
r is constant
If θ measured in radians,

$$
\begin{aligned}
& \mathrm{s}=\mathrm{r} \theta \text {. } \\
& \text { (definition of angle) } \\
& \therefore \quad \mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{r} \frac{\mathrm{~d} \theta}{\mathrm{dt}} \equiv \mathrm{r} \omega \\
& \mathrm{v}=\mathrm{r} \omega \quad \omega=\frac{\mathrm{v}}{\mathrm{r}} \\
& \therefore \quad \mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{r} \frac{\mathrm{~d} \omega}{\mathrm{dt}} \equiv \mathrm{r} \alpha \\
& \mathrm{a}=\mathrm{r} \alpha \quad \alpha=\frac{\mathrm{a}}{\mathrm{r}}
\end{aligned}
$$

Motion with constant $\underline{\alpha}$.

Analogies
displacement
velocity
acceleration

linear	angular
x	θ
v	ω
a	α

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at} & \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\alpha \mathrm{t} \\
\Delta \mathrm{x}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2} & \Delta \theta=\omega_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} \\
\mathrm{v}_{\mathrm{f}}^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{a} \Delta \mathrm{x} & \omega_{\mathrm{f}}^{2}=\omega_{\mathrm{i}}^{2}+2 \alpha \Delta \theta \\
\Delta \mathrm{x}=\frac{1}{2}\left(\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}\right) \mathrm{t} & \Delta \theta=\frac{1}{2}\left(\omega_{\mathrm{i}}+\omega_{\mathrm{f}}\right) \mathrm{t}
\end{array}
$$

Derivations identical - see previous. Need only remember one version
Example. Centrifuge, initially spinning at 5000 rpm , slows uniformly to rest over 30 s. (i) What is its angular acceleration? (ii) How far does it turn while slowing down? (iii) How far does it turn during the first second of deceleration?
i) $\quad \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\alpha \mathrm{t}$
(cf $\quad \mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$) $\alpha=\frac{\omega_{\mathrm{f}}-\omega_{\mathrm{i}}}{\mathrm{t}}$

$$
\begin{aligned}
&= \frac{0-\frac{5000 * 2 \pi \mathrm{rad}}{60 \mathrm{~s}}}{30 \mathrm{~s}} \\
&=-17.5 \mathrm{rad} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

ii) $\quad \Delta \theta=\frac{1}{2}\left(\omega_{\mathrm{i}}+\omega_{\mathrm{f}}\right) \mathrm{t} \quad\left(c f \quad \Delta \mathrm{x}=\frac{1}{2}\left(\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}\right) \mathrm{t}\right)$

$$
\begin{aligned}
& =\frac{1}{2}(0+5000 \mathrm{rpm}) * 0.5 \mathrm{~min} \\
& =1,250 \text { revolutions }
\end{aligned}
$$

iii) $\quad \Delta \theta=\omega_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} \quad\left(c f \quad \Delta \mathrm{x}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2}\right)$

$$
\begin{aligned}
& =\frac{5000 * 2 \pi \mathrm{rad}}{60 \mathrm{~s}}(1 \mathrm{~s})-\frac{1}{2}\left(17.5 \mathrm{rad} \cdot \mathrm{~s}^{-2}\right) \cdot(1 \mathrm{~s})^{2} \\
& =515 \mathrm{rad} \quad(=82 \text { turns })
\end{aligned}
$$

Example A bicycle wheel has r $=40 \mathrm{~cm}$. What is its angular velocity when the bicycle travels at $40 \mathrm{~km} . \mathrm{hr}^{-1}$?

$$
\begin{aligned}
\mathrm{v} & =\frac{\mathrm{ds}}{\mathrm{dt}} \quad=\frac{\mathrm{r} d \theta}{\mathrm{dt}} \\
\mathrm{v} & =\mathrm{r} \omega \\
\omega & =\frac{\mathrm{v}}{\mathrm{r}} \quad=\frac{40000 \mathrm{~m} / 3600 \mathrm{~s}}{0.4 \mathrm{~m}} \\
& =28 \text { rad. } \mathrm{s}^{-1} \quad(=4.4 \text { turns/second })
\end{aligned}
$$

$$
\mathrm{v}=\mathrm{r} \omega \quad \text { Important result }
$$

What causes angular acceleration?

Force applied at point displaced from axis of rotation.

(Note: if $\underline{\mathbf{F}}$ were only force \Rightarrow acceleration:
How does the 'turning tendency' depend on F ? r ? θ ?

Torque.

