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Abstract 

A new optical technique is used to measure the time-dependent shape of thin aqueous draining 
films between air bubbles and hydrophilic or hydrophobic quartz surfaces. The thickness is de- 
termined to a precision of !Y 0.2 nm to + 1 nm from the intensity of the reflected interference beam 
from a spot of laser light which is focussed on the thinning film and which is scanned radially. 
The film shape begins as a dimple which then flattens as it thins. Plots of the thickness as a 
function of time and of radial position are presented for films of pure water and of 0.23 mol me3 
NaCl solution at hydrophilic quartz surfaces. In the ring of closest approach, the pure water film 
is at all times thicker than that of the salt solution film. In the early phase of the approach, the 
pure water film thins more slowly at the centre, but after about 40 s it thins more rapidly. Both of 
these observations are consistent with the expected shorter range of the double layer repulsion in 
the salt solution. For hydrophobic surfaces, the drainage rate is more rapid, the film eventually 
collapsing. 

INTRODUCTION 

The approach to a solid surface of a gas bubble in a liquid is central to the 
process of mineral flotation [ 11. It is also an example of the draining of a thin 
liquid film between two other phases, a process which determines the behav- 
iour of many colloidal suspensions [ 2,3 1. 

Figure 1 (inset) shows the typical shape of a film trapped between an air 
bubble and a solid surface. For a thin, axisymmetric film the liquid flow is 
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Fig. 1. Median vertical section (schematic) of apparatus. A vertically polarised laser beam L is 
directed via a polarising beamsplitter B through an objective lens 0. After passing through win- 
dows Wl (chamber) and W2 (septum) the beam enters an air-filled Perspex (R) septum Sl, fed 
by a micrometer-driven syringe S2 via a silastic tube T. The beam passes through a mica quarter 
wave plate M (angled to prevent unwanted reflections) and is focussed at the front face of an 
optically polished quartz prism Q. The air bubble A, initially just out of contact with the quartz 
surface, is bulged rapidly by allowing a spring-loaded plunger to rapidly compress a section of the 
silastic tubing. The draining film assumes a “dimpled” configuration within 0.5 s of bubble ex- 
pansion (inset). The reflected laser beam again passes through the quarter-wave plate, so becom- 
ing horizontally polarised and able to pass through the beam splitter and enter a detecting pho- 
tomultiplier (not shown). Reflections from the windows are, however, eliminated, since the light 
is vertically polarised. A particular advantage of the optical arrangement is that the beamsplitter 
and objective (mounted on the micrometer driven carriage) can be moved laterally, so that the 
beam can be scanned across the film. 

approximately radial and the pressure P in the film is a function only of time 
t and of rl, the distance from the axis of symmetry. P has three components: 

P= - yC-F+P,, (1) 

The surface tension y multiplied by the local curvature C is the capillary pres- 
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sure. F is the force per unit area exerted between the two interfaces and in- 
cludes electric, van der Waals and other interactions. At close approach this 
term is large and dominates the behaviour of very thin films. The dependence 
of F on film thickness is determined by the nature of the surface and by the 
electrolyte concentration in the aqueous phase. The pressure P,, in the bubble 
is constant for a stationary bubble of fixed size. Both are important in mineral 
flotation, the nature of the surface being particularly important, since the 
draining film can eventually rupture at a hydrophobic surface, producing bub- 
ble attachment and hence allowing separation of hydrophobic (desired) min- 
eral particles from hydrophilic (unwanted) particles such as quartz. 

Gradients in the film pressure P drive viscous flow (the inertia of the liquid 
is negligible). The equations for viscous flow and for continuity lead to a com- 
plicated differential equation relating the thickness h to radius r and time t. A 
derivation of this equation is given in Appendix 1. 

It has long been known [4,5] that the draining film may have a reverse 
curvature -the thickness may have a local maximum on the axis of symmetry. 
This can be qualitatively explained thus: the fluid in the (initially thick) outer 
regions is close to the bulk and so its drainage is opposed by only a small viscous 
drag. More rapid draining at the edge than at the centre eventually forms a 
convex “dimpled” shape (Fig. 1) . The convex shape produces a positive La- 
place pressure in the centre, and it is this pressure which drives the drainage 
of the liquid trapped in the centre. 

Drainage rates and the shape of the film depend strongly on the initial ap- 
proach of the bubble to the surface. (Similarly, solutions to the equation de- 
scribing the system depend on the initial conditions.) For this reason, partic- 
ular attention must be paid to reproducing initial conditions in any experimental 
investigation of the effect of solution and surface parameters on the behaviour 
of the film. 

