BPASA T II2; 12445

I'I_

Publ. Astron. Soc. Aust., 1995, 12, 244-7

Making the Figaro Data Reduction System Portable

K. Shortridge!, S. J. Meatheringham?,
B. D. Carter® and M. C. B. Ashley?

! Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, Australia
ks@aaoepp.aao.gov.au
2Mount Stromlo and Siding Spring Observatories, Australian National University,
Private Bag, Weston PO, ACT 2611, Australia
38chool of Physics, University of New South Wales, Sydney, NSW 2052, Australia

Received 1994 December 6, accepted 1995 February 9

Abstract: The Figaro data reduction system was originally written for DEC VAXes
running VMS, and little attention was paid to making it portable. Recently, however,
a cooperative effort between the AAO, MSSSO, UNSW, the UK Starlink network
and Caltech has resulted in a version for UNIX. This new version has been run under
VMS and three different versions of UNIX. The files produced by any version may
be read directly by any other version, although Figaro has a particularly complex
file format which contains an extensible, self-defining, hierarchical structure of data
items. This complexity has allowed the addition of error and quality data, as well
as specific structures used, for example, for echelle data. Figaro is written mainly in
Fortran (with numerous DEC extensions) but there is also a significant use of C.
While C and Fortran are reasonably portable, the way one'is called from the other
is less portable and needs careful handling. Ports to other systems are possible, with

effort; a Macintosh version is being considered.

Keywords: data processing

1. Introduction

Figaro is an extensive set of programs for the
reduction and analysis of astronomical spectra and
images (Shortridge 1993). Raw data taken at either
optical or infrared wavelengths can be reduced
to fully calibrated observations, and the software
allows considerable flexibility in the manipulation
and visualisation of multidimensional data. Work
started on Figaro at Caltech about 12 years ago. At
that time, astronomical computing was dominated
by the almost ubiquitous VAX 11/780 computer.
Figaro—which was written to satisfy an immediate
need, rather than with any thought that it might
still be being used when VAXes were no longer the
system of choice in many astronomy departments—
was originally written to make as much use as
possible of the facilities provided by the VAX and
its VMS operating system.

Now, UNIX workstations are the dominant ma-
chines for data reduction in astronomical institutions.
VAXes are still being used, but the VAX now looks
dated. The basic instructions built into a VAX
processor are relatively complex, and it is hard to
build a very fast processor of such complexity. It
is even harder to build a processor that is fast,
complex, and also cheap. The UNIX workstations
available nowadays have processors that execute very

simple instructions, but do so extremely quickly.
Complexity is traded for speed when the processor
is built, and the complexity is provided later by the
Fortran or C compilers, which use large numbers
of these simple instructions to build the programs
they are asked to compile. The VAX is a CISC
(complex instruction set computer) machine in a
world that is now dominated by the RISC (reduced
instruction set computer) machines.

The VMS operating system that runs on the
VAXes has now been ported to one particular RISC
architecture, that of the DEC Alpha processor.
However, the UNIX operating system, partly because
it was written in C and so could be implemented
relatively easily for any new processor, and partly
because it was not originally a proprietary system,
runs on almost all RISC workstations and is now
the dominant system for astronomical work.

At the same time, many astronomers now have
home computers with processors far more powerful
than that of the original VAX 11/780. However,
most of these are not used for astronomical data
reduction, not because the machines are insufficiently
powerful, but because the most common data
reduction packages do not run on the operating
systems (MS-DOS, MS-Windows, OS/2, Mac OS,
etc.) that they use. Most of these home computers

1323-3580/95/020244805.00

© Astronomical Society of Australia « Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995PASA...12..244S&db_key=AST

BPASA T II2; 12445

rt

Making Figaro Portable

are based on CISC processors (the Intel 80x86,
Motorola 680x0, and Intel Pentium), but a few
RISC machines are starting to appear for home use
(mainly based on the Power PC processor).

The common data reduction systems do not run
on these machines for the same reason that systems
such as Figaro have taken time to move from VMS
to UNIX. Quite simply, it can be very difficult to
port code from one system to another. This paper
looks at some of the reasons for this, and discusses
the way these various problems were addressed in
the recent work done to make the Figaro system
portable—to remove its dependence on the VAX
processor design and its associated VMS operating
system.

