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In self-sustained instruments, starting transients are important timbral characteristics that help

identify the instrument and the playing style. Often, the oscillation starts as a growing exponen-

tial. This study investigates the starting amplitude of this exponential for the clarinet. After a

rapid tongue release, the reed quickly returns to its equilibrium position. The sudden change in

aperture produces an abrupt change in both the airflow into the mouthpiece and the mouthpiece

pressure. This perturbation travels along the bore and reflects at the open end. Returning to the

mouthpiece with slight attenuation, the perturbation can be amplified by the reed acting as an

active element—effectively a negative resistance. When the reed release time exceeds the time

for sound to travel twice the bore length, the airflow and pressure wave into the bore via the aper-

ture are superposed over their own returning reflection. Measurements of reed motion and mouth-

piece pressures during reed release yield values that are used in a model to calculate waveforms

showing similarities to those observed experimentally. The initial amplitude decreases with

increasing reed release time, though not always monotonically. It can become very small in spe-

cial cases due to synchronisation between the initial pulse and its reflection. VC 2017 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/1.5014036
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I. INTRODUCTION

Attacks or initial transients are an important part of

wind instrument performance and expression (e.g., Brymer,

1977; Thurston, 1977; Gingras, 2004; Sullivan, 2006).

Perceptually, they play an important role in the recognition

of the timbre of the instrument (Saldanha and Corso, 1964).

A number of articulations are used for different musical

techniques, and these are executed in different ways by dif-

ferent musicians (Li et al., 2016a). Musicians control several

parameters, including the blowing pressure and how it varies

with time, the lip force, and the coordination of the tongue

release with the blowing pressure.

Acoustically, the clarinet is probably the most studied

reed instrument and it is in some ways the simplest. An

approximately cylindrical resonator means that its acoustic

response can be approximated by a delayed impulse, and the

single reed is a simpler valve than the double reed (Almeida

et al., 2007). Hence it is a suitable instrument for studying

how tonguing produces the initial transient on a wind instru-

ment. Furthermore, the clarinet has been thoroughly studied

both in the time-domain (Schumacher, 1981) and in the

frequency-domain (Silva et al., 2008). For instance, the

quasi-static relation between pressure and flow at the reed

(Dalmont et al., 2003) is well known and makes it easy to

determine the pressure threshold for playing or the relation-

ships between blowing pressure, lip force, and sound level

(Dalmont et al., 2005), playing frequency (Bak and Dolmer,

1987), or spectral content (Kergomard et al., 2000) in the

steady-state.

Most studies on clarinet acoustics have concentrated on

the sustained part of a note. Recently, the present authors

showed that the transient includes a stage during which the

oscillation in the resonator grows at an exponential rate and

measured how the rate of this growth depends on blowing

pressure and lip force (Li et al., 2016b). This paradigm can

be extended to situations when the control parameters vary

during the transient, producing a note with a varying expo-

nential rate (Bergeot et al., 2014). A sudden change in the

rate of increase of the blowing pressure is sometimes

expected to cause a discontinuity in the amplitude of the

sound (Almeida et al., 2015).

The exponential phase ends as the note approaches satu-

ration, i.e., once the amplitude of the pressure variation in

the mouthpiece becomes comparable with the blowing pres-

sure. The value of the amplitude at the start of the exponen-

tial phase therefore plays an important role in determining

the duration of the transient. Understanding the cause of this

initial amplitude and how it depends on the blowing pressure

and the initial displacement and motion of the reed is the

main aim of this study.

A previous study (Li et al., 2016b) indicated that, after

release from the tongue, the reed approaches mechanical

equilibrium. The associated change in aperture creates an

acoustic perturbation that propagates down the bore, is then

reflected and, following successive interactions with the

reed, establishes a standing wave. Using a clarinet in its

usual configuration, it is difficult to investigate the phenom-

ena involved for three reasons. First, both the bell and thea)Electronic mail: a.almeida@unsw.edu.au
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open tone hole array have a cutoff frequency and other fre-

quency dependent properties, so the reflected pulse is dis-

torted and may sometimes be hard to identify. Second, the

lowest note on the clarinet has a nominal frequency of

147 Hz, so the return of the first reflection occurs after about

3 ms or less. This makes it hard to separate the initial pulse,

whose duration may also be several ms or more, from its

reflection. Third, the acoustical impedance of the vocal tract

or the artificial mouth in a playing machine can complicate

the airflow and reed motion.

The first problem can be solved by replacing the clarinet

bore with a cylindrical pipe of similar diameter, open at the

end remote from the mouthpiece, but without a bell. The sec-

ond can be solved by making that pipe rather longer than a

normal clarinet. Third, the mouth impedance can be reduced

to be much smaller than that of the bore. The present study

uses a mechanical lip and tongue and a controlled pressure

source to “play” a clarinet mouthpiece and reed connected to

a long cylindrical pipe. Rather than blowing at the mouth-

piece, suction is applied to a reservoir connected to the

remote end of the pipe. Thus the air in the laboratory sur-

rounding the mouthpiece, which has a very large compli-

ance, becomes the very small “mouth” impedance.

The experimental apparatus used in this article is

described in Sec. II. In the first study presented here, the

pipe acting as a resonator is 3 m long. With this apparatus,

the mechanical responses of reeds are measured with and

without a lip and with and without blowing pressure for a

range of different initial reed transients (Sec. III A). These

results are used to test a simple model for the initial acoustic

wave that is similar to the “water hammer” phenomenon in

hydraulics (Sec. III B). The water hammer describes the

propagation of a sudden change in pressure produced when

the flow in a pipe is rapidly stopped by closing a valve

(Chaudhry, 1979; more details below).

