Weihong Zheng Personal Web Site

Lattice:

square lattice

triangular lattice

honeycomb lattice

simple cubic lattice

Generation of Cluster Data:

The detail about how to generate a list of cluster data for linked-cluster series expansion is given in the book: "Series Expansion Methods for Strongly Interacting Lattice Models" published by Cambridge University Press.

Here is some examples that low-temperature cluster data that have been generated by our group:

(notation: jtop: graph identifier number;  jtop_bare: bare graph identifier number;  nv: no. of vertices; nb: no. of bonds; nsym: symmetry number of graph; lc: lattice constant of graph; npair(1,k) and napir(2,k): ends of k'th bond, npair(3,k): bond type of k'th bond;

1. Square lattice:

1.A Cluster data for the ground state properties:

For the calculation of ground state preperties, a list of cluster with 1 bond type has been generated up to 18 sites, there are totally 1500485 graphes.

A list of cluster up to 6 sites are:

  1  1  0     1  1.000000000000D+00
  2  2  1     2  2.000000000000D+00   1 2
  3  3  2     2  6.000000000000D+00   1 2 1 3
  4  4  3     6  4.000000000000D+00   1 2 1 3 1 4
  5  4  3     2  1.400000000000D+01   1 2 1 3 2 4
  6  4  4     8  1.000000000000D+00   1 2 1 3 2 4 3 4
  7  5  4    24  1.000000000000D+00   1 2 1 3 1 4 1 5
  8  5  4     2  2.000000000000D+01   1 2 1 3 1 4 2 5
  9  5  4     2  3.400000000000D+01   1 2 1 3 2 4 3 5
 10  5  5     2  8.000000000000D+00   1 2 1 3 1 4 2 5 3 5
 11  6  5     6  4.000000000000D+00   1 2 1 3 1 4 1 5 2 6
 12  6  5     8  4.000000000000D+00   1 2 1 3 1 4 2 5 2 6
 13  6  5     2  3.200000000000D+01   1 2 1 3 1 4 2 5 3 6
 14  6  5     2  5.200000000000D+01   1 2 1 3 1 4 2 5 5 6
 15  6  5     2  8.200000000000D+01   1 2 1 3 2 4 3 5 4 6
 16  6  6     4  4.000000000000D+00   1 2 1 3 1 4 1 5 2 6 3 6
 17  6  6     2  1.200000000000D+01   1 2 1 3 1 4 2 5 2 6 3 5
 18  6  6     2  1.600000000000D+01   1 2 1 3 1 4 2 5 3 5 4 6
 19  6  6     4  8.000000000000D+00   1 2 1 3 1 4 2 5 3 5 5 6
 20  6  7     4  2.000000000000D+00   1 2 1 3 1 4 2 5 2 6 3 5 4 6
jtop nv nb  nsym  lc                   npair(1:2,1:nb)
   

The distribution table for no. of bond and vertex, and their total no. of graphes is:

