PHYS1221-1231 tutorials

Tutorial 10 Answers

$\mathrm{Q} 1 \quad \Delta \mathrm{E} . \Delta \mathrm{t}=\mathrm{h} / 2 \pi . \mathrm{E}=-\left(\frac{\mathrm{me}^{4}}{8 \varepsilon_{\mathrm{o}} \mathrm{h}^{2}}\right) \frac{1}{\mathrm{n}^{2}}$
$\Delta \mathrm{E} / \mathrm{E}=\frac{\mathrm{h}}{2 \pi \Delta \mathrm{t} . \mathrm{E}}=20$ parts per billion. 8 significant figures only
Q2 $\Delta \mathrm{E} \cdot \Delta \mathrm{t}=\mathrm{h} / 2 \pi$. So $\Delta \mathrm{E} / \mathrm{E}=\frac{\mathrm{h}}{2 \pi \Delta \mathrm{t} \cdot \mathrm{E}}=2$ parts in 10^{10}.
Q3 The photons must have $\lambda \sim 10 \mathrm{pm}$, so they have $\mathrm{E}=\mathrm{hc} / \lambda=120 \mathrm{keV}$ and $\mathrm{p}=\mathrm{h} / \lambda=7110^{-23}$ kgm. s^{-1}
The binding energy of the hydrogen atom is only 13 eV so interactions with these photons will ionise it.
The momentum of Sommerfeld electrons is $\frac{\mathrm{m}}{2 \varepsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{nh}}=210^{-25} \mathrm{kgm} . \mathrm{s}^{-1} \ll$ photon so the collisions would give the electrons large recoil velocities.
Q4 $\Delta \mathrm{f} . \Delta \mathrm{t} \geq 1 / 2 \pi$. $\Delta \mathrm{f} \geq 0.16 \mathrm{~Hz}$. For the second case, 1.6 Hz .
Answers for musicians: At this pitch, the uncertainty is half a semitone. (In practice, this is only 5 vibrations of the string, and it takes at least a few cycles for the bow to set up periodic Helmholtz motion, so it won't have a clear pitch at all. Musicians know this: in very fast runs in the bass you can get away with a lot: the ear will interpolate.
Serves the composer right for writing low demisemiquavers for the basses - but then Schubert never finished that symphony: Detective we're re-opening the case - I want you to interview all the bassists who were in Vienna on or around the night of 18 November 1828.)

Q5 For electrons, Id θ would be proportional to the number of electrons detected between the angles θ and $\theta+\mathrm{d} \theta$. The integral of I from $\theta=-\pi / 2$ to $\pi / 2$ would be set equal to N , and this equation would define I_{0}, the maximum in the electron distribution function.

If you covered one slit, only half as many electrons would pass through. Further, there would be no interference, and only diffraction, so

$$
\mathrm{I}_{\text {single }}(\theta)=\frac{\mathrm{I}_{0}}{2} \cos ^{2}\left(\frac{\sin \alpha}{\alpha}\right)^{2}
$$

Q6 $\mathrm{n}_{\mathrm{e}}=\frac{2}{3} \frac{8 \sqrt{2} \pi \mathrm{~m}_{\mathrm{e}}^{3 / 2}}{\mathrm{~h}^{3}} \mathrm{E}_{\mathrm{F}}^{3 / 2}=8.510^{28}$ electrons $/ \mathrm{m}^{3}$.
atom density $=$ density $/($ atomic mass $)=\frac{\left(8920 \mathrm{~kg} \cdot \mathrm{~m}^{-3}\right)}{\left(63.5 \mathrm{~kg} / \mathrm{kmol} / 610^{26} \text { atoms } / \mathrm{kmol}\right)}=8.410^{28}$
atoms $/ \mathrm{m}^{3}$. So one conduction electron per atom.
$\mathrm{v}=\sqrt{\frac{2 \mathrm{~K}}{\mathrm{~m}}} \cong \sqrt{\frac{2 \mathrm{E}}{\mathrm{m}}}=\sqrt{\frac{2 * 7.05 \mathrm{eV}}{9.1110^{-31} \mathrm{~kg}}}=1.610^{3} \mathrm{~km} / \mathrm{s}=0.5 \%$ of c .
For a conductor, $\mathrm{i}=\mathrm{nAvq}$ so $\mathrm{v}=\mathrm{i} / \mathrm{nAq}=0.95 \mathrm{~mm} / \mathrm{s}$.
If all moved at 0.5% of $\mathrm{c}, \mathrm{i}=\mathrm{nAvq} \rightarrow 17 \mathrm{GA}$

