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ABSTRACT

Previous qualitative studies (Mooney [1], Benade [2], Hoekje [3])
confirm musicians’ opinions that the vocal tract (VT) affects both
timbre and pitch. Johnston, Troup and Clinch [4] modelled the
tract as a one peak resonator, which, if tuned to the fundamental
f0 of a clarinet, gives a playing frequency of f0. But this result
depends upon their particular tract impedance Z, which is small
and real at harmonics of f0. In general, the playing frequency is
shifted.

We relate the flow and the pressure difference at the reed by
the usual non linear Bernoulli’s equation in the time domain, sim-
plified as a third order polynomial. In the frequency domain, the
impedances of the clarinet and the vocal tract are in series. To ob-
tain an analytical result for the frequency shift, we expand about
the threshold oscillation. We compare this result with numerical
results from the harmonic balance method. Finally, impedance
spectra measured on an artificial VT with a discrete but variable
area function are used in this theoretical study. We suggest that
tuning the vocal tract to f0 may be rare and unnecessary.

1. PHYSICAL MODELLING

The clarinet is modelled here as a self-sustained oscillator with a
linear exciter (the reed) which is coupled nonlinearly to two linear
resonators: the pipe and the vocal tract. In previous studies, the
tract was often ignored. A sketch of the mouthpiece is shown in
Figure 1, which includes the meaning of the physical quantities
used. In contrast to most previous models, here the mouth pressure
pmouth is not constant but instead has time variation:

pmouth = Pm0 + pm(t) (1)

where Pm0 is the DC component (used alone when the effects of
the VT are omitted), which is assumed to be the source, and pm(t)
is the acoustic component, assumed periodic.

Figure 1: Schematic view of the system with dimensionless physi-
cal quantities

1.1. The reed

As the reed is not our main interest, we will restrict discussion to
the case where the playing frequency is much lower than that of
the reed resonance and describe the reed as a simple spring, of
stiffness kr so

kry(t) = −(p(t)− pm(t)−Pm0) ≡−(∆p−Pm0) (2)

1.2. The pipe

The pipe is usually characterized by its input impedance, which
describes its resonances. High frequencies are not important in
our study so, for the modelling only, our ’clarinet’ is a cylinder,
whose length l is assumed to include end effects for radiation and
the volume velocity due to reed displacement, and in which radi-
ation losses are neglected compared to visco-thermal ones. It has
neither tone holes nor bell (which are not important to the oscil-
lation mechanism). Dispersion is as well neglected. We indicate
the frequency domain by using capital letters and write the dimen-
sionless equation

P(ω) = Zp(ω)U(ω), (3)

The dimensionless input impedance is given by [5]:

Zp(ω) = i tan(kl) (4)

where kl =
f

4 fp
− iψη

√

f
fp

(5)

and where ψ ' 1.3 for common conditions in air, fp = c/4l is the
first resonance frequency of the pipe, and η is a dimensionless loss
parameter: η =

√

lvl/r2 as derived in ref. [6, Ch.6].

1.3. The vocal tract

The vocal tract is modelled as a (linear) impedance Zm, as ’seen’
by the reed (see the discussion in a companion paper [7]). Flows
entering the mouth and the instrument are in opposite directions,
so:

Pm(ω) = −Zm(ω)U(ω), (6)

Following Jonhston et al [4], we approximate the vocal tract
as a one peak resonator, an admittedly crude physical model that
ignores anatomical details, which are as yet not really well known.
We note that only the lowest tract resonance falls in the range in
which the instrument has strong harmonics unless played loudly.
Further, this allows us to examine Jonhston et al’s proposition that
coincidence or non coincidence of the VT resonance with one of
the instrument’s resonance may be important.

SMAC-263



Proceedings of the Stockholm Music Acoustics Conference, August 6-9, 2003 (SMAC 03), Stockholm, Sweden

1.4. The non linear coupling

Assuming some hypotheses, in particular that the system changes
sufficiently slowly for Bernoulli’s law to be valid and including the
volume flow due to the reed displacement in the bore impedance
of the bore as described above, the air flow at the reed is related to
the pressure difference ∆p across it thus:

u(t) =

{

S(t)
√

2|∆p−Pm0|/ρsign(∆p−Pm0) for y > −H
0 for y ≤−H

(7)
where S(t) = (H + y(t))w is the cross-sectional area of the open-
ing, determined by the reed width w and displacement y.

