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Intrinsic membrane proteins affect the ordering of neighbouring lipid chains. We have used a model of 
protein-lipid interactions in bilayers proposed by Owicki et al. (Owicki, J.C., Springgate, M.W. and 
McConnell, H.M. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 1616-1619) to show that near the lipid phase 
transition this effect may significantly increase the magnitude of a membrane's lateral compressibility (or 
correspondingly, decrease the magnitude of the membrane's elastic moduli). 

Introduction 

A physical property of bilayer membranes which 
is of considerable interest is the elastic response to 
an external or an internal stress. It is believed that 
higher lateral compressibility of the membrane is 
responsible for the increase in passive permeability 
near the lipid phase transition [1-5]. The value of 
lateral compressibility may also affect the activity 
of intrinsic membrane proteins [6]. The form and 
the magnitude of curvature elastic energy is ex- 
pected to control some of the features of the 
cellular shape (e.g. in erythrocytes [7]) or function 
(e.g. pinocytosis or reversible stacking of thylakoid 
membranes). 

It is now.known from many studies that intrin- 
sic membrane proteins affect the physical state of 
neighbouring lipid chains. The protein molecule 
acts as an external field, imposing a certain altera- 
tion in motion and order on nearby lipid chains. 
These chains therefore do not go through a well 
defined melting transition, but rather change their 
order gradually with temperature. 

The lateral compressibility of bilayer mem- 
branes (denoted by ~) is one of the physical prop- 
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erties strongly affected by the ordering of lipid 
chains. From a general consideration of the statis- 
tical mechanics of phase transitions (and in partic- 
ular the statistical mechanics of small [8] or inho- 
mogeneous [9] systems) one would expect that x is 
also affected by the presence of intrinsic proteins. 
The discontinuity in area per molecule (which 
produces the singularity in K) at the phase transi- 
tion of an homogeneous bilayer may be reduced, 
or disappear entirely. In that case an increase in x 
would be observed over a wider temperature range. 
Because of the intrinsic interest in lateral com- 
pressibility of membranes mentioned earlier, and 
because the appropriate experimental measure- 
ments are very difficult, we have undertaken the 
present theoretical study of the intrinsic protein 
effect on x. 

Compressibility of single lipid bilayers with intrin- 
sic proteins 

In principle, any of the existing models [10-13] 
of bilayer membranes with intrinsic proteins could 
be used to obtain qualitative information on the 
change of bilayer lateral compressibility with the 
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introduction of intrinsic proteins. However, some 
of the models are rather complex, which makes the 
application difficult. For example, with the first 
and quantitatively most accurate model [10], a 
large increase in computational  accuracy would be 
required to obtain information on k. We have 
therefore selected the model of Owicki et al. [12], 
based on the Landau-de Gennes expansion of the 
free energy [14], which has the advantage of rela- 
tive simplicity while still retaining the essential 
physics of the problem. J~ahnig [26] has recently 
published a calculation of the compressibility of 
lipid-protein membranes using a more complicated 
model, and arriving at a similar conclusion. 

Owicki et al. define an order parameter  u by 

u : ( a F - - a ) / ( a F - - a s )  (1) 

where a is the interfacial area per molecule and the 
subscripts F and S denote values in the fluid and 
solid phases at the transition temperature T o . (Thus 
defined the order changes from zero to one at the 
phase transition and is less than zero at higher 
temperatures and greater than one at lower tem- 
peratures. This differs from the usual definition of 
the order parameter  corresponding to that mea- 
sured by magnetic resonance experiments, but the 
two ought to be strongly correlated). 

In Landau-de Gennes '  theory the (time aver- 
aged) free energy per molecule is expanded in 
terms of the order thus: 

1 1 3 1 4 

(2) 

where I I  is the lateral pressure and the parameters 
T*, A, B and C may be determined from compari-  
son with the data. An elastic energy which is 
quadratic in x7 u(r) is added to take into account 
spatial variation in u. 