     DISTRIBUTION TABLE: (NB DOWN, NV ACROSS)
   nv= 2 3 4  5  6  7  8   9  10   11   12   13    14    15     16     17      18      total
nb=  1 1 0 0  0  0  0  0   0   0    0    0    0     0     0      0      0       0          2
nb=  2 0 1 0  0  0  0  0   0   0    0    0    0     0     0      0      0       0          3
nb=  3 0 0 2  0  0  0  0   0   0    0    0    0     0     0      0      0       0          5
nb=  4 0 0 1  3  0  0  0   0   0    0    0    0     0     0      0      0       0          9
nb=  5 0 0 0  1  5  0  0   0   0    0    0    0     0     0      0      0       0         15
nb=  6 0 0 0  0  4  8  0   0   0    0    0    0     0     0      0      0       0         27
nb=  7 0 0 0  0  1  8 15   0   0    0    0    0     0     0      0      0       0         51
nb=  8 0 0 0  0  0  3 22  27   0    0    0    0     0     0      0      0       0        103
nb=  9 0 0 0  0  0  0 12  44  53    0    0    0     0     0      0      0       0        212
nb= 10 0 0 0  0  0  0  2  33 108  102    0    0     0     0      0      0       0        457
nb= 11 0 0 0  0  0  0  0   7  95  239  209    0     0     0      0      0       0       1007
nb= 12 0 0 0  0  0  0  0   1  38  247  577  427     0     0      0      0       0       2297
nb= 13 0 0 0  0  0  0  0   0   6  125  665 1322   900     0      0      0       0       5315
nb= 14 0 0 0  0  0  0  0   0   0   32  420 1750  3147  1906      0      0       0      12570
nb= 15 0 0 0  0  0  0  0   0   0    1  150 1260  4631  7357   4117      0       0      30086
nb= 16 0 0 0  0  0  0  0   0   0    0   20  562  3839 12068  17493   8934       0      73002
nb= 17 0 0 0  0  0  0  0   0   0    0    1  119  1972 11220  31424  41331   19633     178702
nb= 18 0 0 0  0  0  0  0   0   0    0    0   10   611  6568  32524  81283   98439     398137
nb= 19 0 0 0  0  0  0  0   0   0    0    0    0    93  2463  21419  92252  209810     724174
nb= 20 0 0 0  0  0  0  0   0   0    0    0    0     4   559   9385  67755  259714    1061591
nb= 21 0 0 0  0  0  0  0   0   0    0    0    0     0    49   2729  33582  209821    1307772
nb= 22 0 0 0  0  0  0  0   0   0    0    0    0     0     2    439  11576  116762    1436551
nb= 23 0 0 0  0  0  0  0   0   0    0    0    0     0     0     30   2558   45937    1485076
nb= 24 0 0 0  0  0  0  0   0   0    0    0    0     0     0      1    312   12659    1498048
nb= 25 0 0 0  0  0  0  0   0   0    0    0    0     0     0      0     11    2226    1500285
nb= 26 0 0 0  0  0  0  0   0   0    0    0    0     0     0      0      0     194    1500479
nb= 27 0 0 0  0  0  0  0   0   0    0    0    0     0     0      0      0       6    1500485
total= 2 3 6 10 20 39 90 202 502 1248 3290 8740 23937 66129 185690 525284 1500485


1.B Cluster data for the excition dispersion etc:

For the calculation of the excitation dispersion etc, a list of cluster with 4 bond type and 8 symmetries has been generated up to 15 sites, there are totally 4654284 graphes.

A list of cluster up to 6 sites are:

