
PHYS1169: Tutorial 10 Solutions 
 

Interference and Light Waves 
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b) The wavelength in the medium is reduced by a factor equal to the refractive 
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c) The frequency of the light will be the same in all media, so   
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2. a) The optical path length represents the equivalent distance that the wave 
would travel in the same time through free space. The optical path length is 
the length of the path taken times the refractive index in the medium, 
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c) The difference in the optical path length between a wave travelling 1.6µm 
in free space and the same distance through the medium is 

mOPD µ8.06.14.2 =−=∆ . The phase difference between the waves φ∆ , as a 
fraction of 2π (one full cycle), is just the fraction of a wavelength that fits into 

this optical path difference, 
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3. a) For a maximum in the diffraction pattern of the parallel slits to occur at 

some angle, the two waves emanating from the slits must be in phase at that 
angular position. That is, the optical path difference between these two waves 
must be an integral number of wavelengths. The optical path difference can be 
approximated as θsind , where d is the distance between the slits and θ  is the 
angle made by a line to the point from the perpendicular bisector of the two 
slits. Hence, 

λθ md =sin  
for constructive interference, where m is an integer. The central maxima is at 
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light is much smaller than the separation of the slits, d<<λ  
( ), and so we may use the small angle approximation mmnm 25.0546 <<

θθθ ≈≈ tansin , for θ  small. If the screen is a distance D away, then this 

first bright fringe at the angle 
d
λθ =1  will appear at a distance y from the 

central maximum on the screen given by 
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b) Minima in the diffraction pattern occur when the optical path length is an 
odd integer multiple of half a wavelength. Thus, ( )λθ 2

1sin += md . The first 

minima is at 
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The positions of these two dark fringes on the screen are then 

d
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4. Here we will consider the two primary reflections: firstly off the air-coating 

interface, and secondly off the coating-glass interface. We will assume that the 
refractive index of the coating (n = 1.38) is between that of air ( ) and that 
of glass (

1≈n
6.1≈n ), so there will be a π radians phase change (half-cycle) on 

each of these reflections, as they correspond to reflection at an interface with 
increasing refractive index. 
There will be a maximum in the reflection, corresponding to constructive 
interference between two reflected waves, if the optical path difference 
between them is an integral number of wavelengths, 
  λmndOPD ==∆ 2  
where m is an integer, since the second reflected wave must travel twice the 
thickness d of the film with refractive index n. 
The first two wavelengths for which this condition is met are: 
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and the other wavelengths with constructive interference will be smaller still. 
These wavelengths are not within the visible spectrum (300-750nm), so there 
are no reflection maxima in the visible spectrum.  
In fact, the coating acts as an anti-reflective coating, as it is designed to have 
minimal reflection in the centre of the visible spectrum, as for destructive 
interference in the reflected spectrum: 
  λ2
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5. In this case there is a π radians phase change (half-cycle) on the reflection 

from the air-oil interface, but not from the oil-air interface. Thus, constructive 
interference will occur if the optical path difference is an integral number of 
wavelengths, plus one-half a wavelength, to account for this phase change on 
the first reflection. That is: 
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The first few wavelengths are (for m = 0,1,2,3,4,5), 2920nm, 973nm, 584nm, 
417nm, 324nm, and 265nm. Those that lie in the visible spectrum (300-750nm) 
are 584nm, 417nm, and 324nm, which will be wavelengths strongly reflected 
in the visible region. 

 
6. Consider the interference of the wave reflected off the glass-air interface at the 

top of the wedge and the wave reflected off the air-glass interface at the 
bottom of the wedge. Constructive interference will occur if the optical path 
difference between these two waves is an integral number of wavelengths plus 
a half, to account for the half-cycle phase change (π radians) on the air-glass 
interface.  
Therefore, the mth bright fringe will occur at the point where the width of the 
wedge  satisfies  md

( )λ2
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for . K,2,1,0=m
The 20th bright fringe (corresponding to m = 19) occurs at the end of the 
wedge, so the thickness at this point must be 
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This should approximately be equal to the thickness of the gap at the very end 
of the wedge, and so the thickness of the paper. 

 

Diffraction and Polarisation 
 

7. The condition for a minimum (dark fringe) in the single slit diffraction pattern 
is  

λθ ma =sin  (with K,3,2,1=m ) 
where a is the width of the slit, λ is the wavelength of the light, and θ is the 
angle at which minimum occurs, as measured from the central axis of the slit. 
The second bright fringe will be taken to be midway between the second and 
the third dark fringes. The second dark fringe lies at  

  
a
λθθ 2sin 22 =≈  (using the small angle approximation) 

and the third is at  

  
a
λθθ 3sin 33 =≈ . 