In further experiments, shorter cylindrical resonating

pipes are used so that the reflected wave can interact with

the pressure perturbation produced by the change in reed

opening (Sec. III D). These results are compared with calcu-

lations using simple models for the initial pressure perturba-

tion and the traveling wave it initiates. Further experiments

conducted when the mechanical damping provided by the

lips is removed give some insights into the production of

“squeaks” (Sec. III E).

II. MATERIALS AND METHODS

A clarinet mouthpiece (Yamaha, Japan; model CL-4C)

is connected to completely cylindrical pipes of different

lengths, rather than to a normal clarinet bore. The inner

diameter of the pipes, 15 mm, is similar to that of the clarinet

bore. The apparatus is aspirated rather than blown: the far

end of the pipe is terminated with a low-pressure reservoir

that is lined with acoustic foam to provide a low impedance

reflection condition. The (negative) pressure in the reservoir

is maintained by a pump (Positive airways pressure model

R261-708, ResMed, Sydney, Australia). The reservoir vol-

ume is 63 litres.

The exteriors of the mouthpiece and reed are exposed to

atmospheric pressure in the laboratory. This arrangement

ensures that the acoustic load on the upstream side of the

reed is negligible at all frequencies of interest. Further, it

allows easy access to the reed, simpler control of the tongu-

ing mechanism, and optical access to the reed for high-speed

video recording. Because the mouth is at atmospheric pres-

sure, the mouthpiece gauge pressure P is negative. The

blowing pressure will be referred to as Pblow, which is calcu-

lated as �P0, the initial value of �P. In the remainder of the

article, varying physical quantities are represented by capital

variables, and can be decomposed into a reference value

(with index 0, P0 for example); usually the value before the

reed is released, and the difference relative to this reference,

represented by the lower case (for example, p). For the

mouthpiece pressure the reference is the measurement

before the reed release, P ¼ P0 þ p ¼ �Pblow þ p, so an

increase in p in the mouthpiece pressure makes P less

negative.

For ease of use, the reed is facing upwards, which is

opposite the usual use in clarinet playing (Fig. 1). A small

slab of polyurethane (Sorbothane, Kent, OH) simulating the

lip is pressed against the reed by a suspended mass. This pro-

vides a constant, known, and adjustable lip force applied to

the reed (up to 1.2 N in this study). The slab is 11 mm wide,

13 mm long, and 4 mm thick with the masses hanging at the

centre position, located 14 mm from the reed tip.

For most experiments, a synthetic clarinet reed (L�egère

Reeds, Ontario, Canada, hardness 3) is used. In one initial

experiment, a cane reed (Rico, Farmingdale, NY, hardness

3) is also used.

FIG. 1. The experimental setup (not to scale). The controlled acceleration mechanism, with two masses, is shown in the main picture. The manipulating plate

setup is shown in an inset.
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Notes are initiated in three different ways. In all, the

reed is attached to the mouthpiece with a ligature, as usual.

In the first (plate-release) method, a thin plate is clamped in

a two-dimensional micromanipulator, as shown in Fig. 1.

The tip of this manipulating plate is positioned so as to pull

the tip of the reed the desired distance up and away from the

mouthpiece. The plate is then withdrawn (in a direction par-

allel to the axis of the clarinet), releasing the reed and allow-

ing its elasticity to bring the reed back to near its equilibrium

position. The plate is also used to push the reed down toward

the mouthpiece, then suddenly released. Except for a change

in sign, the results of the former experiments are very similar

and are not reported here. With this method, the motion of

the reed after release is determined by reed mechanical prop-

erties and cannot be experimentally controlled.

The second method (controlled acceleration) uses a

small slab of the same polyurethane to act as an artificial

tongue, as shown also in Fig. 1. This tongue pad is operated

by two beams mounted on axles. First, the pad is pushed

against the reed by a known force (controlled by mass m1) in

the direction that closes the reed onto the mouthpiece. This

tongue pad can be accelerated away from the reed at con-

trolled rates of acceleration using the second pivoted beam

(with acceleration controlled by mass m2).

In a third (manual) method, beam 2 in Fig. 1 is removed

when investigating large variations in tongue acceleration

and the experimenter presses the left end of beam 1 with a

finger. It is difficult to produce a specific value of accelera-

tion with this method, but it can produce a larger range of

tongue acceleration than the 2-beam system (see Li et al.,
2016b, for more details of the second and third methods).

From a sufficient number of trials, transients that approxi-

mate the desired values may be chosen.

During the experiments, video recordings are made of

the motion of the tongue and reed using a high-speed cam-

era, recording 8000 frames per second. The reed displace-

ment y(t) from its initial position is determined from analysis

of the frames, and the acceleration is determined by fitting a

parabola with zero initial slope to y(t). Simultaneously, the

pressure in the mouthpiece, Pmp, is measured with a trans-

ducer (8507C-2, Endevco, Irvine, CA) inserted in the mouth-

piece (30 mm away from the reed) and recorded using a

digital acquisition card (NI9234, National Instruments,

Austin, TX) at 51 200 samples per second. A microphone

and conditioning amplifier (4944A, Br€uel & Kjær, Nærum,

Denmark) measure the sound pressure at a distance of

95 mm downstream from the reed tip. (This position, corre-

sponding to a location within the barrel of a clarinet, was

chosen to reduce the level of turbulence recorded and is

hereafter called the barrel pressure pbarrel.)

III. RESULTS AND DISCUSSION

A. Generation of a pressure pulse by the reed without
a continuous airflow

A reed can vibrate freely as a cantilever beam at its own

resonant frequency, determined by its mechanical properties

and geometry. Examples of this vibration, triggered by an

initial displacement, are shown in Fig. 2.

