[Marks 8]

Two vectors are given by

$$\mathbf{a} = 2 \mathbf{i} - \mathbf{j}$$
$$\mathbf{b} = \mathbf{i} + 2 \mathbf{j} + \mathbf{k}$$

- (a) Calculate a + 3b
- (b) Calculate **a** . **b**What do you deduce about the angle between **a** and **b**?
- (c) Calculate a x b

a)
$$a + 3b = (2i - i) + 3(i + 2i + k)$$

(b)
$$a \cdot b = (2i - j) \cdot (i + 2j + k)$$

$$= 2.1 \% - 1.2 = 0$$
 (Answer)

We deduce that a and 6 are perpendicular (at 90° to each other), using

$$a \cdot b = ab \cos \theta$$

$$= i((-1).1-0.2)+i(0.1-2.1)+k(2.2-(-1).1)$$

$$= -i - 2j + 5h \qquad (Auswes)$$

[Marks 10]

Two point charges, one of charge +q and the other of charge -2q, are situated on the x axis as shown.

- (a) Derive an expression for vector components of the electric field intensity at P, in rectangular co-ordinates;
- (b) Determine the direction of the electric field at P relative to the x axis;
- (c) Find an expression for the electric potential at point P.

The fields E, and E_2 due to the two changes (labelled I and 2 above) are: $\begin{pmatrix}
E_{1x} = 1 & 9 & \cos 45^{\circ} \\
4\pi E_{0} & (2a^{2})
\end{pmatrix}$ $E_{1y} = \frac{1}{4\pi E_{0}} & 9 & \sin 45^{\circ}$ and $\begin{pmatrix}
E_{2x} = 1 & 29 & \cos 45^{\circ} \\
4\pi E_{0} & (2a^{2})
\end{pmatrix}$ $E_{2y} = -1 & 29 & \sin 45^{\circ}$ $4\pi E_{0} & (2a^{2})$ using $E = \frac{1}{4\pi E_{0}} & 9 & \text{for a point change}$

- Total field E has components.

$$E_{x} = E_{1x} + E_{2x} = \frac{1}{4\pi\epsilon_{0}} \frac{Q}{a^{2}} \left(\frac{1}{2\sqrt{12}} + \frac{1}{\sqrt{2}} \right)$$

$$V = V_1 + V_2 = \frac{9}{47760a} \left(\frac{1}{\sqrt{2}} - \frac{2}{\sqrt{2}} \right)$$

If there is not enough space here, continue answer on supplementary pages at the end of this booklet.

Tick this box if you use supplementary pages.

[Marks 10]

For the circuit shown, showing all your reasoning and working, determine:

- (b) the total charge drawn from the battery
- (c) the charge on the 3 μF capacitor
- (d) the potential difference across the $3 \mu F$ capacitor

a) The combination by Fond 34 Fin reces
has equivalent capacitance:
$\frac{1}{c} = \frac{1}{c} + \frac{1}{3} = \frac{1}{2}$
i.e. C=2uE 2uF
i.e. C=2 uF. Then
2MF
have equivalent capacitance C = C+Cz
have equivalent capacitance C = C + C3. = 4 MF. (Answer).
b) Total change 6 = CV = 4×10-6×12
= 4.8 × 10 C. (Answer).

c) Potential différence 12 V across the branche with C'= 2 MF produces charge (Anewer)

(This same charge will appear on both the Gut and 3uF capacitions, being in parallel).

ANSWER QUESTION 3 ONLY

d) The potential difference across the
d) The potential difference across the 3mF capacitor is now given by $6'=c_2V_2$
i-e. V2 = 2.44 ×10°C
= 8V. (Answer).

· · · · · · · · · · · · · · · · · · ·
•••••••••••••••••••••••••••••••••••••••
······································
If there is not enough space here, continue answer on supplementary pages at the end of this bookles. Tick this box if you use supplementary pages.

- (a) State Kirchhoff's rules for direct current circuits.
- (b) For the circuit shown, use Kirchhoff's rules to write down three equations from which the currents i₁, i₂ and i₃ could be determined, DO NOT GO ON TO SOLVE THOSE EQUATIONS.

 6Ω

- iz (N.B.!)
- (c) Given the current has a value 1A, determine:
 - (i) the potential difference across the 2Ω resistor
 - (ii) the value of the current i1
- (d) Is power supplied by, or delivered to the 12 V battery? Give your reasoning.

a) Junction Rule: The algebraic rum of the currents flouring into any junction is zero.

