Mechanics and forces

Aristotle: $\mathbf{v} = 0$ is "natural" state

Galileo & Newton: $\mathbf{a} = 0$ is "natural" state

Newton's Laws

First "zero (total) force \Rightarrow zero acceleration" more formally:

If $\Sigma \mathbf{F} = 0$, \exists reference frames in which $\mathbf{a} = 0$ called **Inertial frames**

In such frames:

Second $\Sigma \mathbf{F} = \frac{d}{dt} \mathbf{p}$ $\frac{d}{dt} \mathbf{p} \equiv \frac{d}{dt} \mathbf{m} \mathbf{v} \equiv \frac{dm}{dt} \mathbf{v} + m \frac{d\mathbf{v}}{dt}$ if m is constant $\Sigma \mathbf{F} = \mathbf{m} \mathbf{a}$

 $(\Sigma F_x = ma_x)$ $\Sigma F_y = ma_y$ $\Sigma F_z = ma_z)$

Third: "To every action there is always opposed an equal reaction; or the mutual actions of two bodies upon each other are always equal and directed to contrary parts"

Or

Forces always occur in pairs, \underline{F} and $-\underline{F}$, one acting on each of a pair of interacting bodies.

Why so?

Work and energy

Work defined as $dW \equiv \mathbf{F}.d\mathbf{s}$ Work energy theorem follows from (is another way of stating) the 2nd law: If m = constant

$$\mathbf{F} = \frac{d}{dt} \mathbf{p} \equiv \frac{d}{dt} \mathbf{m} \mathbf{v} \quad \mathbf{m} \frac{d}{dt} \mathbf{v}$$

$$\therefore \quad \text{work done} = \int_{i}^{f} \mathbf{F} \cdot d\mathbf{s} = \int_{i}^{f} \mathbf{m} \frac{d\mathbf{v}}{dt} \cdot d\mathbf{s}$$

$$= \mathbf{m} \int_{i}^{f} \frac{d\mathbf{s}}{dt} \cdot d\mathbf{v} = \mathbf{m} \int_{i}^{f} \mathbf{v} \cdot d\mathbf{v}$$

Total work done $= \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$

If work is done by a conservative force, define the potential energy U

Work done against conservative force $= \Delta U$

:. If only conservative forces act $U_i + \frac{1}{2} m v_i^2 = U_f + \frac{1}{2} m v_f^2$

Important forces:

$$\mathbf{F}_{\text{grav}} = -\mathbf{G} \, \frac{\mathbf{Mm}}{\mathbf{r}^2} \, \hat{\mathbf{r}}$$

On surface of the earth:

$$\mathbf{F}_{grav} = -G \, \frac{M_{earth}m}{r_{earth}^2} \, \hat{\mathbf{up}}$$

$$= m\left(\frac{GM_{earth}}{r_{earth}^2}\right) down \cong mg down$$

where g
$$\cong \left(\frac{\text{GM}_{\text{earth}}}{\text{r}_{\text{earth}}^2}\right) = \dots = 9.8 \text{ ms}^{-2}$$

van der Waals force (electrodynamic force)

$$p_1 \downarrow \uparrow p_2$$

 $F_{vdw} \propto \frac{1}{r^6}$ a

always attractive

Phases of matter

$KE = \frac{1}{2}mv_{x}^{2} +$	$\frac{1}{2}$ mvy ² + $\frac{1}{2}$ mvz ² =	$\frac{3}{2}$ kT	
High T	kT >> PE	\rightarrow	gas
Intermediate T	$kT \sim PE $	\rightarrow	liquid
Low T	$kT \ll PE $	\rightarrow	solid
Very High T	kT > work function	\rightarrow	plasma
kT	> nuclear energies \rightarrow	exot	ic matter

Hooke's Law.

$$\begin{array}{c} & \text{No applied force} \\ & (x = 0) \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & & \downarrow \\ & & & & \\ & & &$$

 \mathbf{F}_{spring} in opposite direction to x.

Experimentally, $|\mathbf{F}_s| \propto |x|$ over small range of x F = - kx Hooke's Law.

