PHYS1169 Light notes. Joe Wolfe, UNSW

Physical optics (→ interference and diffraction)

Electromagnetic radiation

Speed $c = 3.00 \ 10^8 \ ms^{-1}$

 $2.997923458 \ 10^{-8} \ ms^{-1}$ (This is definition of metre)

λ: for visible light, $400 \text{ nm} < \lambda < 800 \text{ nm}$

Typical f =
$$\frac{c}{\lambda} \sim \frac{3 \cdot 10^8 \text{ ms}^{-1}}{5 \cdot 10^{-7} \text{ m}} = 6 \cdot 10^{14} \text{ Hz} = 600 \text{ THz}$$

See http://www.phys.unsw.edu.au/~jw/EMspectrum.html

Geometrical optics only works if size $\gg \lambda$. Why?

Huygen's principle: each point on a wave front ~ a new source

Is light

- a particle (Newton) \rightarrow geometric optics a)
- a wave (Young) b) \rightarrow physical optics
- c) both
- d) none of the above \rightarrow quantum physics

Hence: Young's experiment

Light through one slit (gives coherent source) then two slits gives interference pattern on screen.

This is the basis of interferometry - powerful tools

Constructive interference if

 $d \sin \theta = m \lambda$

Destructive interference if d sin $\theta = (m + \frac{1}{2})\lambda$

At an angle θ , the phase difference ϕ is

$$\frac{\phi}{2\pi} = \frac{\Delta \text{ pathlength}}{\lambda} = \frac{d \sin \theta}{\lambda}$$

$$\therefore \quad \phi = \frac{2\pi}{\lambda} d \sin \theta$$

 $\therefore \quad \phi = \frac{2\pi}{\lambda} d \sin \theta \qquad \begin{array}{c} \text{how to add two sin waves?} \\ \text{phasor diagrams} \end{array}$

$$a_{tot}=2a\;cos\;\beta$$

$$\beta = \phi/2 = \frac{\pi}{\lambda} d \sin \theta$$

Intensity \propto amplitude² \therefore I \propto 4a² cos² β

$$I_{max}$$
 if $\beta = \phi/2 = 0$

$$I = I_{max}cos^2 \beta$$
 where $\beta = \frac{\pi}{\lambda} d \sin \theta$

θ

Numerical example:

Example 3 narrow slits radiate uniformly and in phase. Interference pattern on screen. (a) Show phase diagrams for (i) central maximum (ii) 1st order maximum (iii) minima between i and ii.

(b) Sketch I(φ)

i)
$$\phi = 0$$
, central max

ii)
$$\phi = 2\pi$$
, 1st order max

$$\phi = 2\pi/3$$
 $\phi = 4\pi/3$ both $\rightarrow 0$ resultant

b) if
$$\phi = \pi$$
, amplitude = 1/3 central max
$$\therefore \text{ intensity} = I_{\text{max}}/9$$

Diffraction grating has very many slits. Used to measure λ very accurately.

If there are N slits per unit lenth, d = 1/N.

The first minimum is very close (small ϕ to close polygon), ie very narrow maxima

For constructive interference

$$d \sin \theta = m\lambda$$

 $m = 1 \rightarrow 1st$ order spectrum

 $m = 2 \rightarrow 2nd$ order spectrum

$$\theta_{\text{red}} = \sin^{-1} \frac{m \lambda_{\text{red}}}{d}$$

$$\theta_{blue} = \sin^{-1} \frac{m\lambda_{blue}}{d}$$

Diffraction from a slit (Later from a circle)

Use Huygen's construction: beam of finite width, interference if $d\sim\lambda$

Circular aperture:

First minimum at

$$\sin \theta = 1.22 \frac{\lambda}{d}$$

d is diameter

can resolve $\sim \theta$ with lens diam d. Rayleigh's criterion

Coherence length

4 Wave trains have finite length - coherence length

Only interfere if Δ pathlength < l

Examples

Radio transmitter $E = E_m \sin(kx - \omega t)$ $E_{m, \omega, k \ vary \ slowly}$

Hot body (e.g. lamp) $l \sim 1$ m, but different regions have different, random phase. \therefore , to get interference, use a pin hole and keep Δ path << 1 m

LASER (Light Amplification by Stimulated Emission of **R**adiation) l >> km

Interference in thin films

Light in a medium travels at c/n.

$$\lambda_{medium} = \lambda/n$$

$$\Delta \varphi \ = \ 2\pi \frac{\Delta \ path}{\lambda_{med}} \ = \ 2\pi \frac{n \ \Delta \ path}{\lambda}$$

Define Optical path length \equiv n . pathlength

$$\Delta \phi = 2\pi \frac{\Delta \ optical \ pathlength}{\lambda}$$

Reflections

remember reflections in strings

From less dense to more dense

$$\Delta \phi = \pi$$

From more dense to less dense

$$\Delta \phi = 0$$

transmitted wave has no phase change

Example: Non reflective coating

useful in camera lens etc

Coating has $1 < n < n_{glass}$

How thick should it be to give minimum reflection?