(rotational analogue of force)
Consider rotation about z axis

Only the component $\mathrm{F} \sin \theta$ tends to turn
$\quad \tau=\mathrm{r}(\mathrm{F} \sin \theta)$
or $\quad=\mathrm{F}(\mathrm{r} \sin \theta)=\mathrm{Fr}_{\perp} \quad(r *$ component of $F)$
where r_{\perp} is called the moment arm

E
xample What is the maximum torque I apply by standing on a wheel spanner 300 mm long?

$$
\begin{aligned}
& \tau=\mathrm{r}(\mathrm{~F} \sin \theta) \\
& \max \tau=\mathrm{rF} \\
& \quad=0.3 \mathrm{~m} * 700 \mathrm{~N}=200 \mathrm{Nm}
\end{aligned}
$$

if it still doesn't move: lift, use both hands or jump on it

Example: bicycle and rider ($\mathrm{m}=80 \mathrm{~kg} \mathrm{)} \mathrm{accelerate} \mathrm{at}$ $2 \mathrm{~ms}^{-2}$. Wheel with $\mathrm{r}=40 \mathrm{~cm}$. What is torque at wheel?

$$
\begin{aligned}
& \mathrm{F}_{\text {ext }}=\mathrm{ma} \\
& \begin{array}{l}
\tau=\mathrm{rF}_{\text {ext }} \sin \theta=\mathrm{rF} \\
\quad=\mathrm{rma}=\ldots=64 \mathrm{Nm} . \text { horizontal }
\end{array}
\end{aligned}
$$

Front sprocket has 50 teeth, rear has 25 , what is torque applied by legs?

$$
\begin{aligned}
& \mathrm{F}_{\text {front }}=\mathrm{F}_{\text {back }} \quad \frac{\mathrm{r}_{\text {front }}}{\mathrm{r}_{\text {back }}}=\frac{50}{25} \\
& \frac{\tau_{\text {front }}}{\tau_{\text {back }}}=\frac{\mathrm{r}_{\text {front }} \mathrm{F}_{\text {front }}}{\mathrm{r}_{\text {back }} \mathrm{F}_{\text {back }}}=2 . \\
& \tau_{\text {front }}=128 \mathrm{Nm} \text { horizontal } \quad \text { why larger? }
\end{aligned}
$$

Choose frame so that axis of rotation is at origin

$$
\begin{aligned}
\mathrm{K} & =\frac{1}{2} \mathrm{~m}_{1} \mathrm{v}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \mathrm{v}_{2}^{2}+\ldots \\
& =\frac{1}{2} \mathrm{~m}_{1}\left(\mathrm{r}_{1} \omega_{1}\right)^{2}+\frac{1}{2} \mathrm{~m}_{2}\left(\mathrm{r}_{2} \omega_{2}\right)^{2}+\ldots . \\
& =\frac{1}{2}\left(\sum \mathrm{~m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}\right) \omega^{2} \quad\left(c f K=\frac{1}{2} m v^{2}\right)
\end{aligned}
$$

Define the Moment of inertia
System of masses
I $=\Sigma m_{i} \mathrm{r}_{\mathrm{i}}{ }^{2}$
Continuous body
$\mathrm{I}=\int_{\text {body }} \mathrm{r}^{2} \mathrm{dm}$
I depends on total mass, distribution of mass, shape and axis of rotation.

Example What is I for a hoop about its axis?

All the mass is at radius r , so

$$
\mathrm{I}=\mathrm{Mr}^{2}
$$

For a disc: $\mathrm{I}=\underset{\text { body }}{\mathrm{r}^{2}} \mathrm{dm}=\ldots . .=\frac{1}{2} \mathrm{MR}^{2}$
For a sphere $\quad I=$
$\mathrm{I}=\mathrm{nMR}^{2}$
$=M(\sqrt{n} R)^{2}=M k^{2} \quad$ where $k=\sqrt{n} R$
$\mathrm{I} \equiv \mathrm{Mk}^{2}$ defines the radius of gyration \mathbf{k}
k is the radius of a hoop with the same I as the object in question

object	I	k
hoop	MR^{2}	R
disc	$\frac{1}{2} \mathrm{MR}^{2}$	$\frac{\mathrm{R}}{\sqrt{2}}$
solid sphere	$\frac{2}{5} \mathrm{MR}^{2}$	$\sqrt{\frac{2}{5} \mathrm{R}}$

Example Use a flywheel to store the K of a bus at stops. Disc R $=80$
$\mathrm{cm}, \mathrm{M}=1$ tonne. How fast must it turn to store all the kinetic energy of a 10 t . bus at $60 \mathrm{~km} . \mathrm{hr}^{-1}$?

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{m}}=60 \mathrm{~km} \cdot \mathrm{hr}^{-1} \\
& \omega_{\mathrm{m}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{S}}=0 \quad \text { not } \text { rolling } \\
& \omega_{\mathrm{S}}=\text { ? rev.s }{ }^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{m}}=\mathrm{K}_{\mathrm{s}} \\
& \frac{1}{2} \mathrm{M}_{\mathrm{bus}} \mathrm{v}_{\mathrm{m}}^{2}=\frac{1}{2} \mathrm{I}_{\mathrm{disc}} \omega_{\mathrm{s}}^{2} \\
& \mathrm{M}_{\mathrm{bus}} \mathrm{~V}_{\mathrm{m}}^{2}=\frac{1}{2} \mathrm{M}_{\text {disc }} \mathrm{R}^{2} \omega_{\mathrm{s}}^{2} \\
& \omega_{\mathrm{s}}=\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{R}} \sqrt{\frac{2 \mathrm{M}_{\mathrm{bus}}}{\mathrm{M}_{\mathrm{disc}}}} \\
& \quad=21 \mathrm{rad} \cdot \mathrm{~s}^{-1}=3.3 \mathrm{rev} \cdot \mathrm{~s}^{-1}=200 \mathrm{rpm}
\end{aligned}
$$

Example. A solid sphere, a disc and a hoop roll down an inclined plane. Which travels fastest?