We report here such a series of experiments which show the effects of surface 
hydrophobicity and solution electrolyte concentration on the time evaluation 
of the profiles of draining aqueous films between an air bubble and an optically 
flat quartz surface. 

EXPERIMENTAL 

The most common way of using optical interferometry to measure thin film 
profiles is to illuminate the film with a parallel, monochromatic light beam so 
as to produce a set of interference fringes (Newton’s rings if the film is axisym- 
metric ) whose spacing and intensity give the profile [ 6-81. The disadvantage 
of this approach is that the accuracy of intensity measurement, and hence the 
accuracy of the calculated film thickness, is limited [ 61. 

More accurate thickness measurements can be made if the incident beam is 
focussed onto a small area of the draining film and the intensity of the reflected 
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beam from this area measured as a function of time. In this approach the film 
is treated as a Fizeau interferometer [ 71. By taking measurements at different 
distances from the centre of an axisymmetric draining film, the evolution of 
the film profile with time can be derived. 

In our experimental realisation of this second approach [7,9-l 11, an inten- 
sity-stabilized, polarised 2 mW He/Ne laser beam is used as the light source. 
The optical arrangement is such that normal incidence illumination can be 
used (Fig. 1) without problems of reflection from windows and other optical 
components. The diameter of the focussed laser beam in the plane of the drain- 
ing film is ca 30 ,um, calculated from the focal length of the lens (26 mm) and 
the Rayleigh criterion [ 121. 

A draining film is formed between an air bubble and a quartz surface in the 
following way. An air bubble is first bulged from a hole (2 mm diameter) in a 
Kel-F chamber (Fig. 1) to an apical height of 0.57 mm; hence, a radius of 1.16 
mm. In addition to the axial optical system, the bubble is also viewed side-on 
through a camera by transmitted light, and its apex is placed close to the quartz 
surface (ca 40 pm). After optical alignment to ensure that the quartz/water 
interface is at the focal plane of the objective lens and normal to the optical 
axis of the laser beam, and that the reflected beams from the quartz/water and 
water/air interfaces are coincident with the optical axis, an experiment is be- 
gun by activating a spring-loaded lever to rapidly compress a section of the air 
line supplying the bubble (Fig. 1). Reproducibility of this step was found to be 
crucial for reproducibility of the subsequent drainage behaviour, as expected 
from the form of the differential equation describing the drainage (Ref. [ 131 
and Appendix 1). Bubble expansion flattens the bubble at the apex to produce 
a draining film with a radius of 0.32 + 0.005 mm (Fig. 1). 

The quartz surfaces were optically polished (to 0.1 wavelengths) with the 
rear surface at 30’ to the front so that light reflected from the rear surface was 
deflected from the light measurement system. For experiments with hydro- 
philic quartz surfaces, the quartz was prepared by placing it in hot sodium 
hydroxide solution (3 kmol mP3 for 10 s) after which it was thoroughly rinsed 
in doubly distilled water [ 141. The treated surfaces were judged hydrophilic 
according to the “steam test” [ 141 and aqueous films formed between air bub- 
bles and these surfaces were stable for up to 3 h, the maximum time of 
observation. 

For experiments with hydrophobic quartz surfaces, a hydrophilic quartz plate 
was heated for 6-12 h at 160’ C, giving a surface with a contact angle for water 
of lo-20”, depending on the time of treatment. These surfaces were used im- 
mediately, the receding contact angle being measured from photographs taken 
after draining film collapse allowed bubble attachment. 

RESULTS AND DISCUSSION 

An example of the time dependence of reflected intensity from the draining 
film centre is given in Fig. 2. Before the bubble expansion there are large, 
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Fig. 2. Reflected beam intensity as a function of time at the centre of a pure water draining film. 
The difference between successive maxima and minima corresponds to a change in film thickness 
of 118 nm [ 111. The maximum in fringe amplitude at t = 0.5 s corresponds to the transition from 
a convex to a concave (dimpled) air/water interface. Vertical arrow, t=O; horizontal arrow, max- 
imum possible intensity (planar film); total scan time, 10 s. 

random fluctuations in the reflected beam intensity caused by thermal move- 
ments of the bubble surface. During and following the expansion, a series of 
interference maxima and minima appear as the aqueous film thins. By inter- 
polating these fringes, the intensity at any time can be used to calculate film 
thickness with a precision of + 0.3 to & 5 nm, depending on whether the inten- 
sity is near the average value or near a maximum or minimum in intensity 
[7,111.  