      1     1  1  0  1  1
2 2 2 1 2 2 121
3 3 3 2 2 4 121 132
4 3 3 2 2 2 121 133
5 4 4 3 2 4 121 132 143
6 5 4 3 1 8 121 132 241
7 5 4 3 2 4 121 132 244
8 5 4 3 2 2 121 133 241
9 6 4 4 8 1 121 132 242 341
10 7 5 4 8 1 121 132 143 154
11 8 5 4 1 8 121 132 143 251
12 8 5 4 1 8 121 132 143 254
13 8 5 4 2 4 121 132 144 251
14 9 5 4 2 4 121 132 241 352
15 9 5 4 1 8 121 132 241 353
16 9 5 4 2 4 121 132 244 353
17 9 5 4 1 8 121 133 241 352
18 9 5 4 2 2 121 133 241 353
19 9 5 4 2 4 121 133 242 352
20 9 5 4 2 4 121 133 242 354
21 10 5 5 1 8 121 132 143 252 351
22 11 6 5 2 4 121 132 143 154 261
23 12 6 5 2 4 121 132 143 251 264
24 13 6 5 1 8 121 132 143 251 362
25 13 6 5 1 8 121 132 143 254 362
26 13 6 5 2 4 121 133 142 251 363
27 13 6 5 1 8 121 133 142 251 364
28 13 6 5 2 4 121 133 142 254 364
29 14 6 5 1 8 121 132 143 251 561
30 14 6 5 1 8 121 132 143 251 562
31 14 6 5 1 8 121 132 143 251 564
32 14 6 5 1 8 121 132 143 254 561
33 14 6 5 1 8 121 132 143 254 564
34 14 6 5 2 4 121 132 144 251 561
35 14 6 5 1 8 121 132 144 251 562
36 15 6 5 1 8 121 132 241 352 461
37 15 6 5 1 8 121 132 241 352 462
38 15 6 5 1 8 121 132 241 352 464
39 15 6 5 1 8 121 132 241 353 461
40 15 6 5 1 8 121 132 241 353 462
41 15 6 5 1 8 121 132 241 353 464
42 15 6 5 1 8 121 132 244 352 461
43 15 6 5 2 4 121 132 244 352 464
44 15 6 5 2 4 121 132 244 353 461
45 15 6 5 1 8 121 133 241 352 461
46 15 6 5 2 4 121 133 241 352 462
47 15 6 5 2 4 121 133 241 352 464
48 15 6 5 2 2 121 133 241 353 461
49 16 6 6 2 4 121 132 143 154 262 361
50 17 6 6 2 4 121 132 143 252 261 351
51 17 6 6 1 8 121 132 143 252 264 351
52 18 6 6 1 8 121 132 143 252 351 463
53 18 6 6 1 8 121 132 143 252 351 464
54 19 6 6 2 4 121 132 143 252 351 561
55 19 6 6 2 4 121 132 143 252 351 562
56 20 6 7 4 2 121 132 144 252 264 351 461 jtop jtopb nv nb nsym lc npair(1:3,1:nb)

The distribution table for no. of bond and vertex, and their total no. of graphes is:

     DISTRIBUTION TABLE: (NB DOWN, NV ACROSS)
nv= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 total
nb= 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
nb= 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4
nb= 3 0 0 4 0 0 0 0 0 0 0 0 0 0 0 8
nb= 4 0 0 1 11 0 0 0 0 0 0 0 0 0 0 20
nb= 5 0 0 0 1 27 0 0 0 0 0 0 0 0 0 48
nb= 6 0 0 0 0 7 83 0 0 0 0 0 0 0 0 138
nb= 7 0 0 0 0 1 21 255 0 0 0 0 0 0 0 415
nb= 8 0 0 0 0 0 4 91 847 0 0 0 0 0 0 1357
nb= 9 0 0 0 0 0 0 21 339 2829 0 0 0 0 0 4546
nb= 10 0 0 0 0 0 0 2 89 1360 9734 0 0 0 0 15731
nb= 11 0 0 0 0 0 0 0 9 393 5255 33724 0 0 0 55112
nb= 12 0 0 0 0 0 0 0 1 67 1713 20510 118245 0 0 195648
nb= 13 0 0 0 0 0 0 0 0 6 325 7412 79235 416816 0 699442
nb= 14 0 0 0 0 0 0 0 0 0 45 1655 31505 306353 1478602 2517602
nb= 15 0 0 0 0 0 0 0 0 0 1 275 7913 132354 1179603 3837748
nb= 16 0 0 0 0 0 0 0 0 0 0 23 1508 37264 550695 4427238
nb= 17 0 0 0 0 0 0 0 0 0 0 1 174 7866 169975 4605254
nb= 18 0 0 0 0 0 0 0 0 0 0 0 11 1195 39873 4646333
nb= 19 0 0 0 0 0 0 0 0 0 0 0 0 119 6867 4653319
nb= 20 0 0 0 0 0 0 0 0 0 0 0 0 4 902 4654225
nb= 21 0 0 0 0 0 0 0 0 0 0 0 0 0 57 4654282
nb= 22 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4654284
total= 2 4 9 21 56 164 533 1818 6473 23546 87146 325737 1227708 4654284

 
  

2. Triangular Lattice:

 

3. Honeycomb lattice:

 

4. Simple cubic lattice

 

Sorry, this page is under construction.