The order of lipid molecules as a function of 
radial displacement from a protein is that function 
u(r) which minimizes the free energy of the system 
subject to suitable boundary conditions. Owicki et 
al. [12] solve this boundary value problem by 
either a numerical integration of the associated 
Euler-Lagrange equation or by selecting a trial 
function u(r) and adjusting its parameters to ob- 

tain the lowest possible free energy which is con- 
sistent with such a function. They find that, for a 
system in which an infinite, homogeneous bilayer 
is perturbed by one intrinsic protein molecule, an 
excellent approximation to the exact radial varia- 
tion of u is 

u ( r ) =  uB + (  u I -  u s )  e x p [ - - ( r -  r , ) / X ]  (3) 

where )~ is a characteristic length to be determined, 
r~ is the radius of the protein (assumed cylindrical) 
and u I and u B are, respectively, the values of u at 
r -- r I and r --, o¢ (i.e. the order parameter  of the 
bulk lipids), r, r~ and )~ are expressed in reduced 
units. 

Strictly, this model may only accommodate one 
protein molecule. To model a bilayer incorporat- 
ing many intrinsic proteins we set the protein 
molecules on a hexagonal lattice. Next we invoke 
the Wigner-Seitz approximation [15] and replace 
each hexagonal cell by a circle with the same area. 
The trial function u(r) must satisfy the boundary 
conditions: 

u ( r ) : u  I at r : r  I, 

and 

0 u ( r )  
3r =0  at r = r  2 

where r 2 is the radius of the Wigner-Seitz cell. 
Thus a convenient trial function is: 

u ( r ) =  u 2 + (  u I -- u2) e x p [ - - ( r -  rl)//)~ ] 

+ ( u , -  u2) exp[-(2r 2 -  r,- r)/h] (4) 

where u 2 is the value of the order parameter  at 
r -- r 2 (u 2 = u 6 for large r2). 

The lateral compressibility is defined as 

1 OA r K = - ~ .  0--ff ( 5 )  

where A = ~r(r2 2 -  r~) is the area of the Wigner- 
Seitz cell. To calculate r we put r~ constant but 
r 2 = r2(T, I-I, N) where N is the ratio of the number  
of lipid molecules to the number  of protein mole- 
cules (i.e. the number  on both sides of bilayer in 
each Wigner-Seitz cell). To determine r 2 and hence 
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calculate ~ , a fixed value of N was chosen 

where: 

N =f,22~rr.dr 
2 J,. a(r) (6) 

and a ( r )=  a[u(r)] is the interfacial area per lipid 
at given T and H as defined by Eqn. 1. 

What  is an appropriate value for the boundary 
value u]? Elsewhere [6] we have argued that the 
hydrophobic surface of a protein will in general be 
less regular than the surface of a crystalline array 
of solid lipids and so the adjacent lipids will be 
less ordered than are solid lipids, but that the 
motion of fluid lipids near a protein will be re- 
stricted bY the presence of its hydrophobic surface 
which we presumed more rigid than liquid alkane 
chains. Kang et al. [23] explain their nuclear mag- 
netic resonance results by proposing that the 
boundary layer of lipids have a larger amplitude of 
chain motion than do fluid lipids, but that the 
frequency of this motion is rather lower. The com- 
bination of a geometrical disordering and a restric- 
tion of motion imposed by proteins on fluid liplds 
[16] will affect the area they occupy in the mem- 
brane (and thus the order parameter  u) but there 
are no data on this effect. 

