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INTRODUCTION

The acoustic behaviour of wind instruments is largely 

determined by their acoustic impedance spectrum 

measured at the embouchure or 'input' to the instrument. 

The acoustic impedance Z is the ratio of acoustic pressure 

p U and its extrema identify 

the frequencies of resonances and antiresonances due to 

standing waves in the bore. (For example see [1].)

Backus [2] reports measurements of the acoustic 

Advances in measurement technology (reviewed by 

Dalmont [3] and Dickens et al. [4]) have allowed 

improvements since then. Further, there are advantages 

in having a rather complete set of data that includes all 

obvious interest to players and teachers. It is then helpful 

spectrum. This paper introduces such a database, available 

via the internet.

A further important application of such a complete data 

was used to develop a computer model for the instrument. 

for the instrument and uses these to advise musicians on 

and timbral and pitch variations [7,8]. It is our intention 

to use the clarinet database reported here in a similar way. 

Finally, a number of personal communications concerning 

use to researchers studying performance technique either 

from the acoustical or the musical perspective.

In this paper, we also report measurements of impedance 

that have dimensions comparable with those of a clarinet 

of a closed-open and an open-open pipe in acoustics 

and general physics texts (e.g. [9]) and comparison of 
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This paper introduces a web-based database that contains details of the acoustics of the clarinet for all standard fingerings and some 

others. It includes the acoustic impedance spectra measured at the mouthpiece and sound spectra recorded for each note. The data may be 

used to explain a number of the playing characteristics of the instrument, both in general and in detail. In this paper we give an overview, 

and highlight some interesting phenomena. The clarinet has, very approximately, a cylindrical bore, which is acoustically closed at 

one end and open at the other. Because it is so often used as an example of closed-open pipe, we show several phenomena that can be 

clarified by comparing measurements on a clarinet with those on a cylinder of equivalent acoustic length. We also compare these data 

with analogous data for the flute, an example of an open-open pipe.
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Figure 1. Sound pressure spectra for the note D5 played 

mezzoforte on a flute and on a clarinet, measured near the first 

open tone hole in each case. Identification of which instrument 

produced each spectrum is presented at the end of this paper. The 

0 dB level was arbitrary and the same for both instruments.
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measured acoustic properties can clarify a range of subtle 

acoustical effects.

For example, the two sound spectra in Fig. 1 are for 

similar conditions. But which is which? Imagine that, as 

an acoustician, you are trying to explain this to a musician: 

even harmonics? 

The clarinet has been used as a model instrument for 

studying the bore-reed interaction (e.g. [10-15]) and so 

one might in principle appeal to such studies to begin to 

answer the question posed by Fig. 1. However, for reasons 

that we shall see, the spectral envelope of the clarinet 

varies over the range of the instrument, and even for 

theory of sound production, or for simple experiments, it 

is reasonable to connect a clarinet mouthpiece to a simple 

cylinder with well known acoustical properties. Such a 

The database described here has been assembled to 

provide such details not only as a resource for the musician, 

but also for the next generation of acoustical models of 

reed-bore interaction. Further, and for the purposes of this 

much less detailed article, we select a number of examples 

so as to answer the general question posed by Fig. 1, and 

one that might be confronted in the physics or acoustics 

classroom: When and how can simple arguments about 

the geometry of these instruments be used to explain their 

spectra and timbre? 

MATERIALS AND METHODS

The clarinet used for most measurements was a Yamaha 

was also measured for some notes, to allow comparisons.

The acoustic impedance was measured using a 

spectrometer described previously [4]. It uses three 

microphones, three non-resonant calibration loads and a 

signal that comprises a sum of sine waves with amplitudes 

chosen to distribute the errors due to noise and frequency-

dependent instrumental sensitivity approximately equally 

over the frequency range. The three microphones in the 

impedance heads were located 10, 50 and 250 mm from the 

reference plane (Fig. 2).  With the microphones positioned 

thus, a singularity occurs at around 4.3 kHz under typical 

measurement conditions (see [4] for details).  At this 

frequency the smallest microphone separation is equal to 

half a wavelength, and the impedance cannot be determined.  

Thus the impedance spectra are measured between 120 Hz 

and 4 kHz for the clarinet and between 200 Hz and 4 kHz 

frequency of all of the notes on each instrument and include 

their cut off frequencies.

