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ABSTRACT ; '
At low hydration, the separation between the membranes of some organelles is limited by the repulsive
forces between them, and the relation between water content and water potential is determined largely by these
forces. The large intra-membrane mechanical stresses and strains produced by these forces may' be responsible for-
physiological damage. I present a simple model of the lateral stress in a bilayer of a lamellar lipid-aqueous solution

phase in order to give an estimate of the water content at which such stresses cease to be negligible.
Some plant tissues survive dehydration to water contents (weight ratio of water o dry matter) as low as

several percent (1,2]. Several important effects are reported at water contents in the region below about 25% by

weight (e.g. solute loss during rehydration by seeds [1]; reduction in O2 uptake by soybean seeds [3].) :
It has been suggested that the large mechanical stresses and strains in membranes may be responsible for

damage in dry tissues [4]. Further, the loss of semipermeability correlates with the observed lateral segregation of

proteins and the formation of lamellar and hexagonal II phases in dehydrated plant protoplasts 5]
Dehydration brings membranes and macromolecules closer together until further approach is opposed by

large (MPa—GPa), short-range (nm), repulsive forces among these structures. Further dehydration is opposed by the
suction in the remaining small volumes of solution, rather than by substantial increases in the osmotic pressure. In
rye protoplasts dehydrated in 5.37 osmolal sorbitol solution, aparticulate lamellae, lamellar phases and hexagonal II
phases are observed near the plasma membrane [5]. The conditions which produce these states of dehydration are

different for different organelles.
Let t be the volume-weighted membrane thickness and x the volume-weighted water thickness, and assume

that the repulsive force acts at this interface. The suction equals the repulsive force per unit area. The suction acts
to compress the system in the plane of the interface but is opposed by a compressive stress in the membrane. Let
() be the (compressive) force per unit length in the plane of a single membrane. At mechanical equilibrium

-y = Px.
The inter-membrane repulsion P decreases approximately exponentially with x with a characteristic length A
of typically 0.2 nm. At x = 1.0 nm, P is typically 5.0 MPa [6]. Thus :

-Y= Px = PcX exp(-X/l). (1)

Sufficiently large (-y) may have direct effects on proteins in the membrane, or disrupt membrane integrity.
It is convenient to compare y with the area elastic modulus defined by ka = Ady/dA where A is the area. kA is
140 mN/m for a phosphatidylcholine bilayer [7].

_ Dipalmitoyl- and dimyristoyl- phosphatidyicholine bilayers undergo a phase transition induced by a lateral
stress of 24 mN/m (-y/ka = 0.17) at temperatures well above those of the unstressed [6]. The more spectacular
transition from lamellae to the inverted cylindrical micelles of the hexagonal IT phase occurs in some simple lipid-
water mixtures at water/lipid ratios of typically 15 to 25% [8].

Thus the range of water contents 25 to 10% represents a range over which the lateral stress in lamellar
phases varies from very much less than kA to comparable with kA, and includes the range of lateral stress-induced

phase transitions of two types. How do such water contents occur?

____)'I'he 0SmOLiC pressure 7t may be written as T’ n RT / V where V is the volume of solution, n is the number
of moles of solute dissolved therein, and T is the average activity coefficient of those solutes, (We shall neglect for
the moment any specific interactions between solutes and the lamellae.) Setting V = Ax where A is the total area of

membrane present in a phase, and using the subscript o to represent some reference state, this becomes
n = ([/To) , mo , (Vo/V) @)
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