities

n~3X 1017 yem—3 .

(23)

These results are within about an order of magnitude
of those found in [.

The approximate relationships (22) and (23) apply
only while the concentration of defects in the grow-
ing crystal remains small. For velocities approaching
those that would appear to quench all the liquid dis-
order into the growing crystal, the relaxation time
in the solid remains very short unless it is rapidly
quenched to a low temperature. We shall not con-
sider this possibility further here.

All this discussion has assumed that the defects
with which we are concerned occur in pairs (vacan-
cies and interstitial atoms) so that the concentrations
of each type are the same. It is clear, however, that
this restriction could be relaxed with very little
initial physical effect. Suppose, for example, that
vacancies are more common than interstitial atoms
in our model of the liquid phase, so that its density
is slightly lower than that of the crystalline phase.
All our equations are virtually unchanged except
that they must now differentiate between concentra-
tions of the two defect types. For example, the ap-
propriately generalized form of the recombination
eq. (12) prevents a large accumulation of defects of
one type in front of the advancing interface, this
being an appropriate description because the liquid
can readily adjust its configuration to maintain the
balance between the two defect types.

In the crystal material behind the interface the
situation is, however, rather different. The generali-
zation of (12) still applies while ever the atoms can

10 1073 1072
gx 10710 9% 107 3x 107
3x 10%3 3x 10 10!
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interchange by diffusion between solid and liquid
phases but, once the crystal lattice has become un-
ambiguously established and the defects are deeply
embedded in it, we must impose the additional con-
dition that defects can only disappear by pairwise
recombination so that

de, =dc_, (24)

when ¢, and ¢_ refer to the two defect types. This
condition applied automatically in our previous dis-
cussion but here it leads to an equilibrium result like

¢, —c_=constant, «c,Cc_= cs2 . (25)

If initially, just behind the interface, c_ > ¢, because
this reflects conditions in the liquid, then the final
state in the solid will have ¢_ finite and c, very near-
ly equal to zero, corresponding to a finite concen-
tration of vacancies built into the crystal. If the crys-
tal is annealed near its melting temperature, these
vacancies will aggregate to form discs, then collapse
to dislocation loops and ultimately to more complex
dislocation structures, as discussed in I. If we assume
a 10% disparity between the concentrations of the
two types of defects in the liquid, which seems a
reasonable figure, then, because of their assumed
similarity in behaviour, a comparable disparity will
occur in the crystal. From (25) the final equilibrium
defect concentration will then be about 10% of that
suggested by (22} and (23).

7. Discussion

The assumptions and predictions of our model
are quite explicit and it is clear that, while modifica-
tions to the details of the mechanisms or to the nu-
merical values used in the illustrative calculations
will make an appreciable difference to the results,
they will not change the basic conclusions. The main
question is, therefore, whether or not the model is
a reasonable idealization of the physical situation of
interest: the equilibrium and growth of a crystal in
contact with its melt.

There is no argument that our model is other than
a poor approximation to a real liquid in a physical
sense, largely because it imposes a long-range order
on the liquid through its use of a reference lattice.
This lattice is, of course, completely unreal for bulk

liquid but it does assume first mathematical and then
physical reality as we approach the interface and
enter the region of influence of the exponentially
damped periodic potential produced by the array of
atoms in the crystal [5]. A lattice-based description
of the liquid is thus, in a limited sense, appropriate
and our main idealization is in replacing the conti-
auum of possible displacements from this lattice by
two simple defects.

Again, once we are close to the crystal interface,
this simplification is seen to be appropriate. Any dis-
order which can be removed essentially by small dis-
placements of one or two atoms is unimportant for
it will be removed very rapidly and, in fact, with a
time constant of order (¥0)~! ~ 10~13 5. Those dis-
orders, however, which involve movement of one
atom past others to remove an interstitial atom or a
vacancy or, in the case of associated liquids, to cor-
rect a bonding defect, have relaxation times py1~
10~11 5 and are therefore important in interfacial
processes. Our idealization of such defects to two
complementary species is a reasonable approximation
for simple liquids, while the more complex possibili-
ties available in associated liquids do not invalidate
the general argument.

The only other major point for consideration is
the fact that our model is essentially one-dimensional,
with all properties being converted to ensemble aver-
ages over the other two coordinates. Such a procedure
is justified for the case of a diffuse interface where
the variation of quantities of interest from one atomic
layer to another is small. Difficulties arise, however,
if we try to apply such a procedure to a sharp inter-
face.

Actually such a treatment, if carried out rigorously
rather than by the method we adopted for the diffuse
case, would show up its own deficiencies. The free
energy barrier to crystal growth shown clearly in
fig. 3b would inhibit any growth and lead to the
classical dilemma which was resolved firstly by the
Volmer—Weber nucleation theory for perfect crystals
and then by Frank’s screw dislocation mechanism
for real crystals. Both these theories are essentially
three-dimensional, since structures in the plane of
the crystal interface are involved. Our model could
be expanded to include such refinements but, since
they are unnecessary for the diffuse case which is
our main concern, we will not pursue this further here.
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We conclude therefore that our model provides
a reasonable first approximation to a description of
the crystal/melt interface and of the growth of crys-
tals from the melt. In doing so it supports the con-
clusions reached on a more intuitive basis in our
earlier paper.

Our original intention in I was to develop the view
that the detailed structure of the liquid near an inter-
face is comparable in importance to the topography
of the crystal in determining the details of crystal
growth. Deeper understanding now depends on de-
veloping both these viewpoints on an equal footing
using more sophisticated models for the structure

of the liquid and for the relaxation processes involved.
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