In this experiment, the tip of the reed is pressed toward

the mouthpiece a distance of �0.25 mm, using the plate-

release method described above, and suddenly released.

Four different reed conditions are used. Two conditions used

a cane reed without a lip, dry in a first trial and for the sec-

ond trial soaked in water for 30 s and then wiped with a tis-

sue. A synthetic reed (always dry) was used both without

and with the pad used as part of an artificial lip, but in both

cases without the hanging mass used to apply lip force. The

first row of subfigures (plots labeled with “A”) shows the

reed displacement y(t) from its initial position before release

(initial displacement is indicated by zero in Fig. 2 and here-

after); the second (label “B”) shows the pressure in the

mouthpiece and the third (label “C”) the magnitude of that

pressure expressed in dB.

Normally the sound generated by a vibrating reed would

travel down the bore of the clarinet and return quickly to

interact with the reed during the reed’s motion. To avoid this

complication, the “clarinet” in these experiments was a

3.00 m pipe with a barrel that adds 3 cm, and a mouthpiece

that gives a total length of 3.12 m and thus a round trip time

of 18 ms. In each of the examples in Fig. 2, the attenuated

echoes are observed after 18 and 37 ms.

The dry cane reed (plots A1, B1, and C1) has the highest

natural frequency. (Cane reeds are usually not played dry:

players usually wet them before playing, and they are kept

moist by the player’s breath.) The synthetic reed with an

attached lip pad exhibited the lowest natural frequency

because of the extra mass. Without that pad, the natural fre-

quencies range from 1280 to 1400 Hz, which is toward the

top of the normal playing range of the clarinet (say, sounding

F6 on a Bb clarinet or nominally 1400 Hz). From the expo-

nential decays of the oscillation y(t) in Fig. 2, Q factors are

calculated: 17.0 6 0.9 (dry cane, column 1), 19.5 6 3.4 (wet

cane, column 2), 7.4 6 1.1 (synthetic, column 3), and

5.1 6 0.5 (synthetic with lip, column 4). The damping in

these conditions is lower than in normal playing because the

lip pad moves with the reed as a compact mass and provides

relatively little mechanical damping. Since the behaviours of

the different reeds shown in Fig. 2 are qualitatively similar,

only the synthetic reed is used in the subsequent experi-

ments. Synthetic reeds have the advantage that they can eas-

ily be played dry and have stable physical properties during

long studies (Almeida et al., 2013).

When a lip force is provided by a hanging mass (tens of

grams in this study), the lip pad is subjected to a force from

the vibrating reed and a tension resulting from the weight

and inertia of the mass. Under these conditions, the motion

of the reed is more strongly damped (Fig. 3). In normal play-

ing, the player’s bottom lip would be subjected to a vibrating

reed on one side and forces related to the inertia of the jaw

on the other. This condition should also damp the reed

motion.

B. The initial impulse produced by the change in reed
opening

Figure 3 shows example results of experiments in which

the transient is initiated using different controlled upwards
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accelerations of the synthetic reed. The lip force was 0.7 N

in each case. These experiments use a 0.89 m pipe connected

to the mouthpiece and barrel instead of a clarinet (with a

round-trip time lasting 5.8 ms as indicated by the horizontal

bar). The top row of the plots [Figs. 3(a) and 3(b)] shows the

displacement y of the reed tip from its initial position, and

the lower shows the acoustic pressure pbarrel in the barrel

position rather than in the mouthpiece, which has more tur-

bulent noise. This introduces a delay of 0.3 ms between

measurements in the barrel with respect to the mouthpiece.

In these experiments, the blowing pressure (the average pres-

sure difference across the reed) was 5.5 kPa.

In this experiment, moving the reed away from the

mouthpiece shows a new effect; air enters the mouthpiece

through the enlarged aperture and the mouthpiece pressure

increases by about 0.2 kPa over about 2 ms. Note that this

initial variation in pressure is approximately proportional to

the reed displacement, and thus to the area of the aperture

between reed and mouthpiece. After the initial change in y,

there are some small amplitude, high frequency oscillations

in y near the reed’s new equilibrium position, and similar

oscillations are also seen in the barrel acoustic pressure,

pbarrel. These oscillations are much smaller than those in

Fig. 2 because, as explained above, applying the lip force

damps oscillations at the reed’s natural frequency.

After about 6 ms, the pressure perturbation returns

inverted after acoustic reflection at the remote end of the

pipe. If the pipe were ideally open at the remote end (reflec-

tion coefficient �1) and ideally closed at the reed (reflection

coefficient 1), then the amplitudes of the positive and nega-

tive excursions would be equal, in the absence of losses. In

that case (ideal reflections, no losses), the first negative pulse

in pmp(t) (near 8 ms) would have twice the magnitude of the

initial rise (near 2 ms), because of superposition of the reflec-

tion on the signal. In practice, the magnitude of the factor is

greater than 2, because of the amplification by the reed.

The variation in y(t) around 8 ms shows that the reed is

not a rigid reflector: it is displaced by the returning acoustic

pulse. Further, its displacement changes the aperture and

thus the airflow and pressure. Note that, here, the arriving

FIG. 2. Oscillation of the reed when suddenly released, with no blowing pressure. The top figures show the tip displacement y(t) from its initial position, mea-

sured from the camera images. The pressure pulse initially generated by the reed oscillation is reflected at the open end of the pipe and returns to the mouth-

piece after 18 ms. In each case, the inset shows the beginning of the transient with an expanded time scale spanning 6 ms and a vertical scale spanning 0.4 mm.