2. Portability of Code

There are a number of things that can make it
difficult to port a program from one system to
another. The main ones, at least for a system such
as Figaro, are as follows:

e The instruction set. If any code makes explicit
assumptions about the basic instruction set
implemented by the processor, this code will
need to be completely rewritten for a new
system. Any code written in assembler—written
explicitly in terms of the processor instruction set,
rather than in a processor-independent language
like Fortran or C—obviously comes under this
heading, but if is also possible to write Fortran
or C that has some implicit assumptions about
the details of the processor. (The number of
bits used to hold an integer value, for example,
influences what range of integer values can be
handled.)

e The operating system. Programmers often find
that they need facilities that are not provided by
the programming language they are using. Often
these are available through calls to subroutines
that are provided by the system and work directly
with the operating system. However, these differ
from system to system, and code that contains
such calls will have to be modified if it is to run
on a new system. Different operating systems
have quite different conventions for the way files
are named. Some will allow multiple versions of
files with the same name, others do not. Figaro
made great use of the fact that VMS supported
‘file mapping’, where an operating system call
can set up a one-to-one correspondence between
the bytes of a file and a range of memory
addresses. This allows very efficient file access
on systems that support it, but not all systems
do.

e Language extensions. A lot can be accomplished
using absolutely standard Fortran, for example.

245

However, almost all manufacturers provide exten-
sions to the standard languages, and these often
make programming so much easier that they are
hard to resist. For example, standard Fortran
77 restricts the programmer to variable names
of no more than 6 characters, a restriction few
programmers heed. The ‘DO ... END DO’ loop
construct is not part of standard Fortran 77, but
is used by most programmers nowadays.

e Inter-language calls. Most but not all of Figaro
is written in Fortran, which is the traditional
scientific programming language. There were a
few very small routines written in VAX assembler,
but most of the non-Fortran Figaro code is in C,
which is a better language to use for system-level
operations, particularly when the system is UNIX,
which is itself written in C. A program written
entirely in standard Fortran or standard C will
port easily to most machines, but there is no
standard way for a Fortran program to call a C
routine. All systems allow this to be done, but
all do so in different ways.

o Windowing systems. Nowadays one expects images
to be displayed in resizable windows in multiple
colours with scrollbars and various mouse-operated
controls. A standard is emerging here, at least
for large systems: VAXes and UNIX workstations
now all support the X windowing system, although
often in different ways. However, X is generally
not used by the Macintosh or MS-Windows, so
is not supported on home computers.

3. Figaro Itself

The Figaro design, particularly the file format used,
was influenced by work done by Starlink, the UK
astronomical data analysis network. As a general
purpose astronomical data reduction system, Figaro
has two particular advantages. It provides a very
flexible hierarchical format for data files, making it
easy to introduce things like error and data quality
information, and it is particularly easy for users to
write their own Figaro programs.

However, Figaro was written to run efficiently on
a VAX, and as a result was never written to be
portable. Indeed, it made enthusiastic use of non-
standard facilities provided by VMS. It had some
routines in VAX assembler. It used a large number
of the non-standard extensions to Fortran provided
by the VMS compiler. The Fortran code had a
number of calls to VMS operating system routines.
Figaro had many cases of Fortran routines calling
C, since the hierarchical file format is implemented
through Starlink’s Hierarchical Data System (HDS)
and this is written in C. It was originally written
to support a disparate set of image display systems,
but not the standard X Window system.

© Astronomical Society of Australia « Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995PASA...12..244S&db_key=AST

DPASAS ~.T127 T Z44T0

rt

4. Making Figaro Portable

Recently, effort has been put into reworking the
Figaro code to remove—or at least to separate—its
VAX-dependent elements!. Although the initial aim
was to get a version that would run under UNIX,
the intention was not to turn it into a UNIX system.
Rather, it was to turn it into a portable system in
the literal sense of a system that was able to be
easily ported to a variety of different machines.

The result is a version of the traditional Figaro
system that now runs under VMS and a number
of versions of UNIX: SunOS, Solaris, and ULTRIX,
with an OSF/1 version being planned. Parts of the
code have even been ported to an Apple Macintosh,
running under the native Mac OS, but this is very
experimental and incomplete.

The use of HDS means that Figaro files can
be read on any machine. A file written using
VMS Figaro on a disk shared with a UNIX system
may be read directly by the UNIX version of
Figaro on that UNIX machine. Any machine
dependences are handled by the HDS routines.
A UNIX Figaro file may be transferred over the
network to a Macintosh and read by the experimental
Macintosh Figaro code.

The porting philosophy adopted was to accept
that there had to be different versions of some
sections of code for different systems. These were
then encapsulated in small routines so that different
versions of these routines could be provided for the
various systems.

The C language includes a pre-processor that
allows the C code to be modified automatically
as part of the compilation process, depending on
flags supplied to the compiler. This means that
alternative blocks of code can be used, depending
on the system on which the code is to run. Small
changes can be made by defining individual symbols
differently on different systems. This is convenient,
but can lead to code that is hard to follow, since the
source files contain different versions of the same
code for different systems.

