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Abstract: The existing formula for the transfer matrix of conical elements
assumes constant wave number, which is only valid for sufficiently short
conical elements. In acoustic waveguides, the phase velocity, attenuation
constant, and hence complex wave number depend on frequency and cross-
section radius. As for conical waveguides, the cross-section radius is position
dependent, the transfer matrix must allow for a position-dependent wave
number. Taking this into account, this letter presents an analytic derivation of
the transfer matrix for conical waveguides with any geometric parameters,
which can be utilized to improve the method of computer modeling of com-
plex waveguides.
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1. Introduction

The pressure and volume flow at one end of a waveguide are related to the pressure and volume
flow at the other end by a transfer matrix.1–3 This transfer matrix also determines the relation
between input impedance and load impedance. Acoustic waveguides are modeled as a series of
cylindrical and conical elements. Such analyses have applications in computer modeling of
air-conditioning ducts,4 exhaust mufflers,5 and wind instruments in musical acoustics.6,7 The
phase velocity v and attenuation constant !, and hence the complex wave number k, depend on
the cross-section radius R as well as on the frequency f. As the radius of the cross section is
constant throughout a cylindrical element, k is constant, and the transfer matrix is given by
Olson2 and Fletcher and Rossing.3 An expression for the transfer matrix of a conical element,
neglecting the dependence on cross-section radius and assuming constant complex wave num-
ber, is given by Olson2 and Fletcher and Rossing.3 This letter presents a derivation of the trans-
fer matrix of a conical element, of any length, any inlet and outlet radii, including the depen-
dence of the complex wave number k on the cross-section radius R, where for a conical element,
the cross-section radius is not constant but a function of position, in contrast to the case of a
cylindrical element.

As a result of viscous and thermal wall losses, which increase as the radius is de-
creased, the complex wave number k in an acoustic waveguide is a function of cross-section
radius R and for propagation of sound waves in air for rv"10 and to a good approximation for
rv"3, this dependence is given1,3,8 by the following relation:
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where %=1.65'10−3 m Hz1/2 and &=3'10−5 s1/2. (The nondimensional parameter rv
=R / !( /)*"1/2 is the ratio of the waveguide’s cross-section radius to the viscous boundary layer
thickness, which is equal to the square root of the dynamic viscosity ( divided by the product of
the angular frequency ) and density *.)

The existing computational method for modeling complex waveguides using transfer
matrices consists of dividing them into cylindrical and conical elements, which make up the
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entire waveguide and for each frequency, numerically multiplying the transfer matrices to de-
termine the transfer matrix of the whole complex waveguide. For computational methods of
modeling waveguides and ducts, the reader is referred to.9–11 For applications of computational
methods for modeling wind instruments in musical acoustics, refer to.3,6,7,12–14 Applications of
numerical techniques in the design of mufflers in exhaust systems are discussed in Refs. 15 and
16.

The formula derived in this letter, for the transfer matrix of a conical waveguide has a
convenient algebraic form and can be used to improve the method of computer modeling of
acoustic systems, including air-conditioning ducts, exhaust mufflers and wind instruments in
musical acoustics, increasing precision and reducing computation time. Using this formula, the
transfer matrix for a long conical waveguide or a long conical component of a waveguide can be
calculated accurately without the need to split it into short conical elements and multiply
through a large number of transfer matrices numerically for each frequency, to achieve accurate
results.

2. Analytic derivation

For a conical element of infinitesimal length, the complex wave number is constant. A finite
conical waveguide may be analyzed as a set of infinitesimal conical elements. Fig. 1 shows two
successive conical elements with the same cone angle.