Properties of condensed phases

Inter-atomic & intermolecular forces and energies

 \rightarrow Linear elasticity (*parabolic minimum in U*(*r*)) Linear approximation to inter-molecular forces

Stress $\sigma \equiv F/A$

Strain $\varepsilon \equiv$ dimensionless change, e.g. $\frac{\delta L}{L}$

Hooke's Law: $\frac{\sigma}{\epsilon}$ = elastic modulus Longitudinal stress:

Young's modulus $Y = \frac{F/A}{\delta L/L} = \frac{FL}{A\delta L}$

Poisson's ratio $v \equiv -\frac{\varepsilon_{lat.}}{\varepsilon_{long.}} = -\frac{\delta d/d}{\delta L/L}$

Rigidity modulus (shear modulus)

F applied to the ends. P applied to other 4 sides. What is P so that cross section A is unchanged?

$$\begin{split} \epsilon_y &= -\nu\sigma_x/Y + \sigma_y/Y - \nu\sigma_z/Y \\ 0 &= +\nu F/YA - P/Y + \nu P/Y \\ \nu F/A &= P(1-\nu) \\ P &= \frac{F}{A} \frac{\nu}{(1-\nu)} \end{split}$$

Example

For the potential $U(r) = -\frac{A}{r^n} + \frac{B}{r^m}$, what is F(r)? What is the r_0 for mechanical equilibrium? $dU = -dW \equiv \mathbf{F}.d\mathbf{s} \rightarrow$ $F = -\frac{dU}{dr}$ $F(r) = n\frac{A}{r^{n+1}} - m\frac{B}{r^{m+1}}$ F = 0 at minimum of energy (dU = 0) $n\frac{A}{r_0^{n+1}} = m\frac{B}{r_0^{m+1}}$ $\frac{r_0^{m+1}}{r_0^{n+1}} = r_0^{m-n} = \frac{mB}{nA}$ $r_0 = \sqrt[m-n]{\frac{mB}{nA}}$ $U(r_0) = -\frac{A}{r^n} + \frac{B}{r^m} = \dots = \frac{binding}{energy} cf \frac{max}{force}$

Example Using the polynomial model for U(r), determine the Young's modulus (*C&L p43*)

As before $U(r) = -\frac{A}{r^n} + \frac{B}{r^m}$

$$\begin{split} F(r) &= n \frac{A}{r^{n+1}} - m \frac{B}{r^{m+1}} \\ r_o &= \left(\frac{mB}{nA}\right)^{1/m-n} \\ \frac{d}{dr} F(r) &= \frac{d}{dr} \left(n \frac{A}{r^{n+1}} - m \frac{B}{r^{m+1}}\right) \\ &= -n(n+1) \frac{A}{r^{n+2}} + m(m+1) \frac{B}{r^{m+2}} \\ at r &= r_o, \qquad \frac{d}{dr} F(r) = \dots = \frac{nA}{r_o^{n+2}} (m-n) \\ Y &= \frac{dF}{dr} \frac{r_o}{y^2} = \frac{(m-n)nA}{r_o^{n+1} y^2} \end{split}$$

Example. A steel set screw (Y = 206 GPa) has 50 turns, diameter 3 mm, and is just long enough. From contact, it is tightened one complete turn. Estimate the axial force it exerts.

Inter-atomic & intermolecular forces

Ionic solids: electrostatic force

Hydrogen bonds H has $+\delta$ charge

van der Waals attraction attraction between transient

dipoles $\propto r^{-6}$ at short range

Crystalline solids

 Packing factor
 fraction of space occupied by touching hard spheres

Example Calculate packing factor and ρ of FCC

p.f. = $\frac{\text{Volume of spheres in unit cube}}{\text{Volume of unit cube}}$ $= \frac{8 \text{ corners + 6 faces}}{(2\sqrt{2}r)^3}$ $= \frac{(8 \text{ x} \frac{1}{8} + 6 \text{ x} \frac{1}{2}) \frac{4}{3}\pi r^3}{(2\sqrt{2}r)^3} = 74\%$

$$\rho = \frac{(8 \text{ x} \frac{1}{8} + 6 \text{ x} \frac{1}{2}) \text{ atomic mass}}{a^3} = \frac{4m}{a^3}$$

Ionic crystals

e.g. NaCl: ions of similar size, each ion has six neighbours of opposite charge (**coordination number** six) (It's like two interlaced FCCs)

Covalent crystals: share outer electrons. Depends on the angles of the electron orbitals

Metallic crystal: 'ions' in a sea of shared electrons. Often close packed in FCC or HCP. This, gives high ρ,

Hexagonal close packing (vertical axis expanded here)

Intermediate bond types:

Polymers

Long chains repeating one unit e.g. poly(ethylene) PE (what sort of hydrocarbon is this?)