Rolling: point of application of friction stationary \therefore non-conservative forces do no work \therefore

$$
\begin{gathered}
\mathrm{U}_{\mathrm{f}}+\mathrm{K}_{\mathrm{f}}=\mathrm{U}_{\mathrm{i}}+\mathrm{K}_{\mathrm{i}} \\
0+\left(\frac{1}{2} \mathrm{Mv}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}\right)=\mathrm{Mgh}+0 \\
\omega=\frac{\mathrm{v}}{\mathrm{R}} \quad \text { and write } \quad \mathrm{I}=\mathrm{Mk}^{2} \\
\frac{1}{2} \mathrm{Mv}^{2}+\frac{1}{2} \mathrm{Mk}^{2} \frac{\mathrm{v}^{2}}{\mathrm{R}^{2}}=\mathrm{Mgh} \\
\frac{1}{2} \mathrm{v}^{2}\left(1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}\right)=\mathrm{gh} \\
\mathrm{v}=\sqrt{\frac{2 \mathrm{gh}}{1+\mathrm{k}^{2} / \mathrm{R}^{2}}}
\end{gathered}
$$

$\frac{\mathrm{k}_{\text {sphere }}}{\mathrm{R}}=\sqrt{\frac{2}{5}}<\frac{\mathrm{k}_{\text {disc }}}{\mathrm{R}}=\sqrt{\frac{1}{2}}<\frac{\mathrm{k}_{\text {hoop }}}{\mathrm{R}}=1$
$\therefore \quad \mathrm{V}_{\text {sphere }}>\mathrm{v}_{\text {disc }}>\mathrm{V}_{\text {hoop }} \quad$ independent of size

Newton's law for rotation

System of particles, m_{i}, all rotating with same ω and α about same axis. r_{i} is perpendicular distance from the axis of rotation.

$$
\begin{aligned}
& \underline{\mathbf{t}}_{\mathrm{i}} \equiv \underline{\mathbf{r}_{\mathbf{i}}} \times \underline{\mathbf{F}} \mathbf{i} \\
& \tau_{\mathrm{i}}=\mathrm{r}_{\mathrm{i}} \mathrm{~F}_{\mathrm{ti}}
\end{aligned}
$$

where F_{t} is the tangential component of F

$$
\begin{array}{ll}
\tau_{\mathrm{i}}=\mathrm{r}_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \mathrm{ati}_{\mathrm{i}} \\
\tau_{\mathrm{i}}=\mathrm{r}_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} & \\
\quad=\mathrm{r}_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \alpha_{\mathrm{i}} & \\
\Sigma \tau_{\mathrm{i}}=\sum \mathrm{m}_{\mathrm{i}} \mathrm{r}^{2} \alpha_{\mathrm{i}} & \text { but all } \alpha_{\mathrm{i}}=\alpha \\
\tau_{\text {total }}=\mathrm{I} \alpha & \text { and } \tau, \alpha \text { on axis }
\end{array}
$$

Example. What constant torque would be required to stop the earth's rotation in one revolution? (Assume earth uniform.)

Plan: Know $M, R, \omega_{i}, \omega_{f}, \Delta \theta$. Need τ.

$$
\text { Use } \tau=I \alpha, \text { where } \omega_{i}, \omega_{f}, \Delta \theta \rightarrow \alpha
$$

$\omega_{\mathrm{f}}=0, \omega_{\mathrm{i}}=\frac{2 \pi}{23 \mathrm{~h} 56 \mathrm{~min}}=1.7210^{-4} \mathrm{rad} . \mathrm{s}^{-1}$

$$
\begin{aligned}
\omega_{\mathrm{f}}^{2} & =\omega_{\mathrm{i}}^{2}+2 \alpha \Delta \theta \quad\left(c f \mathrm{v}_{\mathrm{f}}^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{a} \Delta \mathrm{x}\right) \\
\alpha & =\frac{\omega_{\mathrm{f}}^{2}-\omega_{\mathrm{i}}^{2}}{2 \Delta \theta}
\end{aligned}
$$

$$
\tau=\mathrm{I} \alpha=\frac{2}{5} \mathrm{MR}^{2} \frac{\omega_{\mathrm{f}}^{2}-\omega_{\mathrm{i}}^{2}}{2 \Delta \theta}
$$

$$
=\ldots
$$

$$
=4.110^{28} \mathrm{Nm}
$$

Example Mass m on string on drum radius r on a wheel with radius of gyration k and mass M. How long does it take to turn 10 turns?
Plan: solve for a or α, use kinematic equations.

