PHYS1221-1231 tutorials

Tutorial 10 Answers

Q1 $\Delta E.\Delta t = h/2\pi$. $E = -\left(\frac{me^4}{8\epsilon_0^2h^2}\right)\frac{1}{n^2}$

 $\Delta E/E = \frac{h}{2\pi\Delta t.E} = 20$ parts per billion. 8 significant figures only

- Q2 $\Delta E.\Delta t = h/2\pi$. So $\Delta E/E = \frac{h}{2\pi\Delta t.E} = 2$ parts in 10¹⁰.
- Q3 The photons must have $\lambda \sim 10$ pm, so they have $E = hc/\lambda = 120$ keV and $p = h/\lambda = 7 \ 110^{-23}$ kgm.s⁻¹

The binding energy of the hydrogen atom is only 13 eV so interactions with these photons will ionise it.

The momentum of Sommerfeld electrons is $\frac{m}{2\epsilon_0} \frac{e^2}{nh} = 2 \ 10^{-25} \text{ kgm.s}^{-1} \ll p_{photon}$ so the collisions would give the electrons large recoil velocities.

Q4 $\Delta f.\Delta t \ge 1/2\pi$. $\Delta f \ge 0.16$ Hz. For the second case, 1.6 Hz.

Answers for musicians: At this pitch, the uncertainty is half a semitone. (In practice, this is only 5 vibrations of the string, and it takes at least a few cycles for the bow to set up periodic Helmholtz motion, so it won't have a clear pitch at all. Musicians know this: in very fast runs in the bass you can get away with a lot: the ear will interpolate.

Serves the composer right for writing low demisemiquavers for the basses – but then Schubert never finished that symphony: Detective we're re-opening the case – I want you to interview all the bassists who were in Vienna on or around the night of 18 November 1828.)

Q5 For electrons, Id θ would be proportional to the number of electrons detected between the angles θ and θ +d θ . The integral of I from $\theta = -\pi/2$ to $\pi/2$ would be set equal to N, and this equation would define I₀, the maximum in the electron distribution function.

If you covered one slit, only half as many electrons would pass through. Further, there would be no interference, and only diffraction, so

$$I_{\text{single}}(\theta) = \frac{I_0}{2} \cos^2\left(\frac{\sin\alpha}{\alpha}\right)^2$$

Q6
$$n_e = \frac{2}{3} \frac{8\sqrt{2} \pi m_e^{3/2}}{h^3} E_F^{3/2} = 8.5 \ 10^{28} \ electrons/m^3.$$

atom density = density/(atomic mass) = $\frac{(8920 \text{ kg.m}^{-3})}{(63.5 \text{ kg/kmol} / 6 \ 10^{26} \text{ atoms/kmol})} = 8.4 \ 10^{28}$ atoms/m³. So one conduction electron per atom.

$$v = \sqrt{\frac{2 K}{m}} \cong \sqrt{\frac{2 E}{m}} = \sqrt{\frac{2 * 7.05 eV}{9.11 \, 10^{-31} kg}} = 1.6 \, 10^3 \, \text{km/s} = 0.5\% \text{ of c.}$$

For a conductor, i = nAvq so v = i/nAq = 0.95 mm/s. If all moved at 0.5% of c, $i = nAvq \rightarrow 17$ GA