Both reflections have π phase change. As $d \to 0$, \to constructive interference.

For destructive, we want

 Δ optical pathlength = $\lambda/2$

$$2nd = \lambda/2$$

$$d \sim \frac{\lambda}{4n} = \frac{550 \text{ nm}}{4 \cdot 1.2} \sim 100 \text{ nm}$$

Air wedge

5

Destructive interference if

 $2d = m \lambda$

Constructive interference if

$$2d = \left(m + \frac{1}{2}\right)\lambda$$

At L.H. end, destructive (dark), then count fringes to get thickness. (see corridor display)

Also: Newton's rings, oil slicks

Polarisation.

EM waves are transverse waves, \therefore can be polarised. Usually light has waves with E in all directions

Unpolarised Plane polarised

Polaroid materials allow E in only one dirn

 $E_{transmitted} = E \cos \theta$

Malus' Law:

 $I_{trans} = I_{in} \cos^2 \theta$

Average of $\cos^2 \theta$ over all angles is 1/2 .: Unpolarised plane polarised plane polarised

Example. Two crossed polarisers (polarⁿ dirⁿ are at right angles) have a third polariser between them. What is the transmitted intensity? What angle for the middel polariser gives

Polarisation by reflection

7

For wave in medium, ${\bf E}$ of light causes oscillation // ${\bf E}$. This oscillation can produce (only) transverse waves, hence polarisation of reflected wave.

When refracted ray \bot reflected \to plane polarised reflected wave (Brewster's angle θ_B).

→ polaroid sunglasses (see your optics kit)

Scattering of light also polarises

More effective for short λ , \rightarrow blue sky

Example. What is Brewster's angle for a medium with n = 1.40?

Refraction:

$$n = \frac{\sin \theta_B}{\sin \theta_r}$$

If refracted and reflected are at 90°,

$$\theta_{\rm B} + \theta_{\rm r} = 90^{\circ}$$

SO

$$\sin \theta_r = \cos \theta_B$$

$$n = \frac{\sin \theta_B}{\cos \theta_B} = \tan \theta_B$$

$$\theta_B = tan^{-1} 1.4 = 54^{\circ}$$

Example. An oil slick (n = 1.20) floats on water. What are the thicknesses for which red light ($\lambda \cong 700 \text{ nm}$) is reflected weakly? What does the slick look like at its thinnest point?

 $n_{water} > n_{oil}$

Constructive interference if

$$\Delta OPL = m \lambda$$

Destructive interference if

$$\Delta OPL = \left(m + \frac{1}{2}\right)\lambda$$

i) If red has destructive interference,

$$\Delta \text{ OPL} = 2\text{nd} = \left(m + \frac{1}{2}\right)\lambda_{\text{red}}$$

$$d = \frac{\lambda_{\text{red}}}{2n} \left(m + \frac{1}{2} \right)$$

$$m = 0, \quad m = 1, \quad m = 2 \quad$$
= 150 nm, 440 nm, 730 nm etc

ii) If $d \ll \lambda$, π phase difference on both paths so constructive interference for all λ , so it looks bright and 'white'.

Example. Same problem, but for scuba diver!

Destructive interference if $\Delta OPL = m \lambda$

Contructive interference if $\Delta OPL = \left(m + \frac{1}{2}\right)\lambda$

Example. A binary star has an orbital radius of 100 light seconds, and is 10 light years from us. How big must an optical telescope be to resolve them? (take $\lambda = 550$ nm). A radio telescope (take $\lambda = 21$ cm).

$$100 \text{ s} < 10 \text{ yr} \rightarrow \theta \text{ is small}$$

Rayleigh criterion: $\sin \theta_R = 1.22 \frac{\lambda}{a}$

$$\sin\,\theta_R \; \cong \; \theta_R \; \cong \; \frac{100 \; light \; seconds}{10 \; light \; years}$$

$$1.22 \frac{\lambda}{a} = \frac{c \ 100 \ seconds}{c \ 10 \ years}$$

$$\lambda = 550 \text{ nm} \rightarrow a = 2 \text{ m} \qquad \lambda = 21 \text{ cm} \rightarrow a = 800 \text{ km}$$