Denoting dimensionless pressure and flow with a tilde, nondi-
mensionalising pressures by dividing by that which closes the reed,
PM , impedances by dividing by the characteristic impedance of the
bore Z0, and defining a dimensionless mouth pressure γ, we write:

∆̃p =
∆p
PM

and ũ =
uZ0

PM
(8)

γ =
Pm0

PM
(9)

A dimensionless “embouchure” parameter characterizes the mouth-
piece and the mouth position:

ζ = Z0wH

√

2
ρpM

(10)

Substituting dimensionless quantities in equation (7) gives:

ũ(∆̃p) = ζ(1+ ∆̃p− γ)
√

|γ− ∆̃p|sign(γ− ∆̃p) (11)

for ∆̃p > γ−1 and 0 otherwise.
Hereafter, all parameters are dimensionless and the tilde is

omitted. For small oscillations, i.e. close to the oscillation thresh-
old, the previous equation can be expanded as a third-order poly-
nomial:

u(∆p) = u00 +A∆p+B∆p2 +C∆p3, (12)

where

u00 = ζ(1− γ)√γ, A = ζ
3γ−1
2
√γ

,

B = −ζ
3γ+1

8γ3/2
, C = −ζ

γ+1

16γ5/2
.

(13)

Solving the non linear system composed of equations (3),(6)
and (12) is simplified by combining the first two thus:

∆P = (Zp +Zm)U = ZU (14)

The impedances of the pipe and of the VT are thus in series, and
Z = Zp +Zm is the equivalent impedance.

2. THEORETICAL INFLUENCE OF THE VT ON THE
PLAYING FREQUENCY

Kergomard et al. [5] showed that in the case of the clarinet, the
variable truncation method is a good approximation to calculate
the spectral envelope easily and analytically. In the first iteration,
even harmonics are neglected. In the second, they are calculated
from the odd harmonics. Higher harmonics are presumed not to

influence lower harmonics so equations can be truncated at the or-
der of the harmonic to be calculated, ie the equations are truncated
at the first order when calculating the first harmonic. This solu-
tion is substituted into the equations truncated at the third order to
calculate the third harmonic and so on.

Here we use the same analytical technique, but with these
modifications to the physical situation: the pressure difference
across the reed replaces the pressure in the mouth, and the series
impedance of clarinet and VT replaces that of the clarinet. We
do not expect that the addition of the VT impedance in series will
strongly affect the amplitude of odd or even harmonics of pressure
in the mouthpiece, unless a vocal tract resonance lies close to a har-
monic. However, the VT impedance can have a larger effect on the
pressure in the mouth, especially the even harmonics of the played
note, and therefore on the pressure difference across the reed. This
in turn can affect the playing frequency. Hence we do not neglect
even harmonics and the reason for that is now explained.

The variable truncation method is in particular used to obtain
easily the playing frequency. Equation (12) truncated to the first
order and equation (14) give indeed for the first harmonic:

Y1∆P1 = A∆P1 +3C∆P1|∆P1|2 (15)

where Y = 1/Z is the admittance of the series combination. This
gives

|∆P1|2 =
Y1 −A

3C
(16)

This implies that ℑ(Y1) = 0 because all other terms of this equa-
tion are real, and thus gives the playing frequency, called ω0. The
threshold pressure is as given by A = Y1(ω0) = A10. For the most
simplified system, a harmonic pipe for the clarinet (no dispersion)
with no VT influence, this implies of course that the playing fre-
quency is equal to the first resonance of the pipe. But if we now
add a vocal tract tuned to the first resonance of the pipe, we would
expect to obtain the same playing frequency. However, this result
is not repeated for numerical solutions of less simplified versions
of the problem. These solutions were calculated by the program
Harmbal developed by Farner et al. [8] which uses the harmonic
balance method [9] and obtains the solution for N harmonics from
the solution for N −1 harmonics.