In these calculations we have imposed the 
boundary condition u= = 0.75. For large lipid:pro- 
tein ratios, this value produces a mean value of u 
equal to 0.50 in the boundary layer (r= < r ~ r ]  + 
0.7 nm) when the bulk lipids are fluid. This choice 
is arbitrary, but its effect should qualitatively re- 
semble that of the interactions described above, 
and by varying this value we have determined that 
the results are not critically dependent on this 
choice. The parameters of Eqn. 2 are determined 
from the properties of dipalmitoylphosphati:  
dylcholine (DPPC) and the zero of I I  is chosen so 
that the transition temperature of the (bulk) lipid 
is 279 K at H = 0, i.e. to correspond to a bilayer 
under negligible tension or compression. (Varia- 
tions in H, and the relation between lateral pres- 
sures in membranes  and bilayers are discussed by 
Gruen and Wolfe [25]. Under  physiological condi- 
tions, bulk variations in H are only of the order of 
10 m M - m - ~ ,  which variations have only a small 
effect on K [6,21 ].) 

The change in K(T) occasioned by the introduc- 
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tion of intrinsic proteins may be seen in Fig. 1. In 
this figure are presented K(T) at I I  = 0 for a pure 
lipid bilayer and for a bilayer lipid membrane with 
intrinsic proteins and protein lipid ratio of approx. 
600 (i.e. N = 600). The protein has a radius (r]) of 
2 nm (thus the ratio of the area of a protein in the 
plane of the membrane to that of a lipid is about 
25). A very similar anomaly is obtained for K(YI) 
curves at various temperatures. However, at tem- 
peratures above the critical temperature or at pres- 
sures above the critical pressure the anomaly is 
smaller and has no discontinuity. 

Very interesting results are obtained when the 
relative change in x due to intrinsic proteins is 
examined as a function of the l ipid/protein ratio 
N. Fig. 2 shows such results at H = 0 and a range 
of temperatures above and below the pure lipid 
phase transition temperature. The effect is greatest 
for N ~  110. 

The reason for this behaviour can be under- 
stood with reference to Fig. 3, which shows the 
radial profile of the order parameter  across the 
Wigner-Seitz cell. At large values of N, u is close to 
its bulk value throughout most of the cell, and K is 
also close to its bulk value. For N very small, the 
remaining lipids are practically immobilized (at an 
appropriate u value) by proteins and cannot 
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Fig. 1. The calculated lateral compressibility (as a function of 
temperature) of a bilayer of pure lipid compared with that of a 
lipid bilayer with intrinsic proteins (lipid-protein ratio 600 : 1). 
Parameter values corresponding to dipalmitoylphosphati- 
dylcholine were used in the computation. The effect on K is 
greater above than below T 2 because of the choice of boundary 
value (a] = 0.75) discussed earlier. This means that the proteins 
have a greater effect on the order of fluid lipids than they do on 
solid lipids. 
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Fig. 2. The lateral compressibility as function of lipid-protein 
ratio (N) at different temperatures for a bilayer with intrinsic 
proteins. (a) Temperatures above the transition temperature at 
zero pressure (T 0) and (b) temperatures below T 0. (For temper- 
atures very close to T¢ computational difficulties render the 
calculations inaccurate.) 
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Fig. 3. Theoretical radial profiles at constant T and II of the 
order parameter of lipids about proteins for different sized 
Wigner-Seitz cells. 

strongly respond to an elastic stress. At inter- 
mediate value of N however, the equilibrium value 
of the order of many of the lipid molecules is in 
the unstable region between the solid order and 
the fluid order. Thus their order is easily changed 
by small elastic stresses and this leads to the large 
values of x. 

It should be noted that all the results were 
obtained with the assumption of maximal separa- 
tion between protein molecules. For small 
l ipid:protein ratios the system may show partial 
or total aggregation of proteins, particularly if 
there is no electrostatic repulsion between individ- 
ual protein molecules. In that case, the anomaly in 
x would be greatly reduced. 

Discussion 

The results presented here show that under 
favourable circumstances (i.e. near the lipid phase 
transition, and with an appropriate l ipid:protein 
ratio - both of which circumstances may obtain in 
biological membranes) lateral compressibility of 
the interior of lipid bilayers is significantly en- 
hanced by incorporation of intrinsic protein mole- 
cules. The corresponding elastic modulus [17,18] 
describing the resistance of the membrane to lateral 
stress depends on contributions from both the 
lipid chain region and the lipid polar head region * 
This elastic modulus will be significantly decreased 
under those conditions which produce a high lateral 
compressibility of the bilayer interior. 