N 2 for m (vertical): $\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
N 2 for wheel:

$$
\begin{aligned}
& \tau=\mathrm{I} \alpha \\
& \mathrm{rT}=\mathrm{Mk}^{2} \cdot \frac{\mathrm{a}}{\mathrm{r}} \\
& \mathrm{~T}=\mathrm{Ma}\left(\frac{\mathrm{k}}{\mathrm{r}}\right)^{2}
\end{aligned}
$$

$$
\mathrm{mg}-\mathrm{Ma}\left(\frac{\mathrm{k}}{\mathrm{r}}\right)^{2}=\mathrm{ma}
$$

$$
a=\frac{\mathrm{mg}}{\mathrm{~m}+\mathrm{M}\left(\frac{\mathrm{k}}{\mathrm{r}}\right)^{2}}
$$

$$
\Delta \theta=\omega_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} \quad \text { cf } \Delta \mathrm{x}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2}
$$

$$
\mathrm{t}=\sqrt{\frac{2 \Delta \theta}{\alpha}}=\sqrt{\frac{2(20 \pi \mathrm{rad})\left(1+\frac{\mathrm{M}}{\mathrm{~m}}\left(\frac{\mathrm{k}}{\mathrm{r}}\right)^{2}\right) \mathrm{r}}{\mathrm{~g}}}
$$

Example A car is doing work at a rate of 20 kW and travelling at 100 kph .
Wheels are $\mathrm{r}=30 \mathrm{~cm}$. What is the (total) torque applied by the drive wheels?

$$
P=F v, \text { so by analogy: } P=\tau \omega
$$

Wheels are rolling so $\omega=\frac{\mathrm{V}}{\mathrm{r}}$

$$
\begin{aligned}
\therefore \quad \tau & =\frac{\mathrm{P}}{\omega}=\frac{\mathrm{Pr}}{\mathrm{v}} \\
& =\frac{210^{4} \mathrm{~W} 0.3 \mathrm{~m}}{10^{5} \mathrm{~m} / 3600 \mathrm{~s}}
\end{aligned}
$$

$$
=220 \mathrm{Nm} \quad \text { (not equal to torque on tail shaft or at flywheel) }
$$

Analogies: linear and rotational kinematics

Linear

displacement velocity acceleration

Angular

angular displacement θ
angular velocity $\quad \omega$
angular acceleration α

kinematic equations

$$
\begin{array}{lr}
\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at} & \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\alpha \mathrm{t} \\
\Delta \mathrm{x}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \mathrm{at}^{2} & \Delta \theta=\omega_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} \\
\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{a} \Delta \mathrm{x} & \omega_{\mathrm{f}}^{2}=\omega_{\mathrm{i}}^{2}+2 \alpha \Delta \theta \\
\Delta \mathrm{x}=\frac{1}{2}\left(\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}\right) \mathrm{t} & \Delta \theta=\frac{1}{2}\left(\omega_{\mathrm{i}}+\omega_{\mathrm{f}}\right) \mathrm{t}
\end{array}
$$

Analogies: linear and rotational mechanics

mass

$$
\begin{aligned}
& \text { rmoment of inertia } \\
& \mathrm{I}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2} \quad \mathrm{I}=\int \mathrm{r}^{2} \mathrm{dm}
\end{aligned}
$$

Work \& energy
$\mathrm{W}=\int \underline{\mathbf{F}} . \mathrm{d} \underline{\mathbf{s}}$
$\mathrm{W}=\int \tau . \mathrm{d} \theta$
$\mathrm{K}=\frac{1}{2} \mathrm{Mv}^{2}$
$K=\frac{1}{2} \mathrm{I} \omega^{2}$
force $\quad \underline{\mathbf{F}} \quad$ torque $\quad \underline{\mathbf{T}} \equiv \underline{\mathbf{r}} \times \underline{\mathbf{F}}$
momentum
angular momentum

$$
\mathbf{p}=\mathrm{m} \underline{\mathbf{v}}
$$

$$
\underline{\mathbf{L}}=\mathrm{m} \underline{\mathbf{r}} \times \underline{\mathbf{v}}
$$

Newton 2:
$\underline{\mathbf{F}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{p}=\mathrm{m} \underline{\mathbf{a}}$
$\underline{\underline{\mathbf{T}}}=\frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{L}}=\mathrm{I} \underline{\alpha}$
if I const

Momentum

$$
\mathbf{p} \equiv \mathrm{m} \mathbf{v}
$$

Newton 1\&2

$$
\mathbf{F}_{\mathrm{ext}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{p}
$$

Conservation law:
If no external forces act momentum conserved
If m constant, $\quad \mathbf{F}_{\mathrm{ext}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{p}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{mv})=\mathrm{ma}$

$$
\mathrm{F}_{\mathrm{ext}}(\mathrm{r} \sin \theta)=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{pr} \sin \theta)
$$

Angular momentum $\mathrm{L} \equiv(\mathrm{r} \sin \theta) \mathrm{mv}$
only consider one axis
Newton for rotation $\quad \tau_{\text {ext }}=\frac{d}{d t} L$
Conservation law:
If no external torques act $\begin{gathered}\text { angular } \\ \text { momentum }\end{gathered}$ conserved
If I constant, $\quad \tau_{\text {ext }}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{L}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{I} \omega=\mathrm{I} \alpha$
I defined for a collection of particles
Conservation of \mathbf{p} and $\underline{\mathbf{L}}$:
If no external forces act on a system,
momentum
its angular momentum is conserved.
Conservation of mechanical energy: if non-conservative forces and torques do no work, mechanical energy is conserved