The impedance head used for clarinet measurements is 

shown in Fig. 2. Two geometrical areas are of interest in 

measurements of the impedance at the clarinet mouthpiece: 

one is a typical opening between reed and mouthpiece in the 

mouth and the other is the effective area of the reed upon 

which pressure variations produce substantial vibrations. 

To approximate these, a pipe with internal diameter 7.8 mm 

was used. The same impedance head was used for the few 

closed keys and a C foot.

both smaller than their bores, so measurements were also 

made on cylinders with an internal diameter comparable to 

the bore. A separate impedance head, with internal diameter 

15 mm, was used to measure the impedance spectra of 

sections of stiff plastic pipe with the same internal diameter. 

The lengths of such pipe sections were chosen to equal the 

resonances, for cases discussed later. The impedance spectra 

plotted here and in the clarinet database include a compliance 

corresponding to that of the reed, using the value given by 

Nederveen [18]. Similarly, an inertance corresponding to 

the radiation impedance at the embouchure has been added 

database were measured in a recording studio using a condenser 

microphones

7.8 mm diameter
impedance head 

clarinet mouthpieces

(a) (b)

reed

60 microlitre
volume

Figure 2. Schematic diagrams of the clarinet mouthpiece and 

impedance head (not to scale). An arrow in Fig (a) indicates 

a small volume of about 60 microlitres left between the 

undeformed reed and the mouthpiece. For measurements, the 

reed is removed and this volume is enclosed and sealed with a 

gasket against the impedance head when they are attached – see 

fig (b). The gasket (shaded in the diagram at right) and the ends 

of the mouthpiece and impedance head are enclosed in a block 

of Teflon (not shown) for measurements. The dotted lines show 

the shape of the bore. During playing, the player’s lower lip is 

pressed against the reed, while the upper teeth and lips touch the 

slightly curved upper surface of the mouthpiece (top left in the 

diagram).
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microphone positioned one metre in front of the player, 

typical practice for solo recording in a studio but allows for 

this paper were recorded in a room treated to reduce 

reverberation, using a microphone positioned 2 cm from the 

(for the lowest notes on each instrument). At this distance, 

room effects and interference effects are negligible. They 

clarinet described above, under very similar conditions for 

the two instruments.

RESULTS AND DISCUSSION

Simple geometries and the interpretation of impedance 

spectra.

Before discussing the impedance spectra of the clarinet, with 

its complicated geometry and consequent complications, it 

is instructive to look at the impedance spectrum of a simple 

open pipe. That shown in Fig. 3 is for an open cylinder with 

length L = 650 mm and internal diameter a = 15 mm.  These 

dimensions are comparable with those of a clarinet and a 

of their bores are 660 mm and 615 mm respectively). The 

impedance spectrum of this cylindrical pipe should thus 

be helpful in understanding the behaviour of both clarinets 

measurement head. Should it be considered therefore an 

open-open or a closed-open pipe? The answer depends on 

the conditions that are imposed at the proximal end by the 

valve or jet mechanism used for excitation.

How would this pipe respond if excited by a clarinet 

reed? Discussions of the interaction of a reed with a pipe are 

given by a number of researchers, who agree that the system 

will resonate at frequencies close to impedance maxima of 

the pipe. (See [1,10-15,17,18].) Qualitatively, one may also 

say that the pipe is largely closed off by the reed, so the 

U would be small. The reed would be excited 

by large variations in the acoustic pressure p. Consequently, 

the frequencies of the expected playing regimes fall close 

to those of the maxima in Z ( p/U). Hence the observation 

that a clarinet behaves acoustically as a closed-open pipe, 

with one end almost sealed by the mouthpiece and reed.

The extrema in Fig. 3 fall at frequencies 130, 261, 392, 

524, 655, 787, 919, 1052, 1183, 1315, 1449, 1579, 1711, 

1844, 1975, 2107, 2238, 2371, 2502, 2636, 2766, 2900, 

3031, 3165, 3296, 3429, 3559, 3692, 3824 and 3957 ± 1 

Hz. If n is the number of the extremum, then the mean and 

standard deviation of fn/n are 131.5 and 0.5 Hz.