The bending of a membrane requires expansion 
and compression of the lipid chain region in the 
respective halves of the bilayer. Bending elastic 
moduli [ 17,18] will therefore reflect the presence of 
intrinsic proteins in a way qualitatively similar to 
the alteration of the stretching elastic modulus. 

When considering the effect of intrinsic pro- 
teins on the compressibility of membranes formed 
from more than one species of lipid, it is necessary 
to consider not only the broadening of the temper- 
ature range of high • induced by lateral phase 
separations among the lipids, but also the possible 

* Under some circumstances the elastic response may consist 
of a more complex rearrangement of lipid packing, e.g. a 
collective tilt caused by changes in pH of the aqueous phase 
[10]. 



effect of proteins on the lipid composition in the 
vicinity of a protein. Contrary predictions [6,12,21 ] 
have been made for the composition. Some authors 
[12] expect that for rather rigid proteins in mix- 
tures of lipids with differing hydrocarbon chains, 
the lipid species with the higher melting point 
would be preferentially adsorbed onto the protein. 
This effect may be quantified by computing the 
change in the Gibbs free energy of a lipid molecule 
as it is shifted from the bulk to the neighbourhood 
of a protein, using the model of Ref. 10. For 
several different values of the order parameter of 
the lipid-protein interface, it was found [6] that, 
although the changes in internal energy and ent- 
ropy are large, their contributions to the free en- 
ergy cancel almost exactly, and the change in free 
energy per hydrocarbon is less than one tenth of 
the thermal energy (KT). Thus, provided that 
specific geometric or packing effects do not in- 
fluence lipid segregation [20], the protein does not 
disturb the homogeneity of the bilayer in which it 
is inserted. (Where lipids are covalently or electro- 
statically bound to a protein, then this protein-lipid 
complex replaces 'protein' in the foregoing argu- 
ment, and homogeneity begins at the second 
neighbours.) The fluorescence quenching experi- 
ments of Caffrey and Feigenson [22] indicate that, 
for a large range of hydrocarbon chains, Ca 2÷- 
ATPase does not perturb the homogeneity of 
bilayers comprising mixtures of phosphatidylcho- 
line with different chains. 

From the above argument it follows that out- 
side the coexistence region, binary lipid mixtures 
with intrinsic proteins will behave similarly to 
single lipid phase, and the results of the previous 
section could be applied. Within the coexistence 
region, the very high lateral compressibility of the 
lipids [5] overwhelms any anomaly due to intrinsic 
proteins. 

The possible physiological significance of the 
anomalies in the physical properties of membranes 
in or near the phase coexistence region is a time- 
honoured theme for speculation. An interesting 
idea formulated by Linden et al. [2] associates high 
lateral compressibility in the phase separation 
range of temperatures with enhanced transport 
across the membrane. Further, any reaction which 
involves geometric deformation of a membrane or 
membrane-bound enzyme will have a reaction en- 
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ergy which depends on the membrane compressi- 
bility [6,20]. The nature of our calculations allows 
us only to calculate the 'bulk' area elastic modulus, 
i.e. the quantity that is measured in a macroscopic 
determination of that modulus, such as that of 
Kwok and Evans [29]. The dynamic compressibil- 
ity of small region of the membrane (a few tens of 
molecules, say) is the quantity which would affect 
biochemical reactions at that site [6] and this 
quantity could vary from place to place. We ex- 
pect, however, that this dynamic compressibility 
would have a similar dependence on local mem- 
brane composition. The anomolous biochemical 
and physiological properties ascribed to lipid-pro- 
tein membranes in the lipid phase coexistence 
region would therefore be expected to appear at 
temperatures somewhat above the range of the 
phase coexistence. 
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