Let the first conical element be between cross sections at distances x1 and x2 from the
cone apex with length L12=x2−x1 and effective wave number k12. The transfer matrix for the
first conical element may be written (in accordance with Ref. 3) as:

M12 =
x2

x1
# − t2 sin!k12L12 − +2" i sin!k12L12"

it1t2 sin!k12L12 − +2 + +1" t1 sin!k12L12 + +1" $
=

x2

x1%t2 cos#k12L12 − #+2 −
#

2
$$ i sin!k12L12"

it1t2 sin!k12L12 − +2 + +1" t1 cos#k12L12 + #+1 −
#

2
$$ & . !2"

In addition to those parameters already mentioned, the transfer matrix depends on several pa-
rameters characterizing the two ends of the conical element: +1=arctan!k1x1", +2
=arctan!k2x2", t1=1/sin +1 and t2=1/sin +2.

The transfer matrix links the pressure P1 and volume flow U1 at one end of the conical
element to the pressure P2 and volume flow U2 at the other end, via the following relation:

Fig. 1. Two successive conical elements of the same cone angle, from the same truncated cone with the geometric
parameters of each conical element shown.
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# P1

Z1U1
$ = M12# P2

Z2U2
$ . !3"

In this relation, Z1=*c /S1 and Z2=*c /S2 are the characteristic impedances at each of the two
ends of the conical element, where S1 and S2 are the respective cross-sectional areas at each of
the two ends, * is the density of the medium, c is the speed of sound in the medium. Analogous
relations to Eqs. (2) and (3) define the transfer matrix of the second conical element.

The transfer matrix M13 for the combination of two conical elements is found by ma-
trix multiplication of the two transfer matrices M12 and M23 of the two conical elements. By
using trigonometric identities for all four entries of this resulting matrix, the transfer matrix for
the combination of 2 conical elements simplifies to the following form:

M13 = M12M23

=
x3

x1
# − t3 sin!k12L12 + k23L23 − +3" i sin!k12L12 + k23L23"

it1t3 sin!k12L12 + k23L23 + +1 − +3" t1 sin!k12L12 + k23L23 + +1" $
=

x3

x1
# − t3 sin!,12 + ,23 − +3" i sin!,12 + ,23"
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=

x3

x1
# − t3 sin!,13 − +3" i sin!,13"

it1t3 sin!,13 + +1 − +3" t1 sin!,13 + +1" $ . !4"

This has the same form as the matrix for a single conical element with ,=kL replaced by ,13
=,12+,23=k12L12+k23L23, where ,ij=kijLij may be considered the non-dimensional length of
the conical element, since it is an additive parameter for successive conical elements.

For a conical waveguide, the cross-section radius R depends on the position x relative
to the cone apex. In order to allow for the dependence of the complex wave number k on the
cross-section radius R, and therefore on the position x relative to the cone apex, it is necessary
to first divide the conical waveguide into infinitesimal elements.

To this end, Eq. (4) is extended to N conical elements, by mathematical induction:

M0N = M01M12M23M34 ¯ MN−1,N

=
xN
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=
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where

,0N = ,01 + ,12 + ,23 + ,34 + ¯ + ,!N−1",N

= k01L01 + k12L12 + k23L23 + k34L34 + ¯ + k!N−1",NL!N−1",N

= '
i=0

N−1
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and where

-xi = Li,i+1 = xi+1 − xi. !7"

In the limit as N goes to infinity and -xi→0, while keeping fixed the endpoints of the conical
waveguide and its length L=L0,N='i=0

N−1-xi, the Riemann sum in Eq. (6) above becomes the
integral
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(
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k!x"dx$ = k̄L , !8"

where L=xout−xin is the length of the finite conical waveguide and k̄ª !1/L")xin

xoutk!x" dx is the
effective wave number of the finite conical waveguide.

Therefore, the transfer matrix for a finite conical waveguide with any geometric pa-
rameters is

M =
xout

xin % − tout sin#(
xin

xout

k!x"dx − +out$ i sin#(
xin

xout

k!x"dx$
itintout sin#(
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k!x"dx + +in$ &
=

xout

xin
# − tout sin!k̄L − +out" i sin!k̄L"

itintout sin!k̄L + +in − +out" tin sin!k̄L + +in"
$ . !9"

This formula for the transfer matrix of a conical waveguide of any geometrical parameters is the
main result of this letter.