The maxima in Fig. 3 thus fall almost exactly at 

frequencies corresponding to wavelengths of 4L/n, where 

n is an odd integer. (Small differences are expected due 

to the radiation impedance at the open end, which has a 

small frequency dependence [1].) A clarinet with a purely 

cylindrical bore of these dimensions and with all tone holes 
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Figure 3. The magnitude of the measured acoustic impedance 

spectrum of a cylindrical pipe, length 650 mm and diameter 

15 mm. The frequencies of several impedance maxima are 

notated on a musical stave above the spectrum, using the semi-

log vertical axis widely used by musicians. The first several 

notes shown are approximately what would be played by a 

hypothetical clarinet with this bore, closed at the embouchure by 

a reed.  Similarly, below several impedance minima, are shown 

the notes that would be played by a hypothetical (end-blown) 

flute with this bore, open at the embouchure and negligibly 

baffled by the player's face. The numbers above or below these 

extrema refer to the harmonics of the lowest note that would be 

played of the hypothetical cylindrical clarinet. Diagrams indicate 

the standing waves of pressure associated with some extrema. 
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closed might then be expected to play approximately the 

pitches indicated in Fig. 3. These correspond to the note C3 

(one octave below middle C, with nominal frequency f1 = 

131 Hz) and its odd harmonics with frequencies in the ratio 

1:3:5 etc, i.e. frequencies nf1 Hz, where n is an odd integer. 

Sketches representing standing waves are included on the 

ends so, with all tone holes closed, it is acoustically an 

open-open pipe. A model of the excitation of a pipe by an 

air jet is given by Fletcher and Rossing [1]. Here however 

we can make the following simple argument: Because the 

the embouchure, a minimum in p and a maximum in U.
Consequently, a simple cylindrical pipe played as an end-

of the impedance minima in the curve in Fig. 3. This 

idealised open-open pipe has resonances with frequencies 

in the ratio 1:2:3 etc, whose modes are shown in the 

sketches in Fig. 3. For the pipe shown, this is the note C4 

(middle C, nominally 262 Hz) and its harmonics are both 

odd and even. Animations that represent standing waves 

in closed and open pipes in the time domain are shown on

In practice, the lowest notes on a clarinet are either D3, 

for a Bb instrument, or C#3, for an A clarinet. (The clarinet 

is a transposing instrument, meaning that although the 

aforementioned notes are sounded, they are written as E3 

same on the two instruments, the A clarinet being just 6% 

resonance of the 650 mm cylindrical tube may be explained 

a bell, both of which reduce the effective length. That the 

the 650 mm cylinder is explained by the constriction at one 

of its open ends (the embouchure) that lowers the frequency 

of modes that have a 

Impedance spectra of a clarinet.

The upper part of Fig. 4 shows the impedance spectrum 

f1 = 148 Hz, 

which is close to the sounding pitch of the lowest note on 

the clarinet (D3 has a nominal frequency of 147 Hz).  The 

upper part of Fig. 5 shows sound spectra recorded close to 

the bell of the clarinet for this note.

Fig. 3 shows that, for the cylindrical pipe, the frequencies 

of that of the lowest. In contrast, Fig. 4 shows that, while 

the second maximum occurs at a frequency only a little less 

than 3 f1, the frequencies of the next several subsequent 

peaks occur at frequencies successively less than odd 

multiples of this frequency, as is indicated by arrows in the 

435, 699, 938, 1159, 1380, 1612, 1837, 2088, 2318, 2576, 

2795, 3039, 3269, 3513 and 3820 Hz. If n is the number 

of the maximum, then the mean and standard deviation 

of fn/(2n–1) are 127.7 and 9.0 Hz, so they are rather more 
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Figure 4.  The magnitude of the measured impedance curves for 

the lowest notes on the clarinet (upper) and flute (lower). The 

lowest note on the clarinet is D3 (called E3 on the clarinet, a 

transposing instrument) and can be produced by closing all tone 

holes, as indicated on the schematic located above the spectrum. 

There are two other fingerings (not shown) that will also close 

all tone holes – alternatives are required because the clarinet 

overblows at a musical twelfth, and twelve tone holes exceeds 

the number of fingers available to standard players.  The lowest 

note on the flute with a C foot is C4, which is produced by 

closing all tone holes (see schematic) and is nearly an octave 

above the lowest note on the clarinet. The vertical arrows 

indicate the harmonics of the note that would be played. 
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closely spaced, on average, than f1. The primary cause of 

this is the bell, which gives the instrument an effective 

length that increases with frequency: the effective point 

distant for higher frequencies. 