Example Particle mass moves with
$\underline{\mathbf{r}}=(\mathrm{At}) \underline{\mathbf{i}}+\mathrm{B} \underline{\mathbf{j}}+\left(\mathrm{Ct}-\frac{1}{2} \mathrm{gt}^{2}\right) \underline{\mathbf{k}}$
(i) What is \mathbf{p} for the mass? (ii) What is its \mathbf{L} about the origin? (iii) what torque $\underline{\underline{I}}$ acts on it? (iv) What is the shape of this motion?
i) $\mathbf{p}=\mathrm{m} \underline{\mathbf{v}}=\mathrm{m} \frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{r}}$

$$
=\mathrm{m}(\mathrm{~A} \underline{\mathbf{i}}+(\mathrm{C}-\mathrm{gt}) \underline{\mathbf{k}})
$$

ii) $\underline{\mathbf{L}}=\underline{\mathbf{r}} \times \underline{\mathbf{p}} \quad$ recall:

$$
\begin{array}{llll}
\mathrm{r}_{\mathrm{x}} & \mathrm{r}_{\mathrm{y}} & \mathrm{r}_{\mathrm{z}} & \mathrm{r}_{\mathrm{x}} \\
\mathrm{p}_{\mathrm{x}} & \mathrm{p}_{\mathrm{y}} & \mathrm{p}_{\mathrm{z}} & \mathrm{p}_{\mathrm{x}} \\
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{x}} & \underline{i}
\end{array}
$$

$$
=\left(\mathrm{r}_{\mathrm{x}} \mathrm{p}_{\mathrm{y}}-\mathrm{r}_{\mathrm{y}} \mathrm{p}_{\mathrm{x}}\right) \underline{\mathbf{k}}+\left(\mathrm{r}_{\mathrm{y}} \mathrm{p}_{\mathrm{z}}-\mathrm{r}_{\mathrm{z}} \mathrm{p}_{\mathrm{y}}\right) \underline{\mathbf{i}}+\left(\mathrm{r}_{\mathrm{z}} \mathrm{p}_{\mathrm{x}}-\mathrm{r}_{\mathrm{x}} \mathrm{p}_{\mathrm{z}}\right) \underline{\mathbf{j}}
$$

$$
\underline{\mathbf{L}}=-\mathrm{BmA} \underline{\mathbf{k}}+\mathrm{Bm}(\mathrm{C}-\mathrm{gt}) \underline{\mathbf{i}}+
$$

$$
\left(\left(\mathrm{Ct}-\frac{1}{2} \mathrm{gt}^{2}\right) \mathrm{mA}-\mathrm{Atm}(\mathrm{C}-\mathrm{gt})\right) \underline{\mathbf{j}}
$$

$$
=\mathrm{B}(\mathrm{C}-\mathrm{gt}) \mathrm{m} \underline{\mathbf{i}}+\frac{1}{2} \mathrm{Amgt}^{2} \underline{\mathbf{j}}-\mathrm{ABm} \underline{\mathbf{k}}
$$

(iii) $\underline{\mathbf{\tau}}=\frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{L}}=-\operatorname{Bmg} \underline{\mathbf{i}}+\mathrm{Amgt} \underline{\mathbf{j}}$

wanamanaman

$\tau=\mathrm{I} \alpha=\mathrm{I} \frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}}$
$\frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}}=\frac{\tau}{\mathrm{I}}=-\frac{\kappa}{\mathrm{I}} \theta$
solution is:

$$
\theta=\theta_{\mathrm{m}} \sin (\Omega \mathrm{t}+\phi) \quad \text { where } \Omega=\sqrt{\frac{\kappa}{\mathrm{I}}}
$$

Period

$$
\mathrm{T}=\frac{2 \pi}{\Omega}=2 \pi \sqrt{\frac{I}{\kappa}} \quad \begin{gathered}
\text { where } \kappa \text { is the } \\
\text { const of the wire }
\end{gathered}
$$

\therefore for two different objects, $\frac{\mathrm{T}_{2}{ }^{2}}{\mathrm{~T}_{1}{ }^{2}}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}$

a) If it slides (kinetic friction $\underline{\mathbf{F}}_{\mathrm{k}}$) it moves right.
b) If it rolls (static friction $\underline{\mathbf{F}}_{\mathrm{S}}$) it moves left.
N2 vertical:
$\mathrm{T} \sin \theta+\mathrm{N}=\mathrm{W}$

N2 horizontal:
$\mathrm{T} \cos \theta=\mathrm{F}_{\mathrm{fr}}$
(ii)

N 2 rot $^{\mathrm{n}}$ about centre $\mathrm{Tr}=\mathrm{Ffr} \mathrm{R}$
(iii)

At point of sliding, $\quad \mathrm{Ffr}_{\mathrm{fr}}=\mu_{\mathrm{S}} \mathrm{N}$
Unknowns: T, $\theta, F_{f r}, N$. Substitute (iv):
(ii) \rightarrow
$\mathrm{T} \cos \theta_{\mathrm{c}}=\mu_{\mathrm{S}} \mathrm{N}$
(iii) \rightarrow
$\mathrm{Tr}=\mu_{\mathrm{S}} \mathrm{NR}$
$\div \rightarrow$
$\cos \theta_{\mathrm{c}}=\frac{\mathrm{r}}{\mathrm{R}}$

Simple pendulum.