To see how introduction of the second harmonic produces a
frequency shift, we will truncate equation (12) to the second order.
The choice of zero in the time domain is arbitrary, so for conve-
nience we choose ∆P1 to be real. The following equations are then
to be solved simultaneously:

Y1∆P1 = A∆P1 +2B∆P1∆P2 +3C∆P3
1 +6C∆P1|∆P2|2

Y2∆P2 = A∆P2 +B∆P2
1 +6C∆P2

1 ∆P2 +6C∆P2|∆P2|2

For simplicity we have chosen to use the Small Oscillations Ap-
proximation, used by Worman[10] and Grand et al. [11]. Near the
threshold, ∆P2 is a second order of ∆P1 (Worman [10]) so we can
neglect quadratic and higher terms in ∆P1 to obtain:

Y1 −A = 2B∆P2 +3C∆P2
1 (17)

(Y2 −A)∆P2 = B∆P2
1 (18)

So

∆P2 =
B∆P2

1
Y2 −A

(19)

∆P2
1 =

(Y1 −A)(Y2 −A)

2B2 +3C(Y2 −A)
(20)

SMAC-264



Proceedings of the Stockholm Music Acoustics Conference, August 6-9, 2003 (SMAC 03), Stockholm, Sweden

Following the development of Grand et al [11] for conditions
close to the threshold, we can write A = A10 + δA. Further sup-
posing that the playing frequency remains close to ω0 we write
ω = ω0 + δω and Y1(ω) = A10 + δA1(ω). If δω � ω0, this gives

δA1(ω) = A10

(

2iQ δω
ω0

)

, where Q is the dimensionless quality

factor of the impedance peak near which the oscillation occurs.
Y2(ω0) is a priori complex so we write Y2(ω) in the following
form:

Y2(ω) = ℜ(A20)+ iℑ(A20)+δA2(ω) (21)

with δA2(ω) = O(δ(ω)), which we can neglect in first approxima-
tion.

As the left hand side of equation (20) is real, the imaginary
part of the right hand side is zero, which gives:

δω
ω0

=
δA

2A10Q
2B2I

2B2R+3C(R2 + I2)
(22)

with R = ℜ(A20)−A10 and I = ℑ(A20).

3. MEASUREMENTS

Measurements of the VT impedance were done by using the acous-
tic impedance spectrometer developed by Smith et al [12]. What
is new is the coupling of the VT to the spectrometer and the use
of an impedance head mounted inside a clarinet mouthpiece (Fig-
ure 2), that can be then coupled to the tract of a human player or to
an artificial vocal tract (VT) composed of discrete elements. The
artificial tract is modelled on the MRI data of Story and Titze [13]
(Figure 3).

microphone

acoustic attenuator

from the source

clarinet mouthpiece

Figure 2: Scheme of the measurement head

As the impedance head has a cross section approximately equiv-
alent to the part of the reed which is inside the player’s mouth, we
measure the impedance of the VT as “seen” by the reed.

The VT is coupled to a semi-infinite pipe which models the
lungs, assumed non-reflective. The glottis can be chosen open or
closed (20 or 6 mm diameter) as this varies among musicians, es-
pecially between beginners and professionals respectively [14].

glottis

infinite pipe

discs of different cross sections

Figure 3: Scheme of the artificial VT

The discrete element tract gives weaker impedance peaks than
does a continuous model, but they fall at nearly the same frequen-
cies.

4. RESULTS

For experienced players who use their vocal tract, the glottis is
nearly closed [14], which increases reflection at the glottis and so
enhances VT resonances. We therefore consider only this case,
and use the MRI data of Story and Titze [13] which were obtained
in speech, where the glottis is almost closed. We present here, in
Figure 4, the results for two vowels commonly cited by most of the
players: /æ/ as in “had” for the low register and /i/ as in “heed” for
the high register. This of course is only an approximation, because
the embouchure constrains the player’s jaw position.
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Figure 4: Amplitude of the VT impedance for the vowels /æ/ and
/i/.