The angular position of the 2nd bright fringe, taken to be approximately 
midway between them, 
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If the screen is located a distance D away from the slit, then the position of the 
fringe on the screen, y from the central maxima, will satisfy  
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Solving for the wavelength of the light  
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8. The minimum angular separation between two points that can be resolved by a 

viewing aperture d is  

dR
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a) For a 6.5 cm aperture telescope at nm550=λ , the minimal angular 

resolution is radians
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object size y at a distance of kmD 1=  is thus cmDy R 0.1=≈θ . 
b) For a human eye with aperture mmd 5.2= , the minimal angular resolution 

becomes radians
dR

4
3

9

107.2
105.2

1055022.122.1 −
−

−

×=
×

××
==

λθ . The minimal 

object size at 1 km is then cmDy R 27=≈θ . 
 

9. Brewster’s angle Bθ , where light reflected from the interface between two 
media of refractive indices  and  will be 100% polarised satisfies 1n 2n

1

2tan
n
n

B =θ . 

For Brewster’s angle of 48° when passing from air ( 00.11 =n ), the refractive 
index of the medium must be  
  1.148tan00.1tan12 =×== Bnn θ . 

 
10. The light intensity after the first polarised sheet will be 02

1
1 II = , where  is 

the intensity of the original light. This can be seen by arguing that on average 
half of the component of the polarised light will be aligned with the 
polarisation axis, and half misaligned and removed by the sheet. Alternatively 
and more formally, it can be seen as follows: If we define 

0I

θθ dId  to be the 
intensity of the light with polarisation vectors in the angular region θ to θ + dθ 
(assumed uniform, so same value for any θ), then proportion of this intensity 
that is transmitted will be . The total transmitted intensity 

is then , where . This gives the same result, 

that the fraction of the unpolarised light passed by the polarised sheet is 
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The light after the first sheet will be plane polarised, and the amount of that 
light that is transmitted through a polarised sheet with its axis at an angle φ to 
the polarisation plane of the light is  
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11. Here we use the relationship that the ratio of the transmitted to the incident 
light intensity is given by 
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 where φ  the angle between two polarisation axes.  
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Extra Problems 
 
      E1. The intensity as a function of the angle θ made from the central axis of the 

double slit interference pattern is given by 
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where  is the intensity of the central maximum, λ is the wavelength of the 
light, and the other variables are as defined in the diagram. We can find the 
angle θ where the intensity will be 75% of that of the central maxima 
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using the small angle approximation.  
The position this point makes on the screen located a distance L from the slits 
is then given by 
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      E2. a) The optical path difference between the two waves interfering at an angle 

of θ from the central axis of the double slits is given by 
   θsindOPL =∆  
 Here, we will use the small angle approximation for θ, and then expressing it 

in terms of the distance to the screen L and the distance y on the screen from 
the central maxima, 
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 and so, 
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 The phase difference φ∆  as a fraction of a full period, which in phase is 2π, 
should be same as the fraction that the optical path length difference makes 
with a full period, which in the case of optical path length is one wavelength, 
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 The phase difference between the two waves is then  
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 b) To interfere two waves that differ in phase by φ∆ , we simply add their 
amplitudes. If we let the two waves be in general ( )tkxEE ω−= cos01  and 

( )φω ∆+−= tkxEE cos02 , then the resultant wave is then 
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 using the standard trigonometric result, 
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φE . Since the intensity is proportional to the 

square of the amplitude, the intensity of the resultant wave can be written as a 
function of the phase difference φ∆  between the two interfering waves as  
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where  represents the maximum intensity attainable, if the two waves are in 
phase. The ratio of the intensity at this point to that of the central maximum 
(with maximum intensity) is then  
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E3. The three phasors can be added like vectors, head to tail. The magnitude of  

each vector is just the amplitude of the corresponding field, all  in this case.  0E
The angles between the vectors is just determined by the relative phase 
between the fields, so 0° (reference) for , 1E °−≡°= 9027023π  for , and 2E

°≡°= 18054026π  for . The result of adding these three phasors is shown 
in the following diagram, with the resultant phasor being from the tail of the 
first to the head of the last. 
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It can be seen that the magnitude of the resultant is , and that its phase 
relative to the first phasor is 

0E
23π , so ( )23sin0 πω += tEER .  

  
 
      E4. The location of a dark fringe in the single-slit diffraction pattern is given by 
   λθ ma =sin  

Using the small angle approximation, the location of the first and the third 
dark fringes on the screen will be 
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where L is the distance to the screen. The distance between the first and the 
third dark fringes is thus, 
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The width of the slit a is then 
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E5. The maxima in the diffraction pattern from a grating with spacing d occur at  

angles θ given by 
   λθ md =sin   
 The spacing here is mmd 410

1= . 
a) The two angles at which the maxima occur for 1λ  and 4λ  in the first order  
(m=1) spectrum are 
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 so the difference between these two angles is 5.92°. 
b) The two angles for 1λ  and 3λ  in the third order (m=3) spectrum are 
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 so the angle between the two lines is 6.42°. 
 
      E6. As in the above question, the angle in the first order spectrum of the two lines 

is  
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so the angle between the two lines in the doublet in the first order spectrum is 
0.0684°. 
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