You may meet this in the lab.....
Mass m, suspended on light string. Radius of mass $\mathrm{r} \ll \mathrm{M} \therefore$ treat as particle.

N 2 in vertical: $\quad \mathrm{mg}=\mathrm{T} \cos \theta$
N 2 in horizontal: $\mathrm{T} \sin \theta=\mathrm{ma}=-\mathrm{m} \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}$
If $\theta \ll 1, \sin \theta \cong \theta \cong \frac{\mathrm{x}}{\mathrm{L}}, \quad \cos \theta \cong 1$.

$$
\begin{aligned}
& \mathrm{m} \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\mathrm{T} \sin \theta=-\mathrm{mg} \frac{\mathrm{x}}{\mathrm{~L}} \\
& \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\mathrm{T} \sin \theta=-\frac{\mathrm{g}}{\mathrm{~L}} \mathrm{x}
\end{aligned}
$$

solution is:

$$
\mathrm{x}=\mathrm{x}_{\mathrm{m}} \sin (\omega \mathrm{t}+\phi) \quad \text { where } \omega=\sqrt{\frac{\mathrm{g}}{\mathrm{~L}}}
$$

Period

$$
\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}
$$

Physical pendulum.

Object, mass m, rotational inertia I, free to rotate.

N2 for rotation:

$$
\begin{aligned}
& \tau=\mathrm{I} \alpha \\
& -\mathrm{mgh} \sin \theta=\mathrm{I} \frac{\mathrm{~d}^{2} \theta}{\mathrm{dt}^{2}}
\end{aligned}
$$

If $\theta \ll 1, \quad \frac{\mathrm{~d}^{2} \theta}{\mathrm{dt}^{2}}=-\frac{\mathrm{mgh}}{\mathrm{I}} \sin \theta$

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}} \cong-\frac{\mathrm{mgh}}{\mathrm{I}} \theta
$$

solution is:

$$
\theta=\theta_{\mathrm{m}} \sin (\omega \mathrm{t}+\phi) \quad \text { where } \omega=\sqrt{\frac{\mathrm{mgh}}{\mathrm{I}}}
$$

Period

$$
\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mgh}}}
$$

(put all mass at c.m. $I=m k^{2}=m h^{2} \Rightarrow$ previous result)

Example.

Disc, mass m, radius R, suspended at point h from centre. What is T for this pendulum?

Period

$$
\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mgh}}}
$$

Parallel axis theorem:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{new}} & =\mathrm{I}_{\mathrm{cm}}+\mathrm{mh}^{2} \\
& =\frac{1}{2} \mathrm{mR}^{2}+\mathrm{mh}^{2} \\
\mathrm{~T}= & 2 \pi \sqrt{\frac{\frac{1}{2} \mathrm{R}^{2}+\mathrm{h}^{2}}{\mathrm{gh}}}
\end{aligned}
$$

(if $h \gg R$, get $2 \pi \sqrt{\frac{h}{g}}$ as for simple pendulum \quad if $h=0, T \rightarrow \infty$)

Example. Object mass m suspended by two strings as shown. Find T_{1} and T_{2}.

It's not accelerating vertically so
$\mathrm{N} 2 \rightarrow \quad \Sigma \mathrm{~F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}}=0$

$$
\begin{equation*}
\therefore \quad \mathrm{T}_{1}+\mathrm{T}_{2}-\mathrm{mg}=0 \tag{i}
\end{equation*}
$$

It's not accelerating horizontally so

$$
\mathrm{N} 2 \rightarrow \quad \Sigma \mathrm{~F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}}=0
$$

$$
\therefore \quad 0=0 \quad \text { not enough equations }
$$

It's not rotationally accelerating so:
$\mathrm{N} 2 \rightarrow \Sigma \tau=\mathrm{I} \alpha=0$
$\begin{gathered}\tau \text { about c.m. } \\ \text { clockwise }\end{gathered} \quad \therefore \quad \tau_{1}+\tau_{2}=\mathrm{T}_{2} \mathrm{D}-\mathrm{T}_{1} \mathrm{~d}=0$
$\mathrm{T}_{1}+\frac{\mathrm{d}}{\mathrm{D}} \mathrm{T}_{1}-\mathrm{mg}=0$
$\mathrm{T}_{1}=\frac{\mathrm{mg}}{1+\mathrm{d} / \mathrm{D}} \quad \mathrm{T}_{2}=\frac{\mathrm{mg}}{1+\mathrm{D} / \mathrm{d}}$

The vector product (not in syllabus).