The acoustic pressure in the mouthpiece is shown on a linear scale in the second row and its magnitude is shown in a logarithmic scale 20 log10(jpmpj/20 lPa)

in the third row.
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negative pressure pulse acts to close the reed and thus to

amplify the negative pulse. Similarly, the returning positive

pulse at 15 ms tends to open the reed, admitting more flow

and increasing the pressure. These amplification effects on

the subsequent evolution of the standing wave will be dis-

cussed quantitatively later.

1. The initial perturbation: The water hammer model

Figure 4 illustrates a variant on the water hammer effect,

with the difference that the sketch shows a sudden increase

in airflow, while the water hammer in plumbing is usually

produced by a reduction in water flow caused by closing a

tap. In the sketch, a suddenly increased aperture has admitted

air at slightly higher absolute pressure and density, with the

interface between high and low pressure regions propagating

at the speed of sound c.

In the present experimental system, the mouth is at

atmospheric pressure PA (Fig. 4). The remote end of the pipe

is at (negative) gauge pressure P0 (so the blowing pressure is

Pblow ¼ �P0 and the initial mouthpiece pressure is P0). The

aperture through which air flows past the reed is S ¼ wY,

where Y is the vertical distance between the reed tip and the

mouthpiece and w is the effective width of the aperture.

Assuming that the kinetic energy gained by the air flowing

through the aperture is lost in turbulence in the mouthpiece,

the volume flow and blowing pressure are related by the

“Bernoulli term,”

U ¼ S

ffiffiffiffiffiffiffiffiffiffi
�2P

q

s
; (1)

where q is the density of the air. Throughout this calculation

p�jP0j�PA. q can vary slightly because of the variation in

pressure. However, the change in density is of second order

since q=q0 is on the order of p=PA. The value of q0 will be

used in the following.

Consider a hypothetical case where, at time t ¼ 0, there

is a discontinuous reed displacement y, leading to an imme-

diate increase in the flow into the mouthpiece.

This step change in flow produces a column of air with

slightly higher pressure and density. The air in that column

is traveling down the pipe with speed ðU0 þ uÞ=A, which is

greater than the flow on the downstream side of the pressure

discontinuity (U0=A).

The length of this column is ct, the distance that the

pressure discontinuity travels at the speed of sound c into the

pipe (the bore in the case of a clarinet). For a pipe of cross

section A, the extra mass of this column is q0Act, so the extra

momentum of this column due to its extra speed is

mv ¼ ðq0ActÞðu=AÞ. From Newton’s law, the time derivative

of this momentum gives the force due to the discontinuity in

pressure acting at the position of the density discontinuity:

pA ¼ q0cu, so

p ¼ q0c
u

A
; (2)

which has similarities with the water hammer effect

(Chaudhry, 1979). Equation (2) can also be derived directly

by considering the characteristic impedance of the pipe

Zc ¼ q0c=A. Introducing a step increase of flow u produces

(before any reflections) a pressure increase of Zcu.

Relating this to the reed position Y, and substituting for

u,

p ¼ q0c w
y

A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pblow

q0

s
: (3)

Considering a series of small pressure changes over time, the

pressure variation is given by

p tð Þ ¼ wc

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q0Pblow

p� �
y tð Þ: (4)

In the experimental sections of this study, yðtÞ is measured

using high speed video and the blowing pressure Pblow and

the downstream pressure variation pðtÞ are measured by a

pressure transducer in the mouthpiece or barrel. All the other

quantities are known or measured, so the applicability of this

model can be tested by comparing pðtÞ and yðtÞ; the change

in reed tip position, or by using yðtÞ to calculate pðtÞ and

then comparing calculated and measured pðtÞ.

FIG. 3. The reed displacement y (measured from its initial position) and

barrel acoustic pressure pbarrel during and immediately after the “tongue”

releases the synthetic reed from a position where it is pressed toward the

mouthpiece by a tongue force 0.2 N. The lip force was 0.7 N and blowing

pressure 5.5 kPa. The pipe is 0.89 m long which, with barrel and mouth-

piece, gives a round trip time of 5.8 ms, as shown by the horizontal bar. The

pressure change has a shape similar to that of the reed displacement until

the reflected acoustic wave comes back from the opposite end of the pipe.

Notice that when the tongue release is slower (right) the pressure rise is

also slower.

FIG. 4. Schematics comparing the current experiment with the water-ham-

mer: The air is initially flowing through an opening S0 at a rate U0 into a

pipe, which is initially at gauge pressure �Pblow. The opening (here equal to

w Y) then increases to S producing a region with flow U and gauge pressure

P ¼ Pblow þ p, where p�jPblowj�PA. The boundary region with increased

pressure travels downstream at speed c, as shown.
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2. Experimental comparison with the water-hammer
model

In Fig. 3, the similarity in shapes between pðtÞ and yðtÞ
provides some evidence for an instantaneous proportionality

between the reed displacement y and the ensuing pressure

perturbation p in the resonator. More evidence comes from

comparing the total pressure jump with the total reed dis-

placement, measured between the instant the reed starts

moving and when it comes to mechanical equilibrium [e.g.,

from zero to about 3 and 7 ms in Figs. 3(a) and 3(b), respec-

tively]. In the simple model, the ratio of these two changes is

the proportionality coefficient ððwc=AÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q0Pblow

p
Þ as given

by Eq. (4).