Sometimes, a maximum will occur with a frequency 

close to an even harmonic of the lowest maximum, e.g., 

f1. The effect of a small 

difference in frequency between an impedance peak and 

a harmonic is shown in the sound spectrum in Fig. 5: the 

regularly, however, while the eighth harmonic is stronger 

than its neighbours.

Further clear differences between the clarinet impedance 

spectrum and that shown in Fig. 3 for a cylinder are also 

due to the clarinet’s bell. The amplitude of the maxima and 

minima decrease with increasing frequency at a rate greater 

than that for the simple cylinder. One function of the bell 

is to radiate high frequencies (i.e. wavelengths that are not 

long compared with its dimensions). Increased radiation 

standing waves or resonances. Second, the geometrical 

mean of the clarinet impedance increases overall with 

frequency. This is due to the shape of the mouthpiece: its 

cross-sectional area, which increases with distance from 

the embouchure and measuring point, can be considered 

frequencies. Impedance spectra may be calculated with 

a simple waveguide model, and the respective effects of 

mouthpiece and bell may be illustrated [20].

Figs. 4 and 5 also show, for comparison, the impedance 

minimum in Z falls at 259 

Hz, close to the frequency at which it plays. As discussed 

fall at the frequencies 259, 525, 790, 1059, 1326, 1590, 

1856, 2124, 2390, 2671, 2938, 3217, 3500 and 3771 Hz. 

These are approximately integral multiples (both even and 

odd) of this frequency: if n is the number of the minimum, 

then the mean and standard deviation of fn/n are 265.4 and 

notes are in harmonic ratios.

Comparison with the simple cylinder shows several 

differences. The decrease in the magnitude of the extrema 

with increasing frequency in this case has a different 

explanation. The bore is in series with the air in the 
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Figure 6. The magnitude of the measured impedance spectra of 

a cylinder (top), a B flat clarinet fingered to play the note C4 

or ‘middle C’ and a flute fingered to play the note C5 (bottom), 

each with the same effective length.  (C4 is called D4 on the B 

flat clarinet, a transposing instrument.)
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Figure 5. Sound pressure spectra for the notes played mezzoforte
with all tone holes closed on a B flat clarinet and on a flute. See 

Fig. 4 for more details. Here, in contrast with Fig 1, the first two 

even harmonics of the clarinet sound spectrum are weaker than 

their neighbours. The 0 dB level was arbitrary and the same for 

both instruments. 
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downpipe, which increases the impedance over the range 

a Helmholtz resonator, of which the mass is the air in the 

small downpipe or chimney into which the player blows, 

and the ‘spring’ is the volume of air between the chimney 

and the cork in one end. The combined effect attenuates the 

resonances over the high end of the frequency range shown. 

More detail on these and other effects is given elsewhere 

[5,21].

clarinet are somewhat similar to those of the cylindrical pipe 

for their lowest note (i.e. with all holes closed). Further, the 

are relatively strong, because they excite corresponding 

resonances in the bore, whereas the low frequency even 

harmonics do not coincide with resonances.In contrast, the 

between odd and even harmonics. For all notes other than 

the lowest, however, there will be open tone holes and/

or register holes. These are responsible for some of the 

complications suggested by Fig. 1.

cylindrical pipe, 15 mm in diameter and 325 mm in length. 

Simplistically, we should expect it to play these notes 

respectively if excited by a reed (making it an open-closed 

pipe) or an air jet (making it open-open). 

Fig. 6 also shows the impedance spectrum of a clarinet 

most of the keys on the lower half of the instrument are 

open, so we could simplistically say that its effective 

length is the same as that of the cylindrical pipe. At low 

three maxima correspond closely to those of the pipe and 

the instrument will play notes near these frequencies. 

The minima are displaced in frequency, because of the 

mouthpiece constriction mentioned earlier.

Above about 1.5 kHz, however, the behaviour is 

qualitatively different. This is due to the cut-off frequency of 

the force required to accelerate the mass of air in and near 

from the hole [22, 23]. The array of open tone holes and 

the short sections of bore connecting them thus behave like 

line. Benade [23] derives a theoretical expression for the cut 

off frequency of a continuous waveguide approximating this 

situation. Wolfe and Smith [21] give an explicit derivation 

clarinet is about 1.5 kHz. (Because the holes on a clarinet 

are neither uniformly sized nor uniformly spaced, the cut off 

holes, the calculated value is 1.5 kHz.)