The variation in interference fringe intensity is due to film thickness vari- 
ations (because of the dimple) across the diameter of the focussed laser beam. 
The intensity is maximal when the film is flat. Thus the early rapid increase 
in fringe intensity can be used to obtain information about the thickness and 
curvature of the film during the establishment of the thin film and the reversal 
of curvature. We concentrate here, however, on the evolution of the film profile 
once the dimple is established. 

Drainage at a hydrophilic quartz surface 

We report here results of experiments using two different compositions of 
the aqueous phase: pure water in equilibrium with atmospheric gases (conduc- 
tivity 1.2*10-4 S m-l; surfactant free by the bubble test [ 141) and a solution 
of 0.23 mol m-’ sodium chloride. Interference fringes such as those shown in 
Fig. 2 were used to calculate the thickness of the draining film as a function of 
time. Results for thinning at the centre and at the radius where the film is 
thinnest (the barrier ring) are shown in Fig. 3. 
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Fig. 3. Aqueous film thickness as a function of time at the centre (upper two curves) and boundary 
ring (lower two curves) of a dimpled film between an air bubble and a hydrophilic quartz surface. 
(0) Doubly distilled water; conductivity, 1.2. 10m4 S m-l; (0) sodium chloride solution, 0.23 
mol m-‘. 

These data show that the rate of thinning becomes small and slowly varying 
much earlier in the barrier ring than at the centre, in agreement with the re- 
sults of other workers 16,151. The thickness at the centre, on the other hand, 
remains large rather longer in a film of salt solution. This is consistent with 
the relatively slow viscous efflux of salt solution through the thin barrier ring. 

Data for thinning at various distances from the centre are combined in Fig. 
4 to yield the profiles of the pure water film at different times. Similar data 
(not shown) were obtained for solutions of 0.51 and 0.23 mol m-’ sodium 
chloride solution. The points at each radius come from different experiments, 
during which the position of the focussed beam was constant. For this reason, 
small variations in the starting conditions between experiments can give rise 
to the systematic irregularities in h(r) (Fig. 4). Each of the individual thinning 
curves (such as those in Fig. 3)) though, provide h(t) with accuracy limited 
only by the interferometry and so yield a more accurate measure of thinning 
rate as a function of time and/or film thickness at different radii r. 

Drainage at hydrophobic surfaces 

Quartz plates with contact angles of 10 + 5’ and 20 + 3’ were used for the 
experiments reported here. Figure 5 shows the rate of thinning as a function 
of time for pure water films on both hydrophilic and hydrophobic quartz sur- 
faces. Rates of thinning, rather than absolute thickness, are reported for a 
technical reason: on hydrophilic surfaces a stable film is formed whose thick- 
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Fig. 4. Film thickness as function of radial distance from the centre (condition as in Fig. 3; con- 
ductivity, 1.2*10P4 S m-l). Time from formationof film: (0) 5; (0) 10; (A) 15; (0) 20; (w) 
0; (* ) 50; ( A ) 100; ( 0 ) 200 s. Fitted curves are empirical, of the form h = h,+ a$+ a/. Data 
for a similar set of curves for 0.23 mol m-s sodium chloride solution are given in Appendix 2. 

ness can be predicted from double-layer theory [ 161. The fringe order is thus 
known precisely at this thickness, and the order of the interference fringes 
during drainage can be determined by counting back. Films on hydrophobic 
surfaces, in contrast, always rupture, making it impossible to ascertain the 
fringe order in the above manner. 

Near the centre of the draining film, where the film is relatively thick and 
the short range surface forces should bear little effect, there is no appreciable 
difference between the thinning rates on hydrophilic and hydrophobic surfaces 
(Fig. 5 a-c). At the boundary (i.e., at the thinnest part of the film) thinning 
is faster in the film on the hydrophobic surface than that on the hydrophilic 
surface. 

The more rapid thinning of very thin films on the hydrophobic surface can 
be attributed to either a reduction in electrical double-layer repulsion between 
the two surfaces [ 141, or to a relatively long range hydrophobic attraction 
between the two interfaces [ 241. 