Figure 5 shows the pressure change calculated from

Eq. (4) plotted against the measured pressure change. The

parameters A, Pblow, and q0 are known and the geometrical

width of the mouthpiece slot (11 mm) is used for w. The

model, which has no adjustable parameters, fits approxi-

mately, but does not show the slightly stronger than propor-

tional dependence of p on y suggested by Fig. 5. Error bars

are the result of noise in the measured y(t) due to the limited

spatial resolution of the camera. The calculation could be in

error for two reasons. First, air may enter past the sides of

the reed as well at the end, which would increase the effec-

tive width. On the other hand, because streamlines have to

bend around sharp corners of the inlet (in particular the reed

edge), the effect of the vena contracta (Hirschberg, 1995) is

to reduce the equivalent cross-section of the channel and

thus w in Eq. (4).

C. Acoustic oscillation and regeneration

When a lip force is applied, the reed is damped and

this, combined with its stiffness, means that the immediate

acoustic effect of the initial reed motion—arising from the

proportionality of pðtÞ and yðtÞ due to the varying flow—

is of short duration. Further, once the reflection of the

pressure pulse returns, pðtÞ begins to influence yðtÞ, as

well as the reverse. In Fig. 6, the top row shows the initial

several cycles of the oscillation of a synthetic reed with

the 3 m long pipe at three different values of the blowing

pressure. The transient is initiated with the controlled

acceleration system. The gray lines in the second row are

the change in pressure pmp measured by a pressure trans-

ducer located in the mouthpiece, 30 mm away from the

reed tip. This signal includes the continuous pressure off-

set, but is noisy because of the turbulence of the high-

speed flow in this area. The black lines in the second row

are the acoustic pressure pbarrel measured in the bore by a

microphone 95 mm downstream. Here, where the air speed

is much slower, the turbulent noise is less and the signal

is filtered by the microphone high-pass response at 8 Hz.

As in Fig. 2, the inset shows a 6 ms sample of the main

curve, including the beginning of the transient. The last

row shows the logarithm of the absolute value of the

pressure.

The first column of plots (A1, B1, and C1) shows a

typical result with a blowing pressure of zero, reproducing

one of the cases in Fig. 2. The small mechanical oscilla-

tions of the reed are visible in the zoom insets. The small

(noisy) pressure variations visible on the log plot are again

spaced by the 18 ms round trip imposed by the 3 m pipe.

When the blowing pressure is below the threshold for auto-

oscillation (A2, B2, and C2), the water-hammer pressure

jump is visible at t ¼ 0. As in Fig. 3, the pressure jump

returns inverted, with slightly smaller amplitude. Here it is

reflected at the reed end, which is, to a crude approxima-

tion, a closed termination. After two round trips (36 ms),

the cycle is repeated, each time with reduced amplitude.

(In the second and third columns, the slow rise in mouth-

piece pressure is partly due to the finite compliance at the

downstream end of the pipe, which lowers gradually the

blowing pressure, and partly due to the mechanical relaxa-

tion of the reed.)

In the third column (A3, B3, and C3), the blowing pres-

sure is above threshold, so each reflected water-hammer step

produces a pulse whose amplitude increases in successive

cycles. The shape of the waveform shows that, while the fun-

damental (H1) is increasing in amplitude, the highest har-

monics (H3, H5) responsible for the sharp corners in the

waveform are attenuated over the time scale shown here. In

the logarithmic plot of the acoustic pressure amplitude, an

exponential rise is observed. The exponential rise rate (and

thus the gain coefficient) is 48 dB s�1. The middle column

(A2, B2, and C2) shows a decrease that is approximately

exponential: below the threshold, the regenerative energy

produced by the reed is less than that lost in the pipe and by

radiation (exponential rise and decay rates were modelled by

Li et al., 2016b).

In these examples, the long pipe (3 m) and the rapid ini-

tial motion of the reed together mean that the transient due

to the reed’s mechanical oscillation can be clearly distin-

guished from the acoustic reflection. This would not be the

case for the clarinet under normal playing conditions, espe-

cially for high notes, so Sec. III D reports experiments with a

shorter pipe.

FIG. 5. The relationship between the measured pressure perturbation p and

that calculated from the measured change in reed aperture. Data points are

from experiments where the lip force (Flip), the blowing pressure (Pblow), or

reed acceleration were varied. Vertical bars show the estimated uncertainty

in calculated pressure mainly due to the pixel resolution in the measurement

of reed displacement.
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D. Interaction of the reed’s mechanical perturbation
with the reflected wave

Figure 7 shows transients produced with a 0.89 m pipe

connected to the barrel and mouthpiece (giving a total length

of 1.01 m, which is about 50% longer than a Bb clarinet).

The transient is initiated by the controlled acceleration

method for faster initial reed motion, and manual control for

slower ones. This allows observation of different extents of

superposition of the pressure waves due to the reed’s

mechanical oscillation and the acoustic waves due to reflec-

tions at the end of the pipe. The blowing pressure is set to

the same value across all experiments. However, because of

the different tonguing conditions, its value changes transito-

rily following the removal of the tongue (by about 150 Pa or

3.6% of the blowing pressure). This produces different val-

ues of the exponential growth constant, which has values in

the range 145 6 14 dB s�1. The lip force is constant for all

examples.