Define $|\underline{\mathbf{a}} \times \underline{\mathbf{b}}| \equiv \mathrm{ab} \sin \theta$
$\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ at right angles to $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ in right hand sense
pronounced "a cross b"

For right hand

Thumb $\times \underline{\text { index }}=\underline{\text { middle }}$
(remember TIM)
(or North $\times \underline{\text { East }}=\underline{\text { down }}$ remember NED)
Turn screwdriver from $\underline{\mathbf{a}}$ to $\underline{\mathbf{b}}$ and (r.h.) screw moves in direction of ($\mathbf{(a x} \underline{\mathbf{b}}$)

Apply to unit vectors:

$$
\begin{aligned}
& |\underline{\mathbf{i}} \times \underline{\mathbf{i}}|=1.1 \sin 0^{\circ}=0=\underline{\mathbf{j}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}} \times \underline{\mathbf{k}} \\
& |\underline{\mathbf{i}} \times \underline{\mathbf{j}}|=1.1 \sin 90^{\circ}=1=|\underline{\mathbf{j}} \times \underline{\mathbf{k}}|=|\underline{\mathbf{k}} \times \underline{\mathbf{i}}| \\
& \underline{\underline{\mathbf{i}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}} \quad \underline{\mathbf{j}} \times \underline{\mathbf{k}}=\underline{\mathbf{i}} \quad \underline{\mathbf{k}} \times \underline{\mathbf{i}}=\underline{\mathbf{j}}} \\
& \text { but } \underline{\mathbf{j}} \times \underline{\mathbf{i}}=-\underline{\mathbf{k}} \quad \underline{\mathbf{k}} \times-\underline{\mathbf{i}} \quad \underline{\mathbf{i}} \times \underline{\mathbf{k}}=-\underline{\mathbf{j}}
\end{aligned}
$$

Usually evaluate by $|\underline{\mathbf{a}} \times \underline{\mathbf{b}}| \equiv \mathrm{ab} \sin \theta$ but Vector product by components is neat

$$
\begin{aligned}
\underline{\mathbf{a}} \times \underline{\mathbf{b}} & =\left(a_{X} \underline{\mathbf{i}}+a_{y} \underline{\mathbf{j}}+a_{Z} \underline{\mathbf{k}}\right) x\left(b_{X} \underline{\mathbf{i}}+b_{y} \underline{\mathbf{j}}+b_{Z} \underline{\mathbf{k}}\right) \\
& =\left(a_{x} b_{x}\right) \underline{\mathbf{i}} \times \underline{\mathbf{i}}+\left(a_{y} b_{y}\right) \underline{\mathbf{j}} \times \underline{\mathbf{j}}+\left(a_{Z} b_{Z}\right) \underline{\mathbf{k}} \times \underline{\mathbf{k}} \\
& +\left(a_{x} b_{y}\right) \underline{\mathbf{i}} \times \underline{\mathbf{j}}+\left(a_{y} b_{Z}\right) \underline{\mathbf{j}} \times \underline{\mathbf{k}}+\left(a_{z} b_{x}\right) \underline{\mathbf{k}} \times \underline{\mathbf{i}} \\
& +\left(a_{y} b_{x}\right) \underline{\mathbf{j}} \times \underline{\mathbf{i}}+\left(a_{z} b_{y}\right) \underline{\mathbf{k}} \times \underline{\mathbf{j}}+\left(a_{x} b_{z}\right) \underline{\mathbf{i}} \times \underline{\mathbf{k}}
\end{aligned}
$$

$\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left(a_{x} b_{y}-a_{y} b_{x}\right) \underline{\mathbf{k}}+\left(a_{y} b_{z}-a_{z} b_{y}\right) \underline{\mathbf{i}}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \underline{\mathbf{j}}$

Example.

$$
\begin{aligned}
\underline{\mathbf{F}} & =(3 \underline{\mathbf{i}}+5 \underline{\mathbf{j}}) \mathrm{N}, \underline{\mathbf{r}}=(4 \underline{\mathbf{j}}+6 \underline{\mathbf{k}}) \mathrm{m} ; \quad \underline{\mathbf{t}}=? \\
\underline{\mathbf{\tau}} & =\underline{\mathbf{r}} \times \underline{\mathbf{F}} \\
& =\left(\mathrm{r}_{\mathrm{X}} \mathrm{~F}_{\mathrm{y}}-\mathrm{r}_{\mathrm{y}} \mathrm{~F}_{\mathrm{X}}\right) \underline{\mathbf{k}}+\left(\mathrm{r}_{\mathrm{y}} \mathrm{~F}_{\mathrm{Z}}-\mathrm{r}_{\mathrm{Z}} \mathrm{~F}_{\mathrm{y}}\right) \underline{\mathbf{i}}+\left(\mathrm{r}_{\mathrm{Z}} \mathrm{~F}_{\mathrm{X}}-\mathrm{r}_{\mathrm{X}} \mathrm{~F}_{\mathrm{Z}}\right) \underline{\mathbf{j}} \\
& =(0-4 \mathrm{~m} .3 \mathrm{~N}) \underline{\mathbf{k}}+(0-6 \mathrm{~m} .5 \mathrm{~N}) \underline{\mathbf{i}}+(6 \mathrm{~m} .3 \mathrm{~N}-0) \underline{\mathbf{j}} \\
& =(-30 \underline{\mathbf{i}}+18-12 \underline{\mathbf{j}}) \mathrm{Nm}
\end{aligned}
$$