An explicit expression can be written for the transfer matrix, including the spatial
dependence of the complex wave number arising from the position-dependent cross-section
radius in a conical waveguide, by expressing k in terms of x using Eq. (1) and the relation R
=x tan!+c", where +c is the half-angle of the cone. Thus

k!x" =
2#f

c
#1 −

%

tan!+c"xf1/2$−1

− i
&f1/2
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After some rearrangement, this gives
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where b=% / tan!+c"f1/2. This expression may be integrated to give
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where %=1.65'10−3 m Hz1/2 and &=3'10−5 s1/2. Substitution of Eq. (11) into Eq. (9) gives
an algebraic expression for the transfer matrix of a finite conical waveguide with any geometric
parameters.

3. Special case of sufficiently small conical elements

For a short conical element !.L..xin", the best one-term Taylor expansion approximation for
ln!xout /xin" in terms of the small parameter L /x* is at x*= x̄= !xin+xout" /2, where the error for
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this approximation is third order and not second order as for an approximation at any other x*

between xin and xout. Consider the logarithm in the real part of the integral. The Taylor approxi-
mation requires the stronger condition that .L.. .x*−b., i.e. .L.. .x*−% / tan!+c"f1/2.. Even for a
small conical element with .L..x*, the approximation may be invalid for sufficiently small
frequencies or sufficiently small cone angles.

The approximation is a consistent over-approximation by O!!L /2!x̄−b""3" at x*= x̄
= !xin+xout" /2 and a consistent under-approximation or over-approximation by O!!L / !x*

−b""2" for any other x* between xin and xout. Thus, the best possible approximation retaining
only the first term of the Taylor expansion is at x*= x̄= !xin+xout" /2 with an error of order
O!!L /2!x̄−b""3". Thus, for sufficiently small conical elements the best one-term Taylor ap-
proximation of the form k!x*"L for the integral expression is k!x̄"L at the midpoint of the conical
element.

Figure 2 shows for comparison, the imaginary part of the approximate expression
,approx=k!x̄"L and the exact integral expression ,exact=)xin

xoutk!x"dx for particular values of the
geometric parameters of a conical waveguide. Each expression is shown as a function of fre-
quency and the difference between the two curves is clearly significant particularly for long and
narrow waveguides.

4. Conclusion

The effective wave number of a conical waveguide cannot be determined only from the wave
numbers at the two ends. Thus:

k̄ %
k!xin" + k!xout"

2
, k̄ % /k!xin"k!xout", k̄ % 01k!xin"2−1 + 1k!xout"2−13−1.

The effective wave number depends not only on the wave number at the endpoints or at the
midpoint of the waveguide, but in fact on the wave number at all points throughout the wave-
guide.

In this letter, the transfer matrix of a conical waveguide has been analytically derived,
taking into account that the complex wave number depends on the cross-section radius, which is
a function of position for a conical waveguide. As a result the complex wave number is a func-
tion of position in a conical waveguide, rather than a constant throughout its length as is the case
for a cylindrical waveguide. Thus, the derived transfer matrix of a conical waveguide is valid for

Fig. 2. Imaginary part of the approximate expression ,approx=k!x̄"L and the exact integral expression ,exact

=)xin

xoutk!x"dx for a conical waveguide with inlet radius 1 mm and outlet radius 5 mm having a length of !a" 318 mm
and !b" 10 mm.
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any length, inlet and outlet radii, having taken into account the spatial dependence of the wave
number. This is of particular interest in the computer modeling of acoustic systems, where high
precision is important. This includes computer modeling of air-conditioning ducts,4 exhaust
mufflers,5 and wind instruments in musical acoustics.6,7
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