Long *flexible* chains: usually tangle rather than crystallise, especially if they have side groups. Attractive force is vdW (and tangling)

Amorphous

(partly) Crystalline

Cross linking. Chemical bonds rigidify 3D structure. e.g. resins, vulcanisation in rubber (S bonds).

Point defect

vacancy,			interstice,		substitution						
\bigcirc	0	0	\circ	0	0	0	0	\circ	0	0	\circ
\circ	0		\circ	0	0	0	0	0	0	0	\bigcirc
0	\circ	0	0	0	0	0	0	\bigcirc	0	0	0
0	\circ	0	0	0	0	0	0	0	0	0	0

Line defects Edge and screw

Plane defects, espec. microcracks

Surface tension and surface energy

molecule in bulk is uniformly attracted in each direction. Molecule at surface has \sim no attraction to atmosphere, \therefore work done against the nett force in order to make a surface.

Work to make new surface is done against

surface tension γ.

 $\gamma \equiv$ force per unit length in the plane of the surface e.g. raise wire dy

 $F = 2\gamma L$ (two sides)

 $dW = F.dy = 2\gamma L.dy$ dA = 2Ldy (two sides) $\gamma = \frac{dW}{dA}$

So surface tension = surface free energy per unit area

Contact angles and menisci The surface energy of solid-vapour is S_S,

:.

Suppose that the meniscus rises as shown. Work done by tension

$$\begin{split} dW &= -\gamma L dx \, \cos \, \theta \, = \, - \, \gamma dA \, \cos \, \theta \\ &= \, new \, solid-liquid \, energy - \, solid-vapour \, energy \\ &= \, S_{LS} dA - S_S dA \\ \gamma \cos \, \theta \, = \, S_S - S_{LS} \end{split}$$

Solid-liquid is SLS

Contact angle θ

Surface tension of liquid is γ

Some surface free energies

Class	Material	$\frac{S}{J.m^{-2}} =$	$\frac{\gamma}{N.m^{-1}}$
Liquid	water	0.073	·
-	Hg	0.051	
Glass	SiO ₂	4.4	
Ionic	NaCl	0.5	
solid	KCl	0.11	
Mica	in air	0.38	
	in vacuum	5	
Covalent	Al ₂ O ₃ (sapphire)	6-32	
solid	C (diamond)	5.24	
Metal	Zn	0.105	
	Pb	0.763	
	Si	1.24	
Polycrystalline	SiC	32	
	Graphite	68	
	Granite	200	
	Cast Iron	1,520	

Pressure excess inside balanced by surface tension $\Delta P.\pi r^2 = \gamma.2\pi r$

$$\Delta P = \gamma \frac{2}{r}$$

Young-Laplace Equation

Surface energy of solids

Complicated by mechanical strength of materials. Work to cleave = $U_{surf} + U_{bend}$. Put in expression for deflection of cantilever spring: $\frac{F}{L} = \frac{3Yd^3y^2}{8x^4}$

Diverse comments about various types of materials and behaviour Be careful talking of 'strength of materials'

Sometimes you want high E (: small e)

Other times you want high σ_{max}

Yet other times you want low E (.:. large e)

Macroscopic σ_{max} usually << microscopic σ_{max}

Composite materials aim to minimise the difference by limiting propagation of dislocations

In composites, $\sigma_{micro} \neq \sigma_{macro}$

Ductility refers to the ease of plastic deformation without rupture. Sometimes 'good', sometimes 'bad'

Work hardening: 'dislocation tangle'. Dislocation stops at slip plane,

fewer moveable dislocations .: less ductility

Ductile rupture: break bonds, eventually form macroscopic rupture

- For some materials, mechanical properties may depend on time scale (rheology)
- For some materials, mechanical properties depend on temperature. Plastic deformation is easier at high T, brittle fracture is more likely at low T

Material properties may also be changed by

Chemical reactions

Radiation (UV or even light from some polymers, $\boldsymbol{\gamma}$ and X for other materials)

Hydration (for hydrophilic, fibrous materials)