The range at which this difference in surface interaction is first noticeable 
is difficult to determine directly because of the uncertainty (described above) 
in the absolute film thickness on hydrophobic surfaces. From Fig. 5, however, 
we note that the thinning rate at which the behaviour of films on the two 
different surfaces first diverges corresponds to an appreciable film thickness 
on a hydrophilic surface. If one assumes that the films on the two surfaces 
behave identically at large separation (as may be the case in view of the similar 
thinning rates) then the effect of surface forces on film thinning are also ap- 
preciable over significant distances. Certainly, hydrophobic forces appear to 
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Fig, 5. Drainage rate as a function of time for aqueous films (conductivity, 1.2-10m4 S m-l) at 
hydrophobic and hydrophilic quartz surfaces: (0 ) hydrophilic; (0 ) hydrophobic, contact angle 
101-5”; (*) hydrophobic, contact angle 2Ok3”. (a) Drainage of film centre; (b) k0.05;  (c)  
r=O. lO;  (d) r=0.25; (e) 
r~O.30 mm from the film 
centre. 

extend over distances of 90 nm [ 241; however, their precise role in our present 
system necessitates further work. 
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APPENDIX 1 

The thinning of a thin aqueous film between a solid plane and an air bubble 

Radial symmetry about the z axis is assumed so the film thickness h = h (r,t) 
is a function only of radial position r and time t. If the film is very thin with 
respect to characteristic radii, derivatives of h with respect to rare much smaller 
than unity, velocities are purely radial and the pressure P in the film is a func- 
tion of radius only. 

For slow thinning the inertia of the fluid is neglected. Setting to zero the 
forces acting on a small volume element relates P to the shear stress A: 

a/ i  ap --  -  
aZ-  dr 

For laminar flow the viscosity q of the film relates the velocity gradient to the 
shear stress: 

av A -= - az v 
The film layer in contact with the solid is stationary and, in the absence of 
surfactants, the layer in contact with the air has a zero shear. This gives a 
parabolic velocity profile and the average (radial) velocity Q (r) is given by: 

-h2 ap 
B(r)= -- 

3~ ar 

The equation of continuity relates the rate of thinning to the average velocity: 

ah=_$!!_&ht!? 
at dr r dr 

whence 

ah h2 
-=- 
at 3~ 

hd2P+CJ!!!!?+h!? 
ar2 dr dr r ar > 

One component of the pressure is the Young-Laplace pressure yC where y is 
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the tension of the air-film interface and C is the curvature of that interface. 

With the approximation that 2 << 1, the curvature of this surface of revolu- 

tion is: 

C_d’h+l!?! - 
dr2 r dr 

The interaction of the two interfaces produces a force per unit area, F: 

P= -YC-F+Pbu&le 

Substitution into the expression given above for the local thinning rate gives 
an equation relating h, r and t: 

This equation, which has been presented without the physical derivation by 
Buevich and Lipkina [ 13,171, cannot be solved analytically, and numerical 
solutions of the general case are exceedingly awkward because of the high order 
derivatives. Specific cases have been solved [ 13,18-201 but comparison with 
experiment is unhelpful because of the sensitive dependence on initial condi- 
tions. Approximate methods [l&21-23] have also been used in attempts to 
model film thinning. To facilitate comparison with such analyses, we have 
fitted empirical curves (polynomials of the form ao+a2r2+a,r6) to the data. 
In Appendix 2 we tabulate the important parameters of such fits for different 
times. ho is the axial thickness, - a2 is the coefficient of the quadratic term and 
yields the curvature and thus the Laplace pressure at the origin, hb is the 
thickness. 

APPENDIX 2 

Empirical polynomial fits to the profile h (r ) were made for a range of times 
t for the film of 0.23 mol rnw3 sodium chloride solution. The linear term of such 
a polynomial must be zero so the leading coefficients are the constant ho (the 
thickness at the centre) and the quadratic coefficient a,. 

These are given in Table 1. Also in Table 1 is the value of the minimum 
thickness hb of the boundary ring, as obtained from the best tit. All distances 
are given in pm. Three figures are given to minimise round-off errors, but it is 
not implied that all are significant. 
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TABLE 1 

Empirical polynomial fits to the profile h(r) for a range of times 

Time (s) h0 (w-i) a,*105 (am-‘) hb (fim-‘) 

2 3.70 -3.86 
3 3.28 -3.57 
4 3.01 - 3.33 
5 2.81 -3.26 

10 2.18 - 2.80 
15 1.86 -2.42 
20 1.63 -2.15 

30 1.37 - 1.82 
50 1.10 - 1.45 

100 0.78 - 1.13 
200 0.47 - 0.65 

1.069 

0.849 
0.734 
0.583 
0.267 

0.210 
0.162 

0.126 
0.108 

0.027 
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