Fortran does not provide this facility, but a
Fortran program can be run through the C pre-
processor to get the same effect. We have used this
facility, but very sparingly. Generally, we have tried
to avoid too much use of the pre-processor facilities,
preferring to have different source files for different
systems. Where a pre-processor construct is used,
we always use a functional test, for example, ‘Does
this compiler allow files to be opened “readonly”?’
rather than ‘is this the ULTRIX compiler? If not,
is it the SunOS compiler?, etc.” This is easier to

K. Shortridge et al.

read, and does not require changes to the source
code when a new system is added.

In many cases, what might have been a significant
difficulty has been obviated by commercial pressures.
Since VMS was so dominant in scientific computing,
other manufacturers were forced to provide many of
the facilities of VMS in order to tempt VMS users
over to their systems. This is most obvious in the case
of the Fortran compilers—although Figaro makes
cavalier use of VMS Fortran extensions, almost all
of these are supported by the Fortran compilers on
the systems to which we have ported Figaro.

The following list of ways in which the code was
modified for portability corresponds to the set of
porting problems listed earlier:

e The instruction set. Routines in VAX assembler
were replaced by equivalent C routines, although
the more efficient assembler routines can still
be used in the VAX version. Very few other
instruction-set problems have arisen, although the
different ways in which floating point numbers
are represented by different machines, and the
byte-ordering (the esoteric question of which of
the numerous bytes of an integer is the most
significant) have had to be handled.

o The operating system. Most systems provide the
facilities required by Figaro, but in different ways.
Operating-system-dependent operations, such as
renaming a file, have been removed to separate
routines and different versions of these have been
provided for the different systems. Most recent
versions of UNIX even support ‘file mapping’,
although Starlink’s HDS is able to emulate this
for systems that do not provide it.

e Language extensions. As mentioned above, com-
mercial pressures have almost removed this prob-
lem. The ‘INCLUDE’ statement, commonly used
to read the same set of common definitions into
a number of source programs, is provided by all
systems, despite being non-standard. However,
it has to be given a filename, and the syntax of
filenames differs from system to system. We have
changed all the Figaro ‘INCLUDE’ statements
to the minimal format ‘INCLUDE name’ where
‘name’ is a single symbol with no non-alphabetic
characters—not even a period. On all systems
this can be made to point to the required file
to be included: under VMS it is a logical name,
under UNIX it is a symbolic link.

e Inter-language calls. These are handled by a
Starlink package, ‘CNF’, which provides a set
of macro definitions that can be used by the C
pre-processor to manipulate the definitions of C

1 A portable version of Figaro is available from Starlink, but this is a version of Figaro that runs under the ADAM
environment, which provides a quite different interface to Figaro and is not strictly a port of the traditional Figaro system.
However, a deal of the work done for this system was incorporated into the portable Figaro described in this paper, and the
code for a Figaro application is the same in both versions; only the underlying frameworks differ.

© Astronomical Society of Australia « Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995PASA...12..244S&db_key=AST

BPASA T II2; 12445

rt

Making Figaro Portable

routines and the syntax of calls to Fortran routines
from C. These macros differ from machine to
machine.

e Windowing systems. The Figdisp display server
written by Sam Southard provides support for
image and line graphics displays using X-windows.
This runs on UNIX and can run under VMS,
although the original VMS display code for use
with other display systems is also still available.
Caltech’s PGPLOT library was used for line
graphics, and a portable version of this has been
available for some time now.

8. Conclusion

Making Figaro portable was not a trivial task.
However, the problem was much simpler than it
might have been given the VMS dependences of the
original code. This was helped to a large extent by
the fact that commercial pressures and the former
dominance of VMS encouraged UNIX vendors to
put VMS support into their products, particularly
the compilers. The use of VAX-specific Fortran,
which might have been expected to pose a porting
problem, turned out to have been an advantage.

247

The use of common packages such as Starlink’s
HDS, or Caltech’s PGPLOT, which were ported by
their originators, also helped significantly.

The latest version of Figaro is available
through anonymous ftp from the Anglo-Australian
Observatory. Details can be obtained from
ks@aaoepp.aao.gov.au.

Acknowledgments

We would like to acknowledge the contribution made
to this project by Horst Meyerdierks—based at the
Royal Observatory, Edinburgh, under the Starlink
aegis—who worked closely with us on the Figaro
port and supplied the code modifications he had
made for the Starlink ADAM version of Figaro.
Sam Southard of Southard Software Systems in
California, who had been involved with the earlier
Caltech port of Figaro to UNIX (one that had
concentrated mainly on making the system run on
the SunOS version of UNIX), also provided valuable
help, advice and code.

Shortridge, K. 1993, in Astronomical Data Analysis Software
and Systems II, ed. R. J. Hanisch, R. J. V. Brissenden
& J. Barnes, ASP Conf. Ser., 52, 219

© Astronomical Society of Australia « Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995PASA...12..244S&db_key=AST