Below 1.5 kHz, the average spacing between impedance 

maxima is about 500 Hz, as expected for a pipe with effective 

length 330 mm, i.e. a length roughly equal to the length 

however, the average spacing is about 280 Hz, corresponding 

to an effective length equal to that of the whole bore of the 

clarinet. At frequencies above the cut off, the sound waves 

'do not notice' the open holes, the air masses in which have 

half of the instrument are open. At low frequencies, it also 

behaves somewhat like the simple cylinder that has the same 

have harmonic ratios, and each of these minima may be 

played as a note. Above about 3 kHz, very few features are 

seen, because of the Helmholtz resonator mentioned above. 

the clarinet, because the holes are considerably larger. The 

of the tone holes, reducing the average distance between 

open tone holes for this example. However, the effect of 

above that of the Helmholtz resonance, typically above 7 

kHz [21]. In this high frequency range, the effective length 

spite of the open tone holes.

Fig. 6 shows that, once a number of tone holes are 

open, treating the clarinet as a closed-open cylinder and the 

question posed in Fig. 1: at frequencies above the cut off, the 

resonances do not match the frequencies of the harmonics. 

magnitude of the extrema in the impedance. Thus, in the 

high frequency range, the spectral envelope depends on 

features of the reed and air jet operation and less strongly 

on features of the bore. 

Fig. 7 shows the acoustic impedance spectra for the two 

notes whose sound spectra are shown in Fig. 1, measured on 

the same instruments. These impedance spectra also show 

another interesting feature, because both use register keys. 

A register key is usually a small key, located well away from 

the open end of the bore, whose purpose is to weaken and/or 

to detune the lowest resonance(s), so that the instrument will 

more easily play a note whose fundamental coincides with 
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one of the higher resonances. Arrows on the insets of Fig. 

7 indicate the register keys, whose effects may be seen by 

comparing the low frequency extrema in Fig. 7 with those 

in Figs. 3 and 6. 

It is tempting to extend this discussion to consider further 

subtleties of the acoustics of the clarinet. However, these 

are mainly of interest to clarinet players and researchers. 

So we have added such discussions to each of the pages 

in the clarinet acoustics database reported here. (Similarly, 

We return, however, to the question posed by Fig. 1, 

to which the answer is printed below. Can one, in general, 

spectrum of a sustained note? Sometimes this is possible: 

in the Western classical and romantic tradition, clarinets are 

considerable vibrato. In such cases, this difference may be 

distinguished by the width of the spectral peaks produced 

by the harmonics. Further, depending on the style of playing 

and the level of background noise, it may be possible to see, 

in the spectrum, the broad band noise associated with the jet 

In the notes of the lowest register of the clarinet 

(including, of course, the lowest note – Figs. 4 and 5), at 

least a few harmonics fall below the cut off frequency. 

Further, the presence of the bell produces only weak 

frequency dependence of the effective length. Consequently, 

spectrum exhibits even harmonics that are weaker than 

their neighbours. However, this does not extend beyond the 

second resonance.

Further, one cannot, in general, rely on the spectral 

envelope, even at low frequencies. In Fig. 7, vertical arrows 

indicate the harmonics of the played notes. The fundamental 

of the clarinet note is largely determined by the frequency 

do not systematically coincide with impedance peaks and so 

Their relative amplitudes depend, in part, on the nonlinearity 

of the reed vibration and thus to some extent on how loudly 

the instrument is played. At high frequencies, the bell is 

At higher frequencies, one might argue that there is little 

need for an impedance matcher, as the impedance of the 

again, the sound spectrum depends in part on nonlinearities 

in the behaviour of the jet. 

Many further examples are given in the database, which 

is at www.phys.unsw.edu.au/music/clarinet
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ANSWER TO THE INTRODUCTORY 
QUESTION

The clarinet is the lower spectrum
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Figure 7. The magnitude of the measured impedance curves for 

the clarinet (upper) and flute (lower) for the fingerings used to play 

the note D5, whose spectra are shown in Fig. 1. The fingerings 

used are indicated by the schematics above each spectrum. The 

vertical arrows on the spectra indicate the harmonics of the note 

played. The arrows on the instrument schematics show holes 

opened to act as register holes, whose function is to weaken 

the lowest resonance(s), as is evident in the impedance spectra.

(D5 is called E5 on the clarinet, a transposing instrument.)
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