Loop Rule: The algebraic rum of the potential changes around any loop of the circuit is zero.

6) For the circuit shown:

Junetion Rule: i, +iz+i3 =0 (1)

Loop 1: -10 iz +6 i, +10 =0 (2)

 $Loop 2: -12 - 2i_2 + 10i_3 = 0 (3)$

ANSWER QUESTION 4 ONLY

c) i) The p.d. across the 252 resulton
= i2R (Ohustaw) = 2V (Answer)
fi). From i), total potential
c) i) P. d. across 10 12 is iz × 10 = 10V
in the direction shown
(i.e. p.d. auon top branch = 12-2 = 10 Valso) ii) the p.d. across the Cower branch must
also total 10 V i = 0 ! (Aumer)
d) By the junction rule, the current of iz = -i3-i,
= - 1 A. - ament is being drawn from the 12V battery - power is being supplied by the 12V
ballery.

If there is not enough space here, continue answer on supplementary pages at the end of this booklet.

Tick this box if you use supplementary pages.

[Marks 10]

The diagram shows a plan view of a mass spectrometer. In it ions of mass m and charge +q are accelerated to S_2 from rest at S_1 by a potential difference of V. They emerge through a small hole at S_2 and enter a uniform magnetic field, of magnetic induction B, directed at right angles and into the plane of the paper. In the field they follow a semicircular path until they strike the detector D. Showing all your reasoning and working, derive expressions for

- (a) The kinetic energy gained by the ions from S_1 to S_2
- (b) The velocity of the ions on entering S₂
- (c) The distance d from S_2 at which the ions strike the detector array.

a)!	netic energy ga	fenergy, ined = pote	ntialenergy	Corl
	-'. K= qV.		(Anewer)	• •
. (6-)	an entering	S.2,		
	$\frac{1}{2}mv^2 = qV$			
	$-$, $\omega = \sqrt{\frac{2}{2}}$	ni ·	(Auswer)	(i)

ANSWER QUESTION 5 ONLY

e) In the magnetic field the ions travel in a remirrele of radius given by
F = ma
i.e. $q \cup B = m \cup^2$
·
(Larmon radius)
$-1 \cdot d = 2\Gamma = \frac{2m}{qB} = \frac{2m}{qB} \sqrt{\frac{2qV}{m}}$
98 m
= 2 / m / (Answer)
$= \frac{2}{B} \sqrt{\frac{2mV}{q}} \qquad (Answer)$
· · · · · · · · · · · · · · · · · · ·

If there is not enough space here, continue answer on supplementary pages at the end of this booklet.

Tick this box if you use supplementary pages.

- (a) State Faraday's Law of electromagnetic induction, defining all the symbols used.
- (b) The diagram shows a conducting rod PQ making contact with parallel metal rails PS and QR, which are a distance d apart. Both the rails and the rod have negligible resistance.

The rails are connected at S and R by a resistor of resistance r. A uniform magnetic induction B is directed vertically down into the plane of the paper. The rod moves to the left at speed v, as shown in the diagram.

- (i) Showing all your reasoning and working, derive an expression for the magnitude of the current in the loop PQRS.
- (ii) What is the direction of this current? Justify your answer.

a. J	
$\varepsilon = -d\mathcal{D}_{B}$	
where E is the e.m. f. induced in a	. closed
Goop due to a magnetic flux De va	issing
through the loop which is changing	with
through the loop which is changing time it, in a direction given by the	e Right
Hand Kule.	

b) i) iTagnetic flux into the paper
$ \Phi_{B} = B \cdot A = BA $
$\frac{dQ_{g}}{dt} = Bdv$
$\mathcal{E} = -d\Phi_{\mathcal{B}} = -Bd\nu$
magnitude of current i = 181
= Bolu (Answer)
i) The Aflus into the paper corresponds to a clockwise e.m. f., by the Right Hand Rule
The answer is negative, so the e un f and course hence the current run anticlockwise.
This will produce an induced B field out of the paper, counteracting the increasing flux
through the loop into the paper, in agreement with Leng's law.

If there is not enough space here, continue answer on supplementary pages at the end of this booklet.

☐ Tick this box if you use supplementary pages.