The first two cases shown in Figs. 7(a) and 7(b) (accel-

erations 23.5 and 14.7 m s�2) are the barrel pressure data

whose first several milliseconds were plotted in Fig. 3. Here

the black lines show the growth of the oscillation as the

amplification by the reed continues. The accelerations in

Figs. 7(c) and 7(d) (3.2 and 0.9 m s�2, respectively) pro-

duced longer durations of the initial mechanical perturbation,

FIG. 6. The initial cycles of the oscillation of a synthetic reed measured with three different values of the blowing pressure Pblow but with same lip force of 0.7

N. As in Fig. 2, each inset on plots A1, A2, and A3 shows an expanded (6 ms� 0.1 mm) sample of the reed displacement curve that includes the beginning of

the transient around t¼ 0. B1, B2, and B3 show, in gray, the mouthpiece pressure measured by a transducer near the reed. The black curve shows the acoustic

pressure in the barrel, measured by a microphone 95 mm downstream from the reed away from the turbulence and high-pass filtered by the microphone (3 dB

point at 8 Hz). C1, C2, and C3 show the magnitude of the acoustic barrel pressure on a log scale 20 log10(jpbarrelj/20 lPa), and also the amplitudes of the funda-

mental, third and fifth harmonics (H1, H3, H5) as extracted by a heterodyne detection algorithm with a window of 150 ms. The pipe is 3 m long, giving a

round-trip time of 18 ms. (The threshold for oscillation lies between 4.5 and 5.5 kPa.)

FIG. 7. (Color online) The measured (thick dark line) and predicted (thin

pale line) barrel pressure measured in a pipe of 1.01 m total length. The pre-

dicted oscillation was calculated from yðtÞ (see text). The vertical bar shows

the expected uncertainty in the calculated pressure due to the camera resolu-

tion in y, which is used to calculate the pressure. The inset view of the mini-

mum at 0.13 s shows that the calculation and measurement differ in their

high frequency components, in part because of the filtering of the acoustic

signal by viscous losses and radiation at the open end of the tube; these

losses were not included in the calculation.
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so that the initial reed displacement due to tonguing is not

yet finished when the first reflected acoustic wave arrives

back at the reed. This results in a smaller initial amplitude.

In Fig. 7, the initial displacement of the reed yðtÞ is used

to calculate a pressure perturbation pprimaryðtÞ according to

Eq. (4). The thin pale lines [ppredictedðtÞ] are calculated using

a mathematical series based on this perturbation

ppredicted tð Þ ¼
Xþ1
k¼0

�Gð Þk pprimary t� kT

2

� �
: (5)

In Eq. (5), G is a gain factor determined from the measured

pressure signal (close to 1.1) and T=2 is the round trip time

(5.94 ms) giving the delay between successive reflections at

the reed.

With the exception of some wave shape differences in

Figs. 7(c) and 7(d), the agreement is reasonably good. The

differences are in part attributable to the noise in yðtÞ due to

the small reed displacements, limited spatial resolution of

the camera, viscous losses, radiation losses, and the fact that

the calculation does not include the mass of the reed, and so

should be inaccurate for the higher harmonics.

1. Simplified tonguing model

Figure 7 and other similar data sets (not shown) demon-

strate how the tongue motion, the reed motion, the water-

hammer model, and a very simple model for the acoustic

response of the pipe are able to reproduce semi-

quantitatively two of the main features of the initial tran-

sient: the starting amplitude and the consequent waveform.

Thus it is possible to obtain a good approximation to the

profile of the start of the oscillation simply by superposing

the perturbations calculated using the water-hammer model.

The remaining differences in shape between calculation and

measurement are chiefly in the high harmonics, and may be

due to the neglect of the mass of the reed in the calculation.

This gives some confidence that simulation using the water

hammer model and superposition of reflections will give

reasonable approximations in calculations of how the oscil-

lation grows for different profile shapes and rates of reed

opening.

Figure 8 shows simulations of the transients resulting

from different reed accelerations. The model for the pipe is

deliberately simplistic, including only the delay and a con-

stant amplification with value of 1.05 that mimics the active

role of the reed and leaves aside any frequency-dependent

losses. The panel at left displays the reed displacement and

mouthpiece pressure perturbation, which are proportional

before the first reflection. The panel at right displays the

pressure signal resulting from the superposition of succes-

sive inverted and amplified reflections.

In each calculation, the reed-mouthpiece aperture

increases toward the same constant final value, but with dif-

ferent values of the (constant) acceleration of the reed (rather

like the experiments illustrated in Fig. 3), resulting in differ-

ent reed release times trr. Different values of acceleration

produce different waveforms and, especially for slow accel-

eration, different amplitudes. The change in amplitude is

largely a consequence of the different degrees of overlap

between the opening and the return of the reflected wave.

The resulting oscillation has an exponentially growing enve-

lope, due to amplification associated with the active reflec-

tion by the reed, here modelled by an imposed amplification

coefficient that is similar to that observed in smooth note

attacks. Figure 8 shows a relatively short time interval in

order to show the details of the waveforms, so the exponen-

tial nature of the increase is not obvious in that figure. In

these examples, the amplitude of the exponential envelopes

decreases as the reed acceleration is reduced, because small

accelerations produce only a small reed displacement when

the reflected wave first returns. Hence the “clipped” wave-

form with flattened peaks, like those in Figs. 6(b) and 6(c)

and Figs. 7(a) and 7(b), is only produced with the two largest

accelerations, for which the reed aperture change is finished

before the return of the reflected wave.

It is possible to run these simulations systematically for

a range of values of reed acceleration, each having a differ-

ent reed release time, trr, and thus yielding different starting

values of the exponential growth of the acoustic wave. To

calculate this dependence, the exponential envelope of the

amplitude of the first harmonic is extrapolated to the moment

of tongue release to obtain what is called hereafter the initial

amplitude. This initial amplitude is plotted as a function of

the reed release time by the black lines in Fig. 9.

The final amplitude at saturation (not shown in Fig. 8)

can be approximately calculated from the blowing pressure.