These results (amplitude and frequency of the resonances) are
consistent with previous numerically simulated and experimental
results (Hoekje [3], Sommerfeldt and Strong [15]).

The vowel /æ/ has relatively weak resonances so it should not
affect much the sound of the clarinet. But the vowel /i/ presents a
high peak, at 753 Hz, so we can expect an influence on the pitch
around this frequency. The impedance is much higher because the
tongue is in a high position which reduces the aperture inside the
mouth.

We consider several cases. In one case, the pipe frequency
was varied over the range 720-750 Hz: ie on the low frequency
side of the strong peak in /i/. The playing frequency varies neg-
ligibly for /æ/. For /i/, the playing frequency is less than that for
/æ/ by an amount that increases with frequency over this range: ie
it increases as the VT impedance increases. Another case used a
pipe frequency of 228 Hz, which lies in the middle between the
impedance peaks for the first resonances in the two vowels cho-
sen (Figure 4). At this frequency, the vocal tract is inertive for the
vowel /i/ and compliant for /æ/. In both cases, the frequency shift
is of order 0.2%, and the direction changes with mouth pressure,
for reasons that we do not yet understand. We also consider the
case where the first resonance frequency of the clarinet is 753 Hz
(approximately the note G5), ie when the pipe frequency coincides
with the peak in /i/. This case is of interest because of the proposal
of formant tuning [4], and it is the one whose results are shown in
Figure 5.

As the impedances are dimensionless in our calculation, we
have to divide the impedance of the VT by the impedance of the
clarinet. We can model it by the general formula of the impedance
of one peak resonator:

Zm( f ) = iZd
k

k2
1 − k2 + i kk1

Q1

(23)
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where Zd is the dimensionless characteristic impedance, k = 2π/ f
and k1 = 2πF1/c and Q1 are respectively the frequency and the
quality factor of the resonance. Fitting the model to our measure-
ment gives F1 = 753 Hz, Zd = 35 and Q1 = 6. We can then cal-
culate the values of the different parameters ( Q = 14, R = 0.056
and I = 0.567) and obtain the shift in the playing frequency from
equation (22) (see Figure 5).
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Figure 5: Frequency shift in percent in function of the dimension-
less mouth pressure, given by the approximation (22) and by the
program Harmbal

The results are compared to those of Harmbal. The difference
is quite acceptable, so our approximations give a good idea of how
the playing frequency evolves for small mouth pressures.

As well as analysing the effects of vocal tract impedance, the
Harmbal technique can also be used to analyse the effect of chang-
ing reed parameters. This is interesting because, to change the
pitch, clarinetists move both the tongue and the lower jaw. Lower-
ing the jaw increases the effective length of the reed, decreasing its
chacteristic frequency. The stiffness and the value of H, as func-
tions of the force applied to close the reed (the ’jaw force’), were
measured directly on a clarinet and reed. Using measured val-
ues for modest changes of this jaw force, and inputting the depen-
dent dimensionless parameters to the model described above give
changes in playing frequency of the same order as those given in
Figure 5 for the effect of the vocal tract. The relative importance of
these effects in playing remains, of course, a question to be settled
experimentally.

5. CONCLUSION

The playing frequency shift obtained in the case of a VT tuned
to the first resonance frequency of the clarinet is interesting. If
players did tune their tract resonance to coincide with an instru-
ment resonance the playing frequency would shift. However, we
doubt that this is what players do. More importantly, this simple
case shows a mechanism whereby the playing frequency can be
changed by changes to vocal tract geometry. This is important be-
cause musicians claim to do it, and model experiments on other
instruments show it [7].

On a theoretical point of view, further study will be done in
order to improve formula (22) by using an extension of the VTM
to fit better to the numerical results of Harmbal.

In an other hand, the model reported here neglects several im-
portant physical features. Measurements of the impedance of the
VT of musicians miming their playing embouchure will be carried
out to try to analyse in more detail the role of the tongue and the
glottis. The discrete element VT will now be used in a blowing
machine to investigate this shift experimentally.
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