The rate of exponential growth is known from the model pre-

sented by Li et al. (2016b). The duration of the transient can

therefore be estimated from the initial amplitude with rea-

sonable precision because the transition from exponential

phase to saturation lasts only several cycles (Li et al.,
2016a,b). Of course, the high initial amplitudes correspond

to short attack transients, because saturation is approached

after fewer reed oscillations.

FIG. 8. The left panel shows five different yðtÞ with the same final amplitude,

but different values of accelerations and therefore producing initial pressure

perturbations of different durations. Sufficiently large durations of the pertur-

bation (top three cases) will produce smaller amplitudes at the time of return

of the first reflection after one round trip. In the right panel, each of these ini-

tial perturbations is superposed with successive inverted and amplified reflec-

tions. Note that different amplitudes and waveforms result.
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In order to calculate the transient duration for a given set

of parameters, it is desirable to have an analytical method to

calculate the initial amplitude. An approximate method for

doing this is presented in the Appendix. Two sets of data cal-

culated using this approximate method are included in Fig. 9

(gray lines) for comparison with the explicit simulations.

In Fig. 9, the overall behaviour is that the initial amplitude

decreases as the reed release time trr increases (tongue acceler-

ation decreases), as also seen in Fig. 8. However, local minima

are expected in some of the cases where the reflections of the

perturbation profile interfere destructively. These minima are

absent for the parabolic y(t), but they appear for linear and

sinusoidal y(t) (dashed lines in Fig. 9), i.e., they appear in cases

for which the derivatives y0ðtÞ and y0ðtþ T=2Þ are similar.

These simulations are consistent with the expectation

that a rapid note attack results from a quick release of the

reed. They also suggest that, for some reed opening time-

profiles, slow attacks may be prone to uncertainty because it

may be difficult to match precisely the release time to one of

the local maxima or minima shown in Fig. 9. This picture

may change for real profiles, which probably do not corre-

spond exactly to any of these functions. Different smooth

profiles tend (like the parabolic profile) to have less pro-

nounced maxima and minima. Furthermore, when the reed is

released slowly, turbulence and other sources of noise will

reduce the effect of destructive interference, smoothing out

the minima in the figure.

On a normal clarinet, the longest round-trip time (one-

half cycle of the note) is about 3 ms for the lowest note and

much smaller for many higher notes. Hence, even if the reed

were released by a player as quickly as the plate release

method used here, superposition of pulse and reflection would

be expected for some notes. It is possible, however, that rather

than releasing with the reed with a vertical displacement, the

tongue may uncover the reed opening with a movement that

is closer to longitudinal. In such a case, the water-hammer

effect would be rather more complicated to model.

E. Reed mechanical oscillations and squeaks

In previous results (Secs. III B, III C, and III D), the

application of the lip force via the deformable lip pad acts to

damp the reed, with the effect that a large fraction of the

reed’s mechanical energy is lost quickly, rather than estab-

lishing an oscillation at the natural frequency of the reed.

This is also likely to be the case in normal clarinet playing,

when the force from the lower jaw is transmitted to the reed

via the soft lower lip. With reduced damping, however, the

reed’s mechanical oscillations may interact with the return-

ing reflected wave. Depending on the phase between the

reed oscillation and the acoustic reflections, oscillation at the

reed frequency may sometimes benefit from the gain at the

reed, generating a high-pitched sound (Fig. 10), somewhat

like the squeak feared by clarinettists.

Figure 10 shows the reed displacement and barrel pressure

for transients produced by the manipulating plate release

method, with a 3 m long pipe and a blowing pressure of 5 kPa.

At left, the reed oscillates freely without the damping of a lip,

showing the oscillation at a high frequency determined by the

reed, together with that at a low frequency determined by the

pipe resonance. At right, with the deformable lip pad and a lip

force of 0.7 N, the oscillation at the high frequency is substan-

tially damped. In the case shown in the left of Fig. 10, the

oscillations continue to grow quickly to a continuous, satu-

rated, high frequency oscillation (data not shown).

IV. CONCLUSIONS

Controlled initial reed displacements over a range of

accelerations show that the initial pressure pulse produced

FIG. 9. Semi-logarithmic plot showing how the normalised reed release

time affects the calculated dependence of the initial amplitude of the first

harmonic. The three curves in black were calculated numerically using dif-

ferent functions for yðtÞ: y ¼ f ðtÞ; 0 < t < trr , where trr is the reed release

time in the absence of a returning reflection. The time for a round trip is a

half period of the note. The initial displacement amplitude is the extrapola-

tion of the exponential envelope of the first harmonic to t¼ 0. The curves in

gray were calculated using an approximation to the measured reed motion

profiles (details in the Appendix).

FIG. 10. Initial reed and pressure oscillations when the reed is lightly

damped. In both cases, and as in Fig. 2, decaying oscillations at the natural

frequency of the reed (about 1300 Hz without lip and 600 Hz with lip) are

observed after tongue release at t¼ 0. In the no-lip condition, their amplitude

is still visible at the first return of a reflected signal, at about 18 ms. At this

moment, the large, inverted pulse is superposed and amplified by the reed.

This gives rise to a new, larger pulse of decaying oscillations. Further cycles

continue to increase in amplitude. When the lip is applied (with a force of

0.7 N), oscillations at the reed frequency are much more strongly attenuated.
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by a moving reed and a blowing overpressure are well

approximated to first order by a simple model related to the

water hammer effect. As shown in a previous work, the start-

ing transient then follows an exponential envelope, in which

the time constant is determined by mouth pressure and lip

force. The value of the envelope at the start of the exponen-

tial depends on the blowing pressure and how the reed is

tongued. When the reed’s initial motion is sufficiently fast

compared to the travel time of the acoustic wave, the initial

amplitude of oscillation is proportional to the change in reed

opening during tonguing. When the reed has not reached

mechanical equilibrium before the reflected pulse returns

(i.e., for high notes or for slow initial reed motion), the two

effects are superposed. In these cases, a simple model can

reproduce semi-quantitatively some of the main features of

the initial amplitude of the acoustic pressure in the bore and

the consequent waveform. Simulation results are consistent

with the experimental observation: The initial amplitude

roughly decreases as the duration of tongue release

increases, but may exhibit local minima due to synchronisa-

tion between tongue motion and acoustic reflection.

With the models shown here and in previous articles, the

duration of the transient thus can be determined from the initial

amplitude, the predictable amplitude of the acoustic pressure

in the bore at saturation, and the rate of exponential growth.

Under the conditions studied here, the natural frequen-

cies of cane and synthetic reeds without a lip range from

1280 to 1400 Hz and the Q factors range from �7 to 19.

These reeds present qualitatively similar behaviour.

Without damping by the lip, the reed oscillates at its own

frequency after tongue release, and this oscillation may be

amplified by superposition of reflections from the bore if they

are in suitable phase; this behaviour resembles clarinet squeaks.
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APPENDIX

1. Obtaining starting oscillation amplitudes from y(t)

This appendix presents an analytical model to estimate

the starting amplitude of an oscillation, given the gain of the

reflections and the profile of an initial perturbation that may,

in general, overlap the reflections. The first part of the model

follows Chap. 4.3 in Chaigne and Kergomard (2016).

Because saturation at the end of the transient is rapid, knowl-

edge of the initial amplitude and the gain are sufficient to

give a good estimate of the transient duration, hence the

interest of an analytical estimation of the initial amplitude.

The method is to treat the exponentially growing tran-

sient as a periodic function (the case that would occur with a

gain of one) multiplied by an exponential and to obtain the

harmonics of one cycle of that transient waveform. For sim-

plification, the case treated has growth factor 1, and

oscillations extend from �1 to þ1. This simplification

allows easier calculation of Fourier transforms and alters the

shape of the Fourier peaks. The results in terms of the begin-

ning of the oscillation are comparable with simulated ones

(as shown in Fig. 9).

2. Initial perturbation

This is defined by a function of time pprimaryðtÞ that is

constant for all times except for an interval ½0; trr�, where trr

is the reed release time. pðtÞ ¼ 0 for t < 0 and pprimaryðtÞ
¼ pprimaryðtrrÞ for t > trr.

3. Reflection pattern

A traveling wave pðx; tÞ travels back and forth in a

waveguide, originating from a perturbation pprimaryðtÞ at one

end of the waveguide (x ¼ 0). In the context of this article,

pprimaryðtÞ represents the perturbation caused by the displace-

ment of the reed. The waveform pðtÞ resulting from succes-

sive reflections in the pipe can be calculated using Eq. (5).

Considering the special case where the gain G ¼ 1, the

oscillation can be extended to negative time without change

in the domain under study (t > 0), by replacing the lower

limit in the sum of Eq. (A1) by �1. The oscillating function

pðtÞ can be analysed in terms of its Fourier components. In

this case, the frequency dependence of the amplitude of p is

p0ðf Þ ¼ pprimaryðf Þ
Xþ1

k¼�1
e�i2pkTf � e�i2pðkþ1=2ÞTf

 !
:

(A1)

This is equivalent to the last equation in Sec. 4.3.2 of

Chaigne and Kergomard (2016).

4. Amplitude of individual harmonics

The individual terms of the sum in the previous formula

are the amplitudes of each harmonic, if integrated over a nar-

row interval around each Dirac peak. The amplitude of the

kth harmonic is

pk ¼ pprimary

k

T

� �
1

T
ð1� e�ipTf Þ (A2)

(remembering that pprimary is a spectral density and so has

units of pressure multiplied by time).

E. Example: Unit ramp

The unit ramp is given as an example,

pprimary tð Þ ¼

0 if t � 0
t

trr
if 0 < t < trr

1 if t � trr:

8>><
>>: (A3)

This is the integral of the rectangle function
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Rect0;trr
tð Þ ¼

0 if t � 0

1

trr
if 0 < t < trr

0 if t � trr;

8>>><
>>>:

(A4)

which can be defined in terms of the unit centred rectangle,

Rect0;trr
tð Þ ¼ 1

trr
Rect�1=2;1=2

t� trr

2
trr

0
@

1
A
: (A5)

The Fourier transform of the latter is

Rect�1=2;1=2 fð Þ ¼ sin pfð Þ
pf

: (A6)

And it is easy to derive the Fourier Transform

Rect0;trr
fð Þ ¼ sin pftrrð Þ

pftrr
e�iptrr f :

Since Rect0;trr
ðtÞ is the derivative of pprimaryðtÞ, i2pfpðf Þ

¼Rect0;trr
ðf Þ,

pprimary fð Þ ¼ 1

i 2pf

sin pftrrð Þ
pftrr

e�iptrr f : (A7)

This statement ignores zero-frequency terms, since the inte-

gral function in the time domain is defined up to a constant.

In the frequency domain, this corresponds to adding a Dirac

dðf Þ, which only makes a difference for zero frequency. So

the statement is true for the acoustic or AC case, which is

the one of interest here.

Replacing the previous formula in Eq. (A2),

pk ¼
1

i2p

sin
kptrr

T

� �
kptrr

T

e�ikptrr=T ð1� e�ikpÞ: (A8)

This is the formula used to plot the gray dashed line in Fig. 9.
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