Angular momentum

$$
\underline{\mathbf{L}}=\underline{\mathbf{r}} \times \underline{\mathbf{p}}
$$

$$
\text { or } \quad=r p \sin \theta
$$

Example What is the angular momentum of the moon about the earth?

$$
\begin{aligned}
& \mathrm{L}=|\underline{\mathbf{r}} \times \mathbf{p}| \\
& =\operatorname{rp} \sin \theta \\
& \cong \operatorname{rmv} \sin 90^{\circ} \\
& =\mathrm{mr}^{2} \omega \\
& =\left(7.410^{22} \mathrm{~kg}\right)\left(3.810^{8} \mathrm{~m}\right)^{2} \frac{2 \pi}{27.3243600 \mathrm{~s}} \\
& =2.810^{34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}
\end{aligned}
$$

Direction is North

Example Two trains mass m approach at same speed v, travelling antiparallel, on tracks separated by distance d. What is their total angular momentum, as a function of separation, about a point halfway between them?

$$
\begin{aligned}
\underline{\mathbf{L}}_{1} & =\underline{\mathbf{r}}_{1} \times \mathbf{p}_{1} \\
& =\underline{\mathbf{r}_{1}} \times \mathrm{m} \mathbf{v}_{1} \\
& =(\mathrm{d} / 2) \mathrm{mv} \text { (clockwise on my diagram) } \\
\underline{\mathbf{L}}_{2} & =(\mathrm{d} / 2) \mathrm{mv} \quad \text { (also clockwise) } \\
& =\mathrm{dmv} \quad \text { independent of separation }
\end{aligned}
$$

Newton 2 for angular momentum:

$$
\begin{aligned}
& \Sigma \underline{\mathbf{\tau}} \equiv \underline{\mathbf{r}} \times \underline{\mathbf{F}}=\underline{\mathbf{r}} \times \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{p} \\
& \frac{\mathrm{~d}}{\mathrm{dt}} \underline{\mathbf{L}}=\frac{\mathrm{d}}{\mathrm{dt}}(\underline{\mathbf{r}} \times \mathbf{p}) \\
& =\left(\frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{r}}\right) \times \underline{\mathbf{p}}+\underline{\mathbf{r}} \times \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{p} \quad \text { order important! } \\
& =\underline{\mathbf{v}} \times \operatorname{m} \underline{\mathbf{v}}+\underline{\mathbf{\tau}} \\
& \Sigma \underline{\mathbf{\tau}}=\frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{L}}
\end{aligned}
$$

Question: A top balances on a sharp point. Why doesn't it fall over?
(Qualitative treatment only.)

$\underline{\mathbf{\tau}}=\frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{L}}$
$\mathrm{d} \underline{\mathbf{L}} / / \underline{\mathbf{T}}$
but $\quad \underline{\mathbf{T}}$ is horizontal so $d \underline{\mathbf{L}}$ is perpendicular to \mathbf{g}

Also boomerangs, frisbees, satellites

Systems of particles

Total angular momentum $\underline{\mathbf{L}}$

$$
\begin{aligned}
& \underline{\mathbf{L}}=\Sigma\left(\underline{\mathbf{r}}_{\mathrm{i}} \times \mathbf{p}_{\mathrm{i}}\right) \\
& \frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{L}}=\Sigma \frac{\mathrm{d}}{\mathrm{dt}}\left(\underline{\mathbf{r}}_{\mathrm{i}} \times \mathbf{p}_{\mathrm{i}}\right) \\
&=\Sigma \underline{\mathbf{I}}_{\mathrm{i}} \\
&=\Sigma \underline{\mathbf{I}}_{\mathrm{i}} \mathrm{internal}+\Sigma \underline{\mathbf{I}}_{\mathrm{i}} \text { external }
\end{aligned}
$$

Internal torques cancel in pairs (Newton 3)

$$
\therefore \quad \Sigma \underline{\mathbf{T}}_{\mathrm{ext}}=\frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{L}} \quad \text { cf } \quad \underline{\mathbf{F}}_{\mathrm{ext}}=\frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathbf{P}}
$$

where $\Sigma \underline{\mathbf{I}}_{\text {ext }}$ is the sum of all external torques.
(This equation derived for inertial frames but it is also true for other frames if centre of mass is taken as origin.)

Consequence:

$$
\text { If } \Sigma \underline{\mathbf{\tau}}_{\mathrm{ext}}=0, \quad \frac{\mathrm{~d}}{\mathrm{dt}} \underline{\mathbf{L}}=0
$$

Conservation of angular momentum of isolated system
Example Circular motion of ball on string. What happens to the speed of the ball as the string is shortened? (Neglect air resistance).

Tension does do work, but it doesn't exert torque ($\underline{\mathbf{\tau}} / / \underline{\mathbf{r}}$) \therefore angular momentum conserved.

$$
\begin{aligned}
\underline{\mathbf{L}} & =\underline{\mathbf{r}} \times \mathbf{p} \\
& =\mathrm{rp} \sin \theta \\
& =\mathrm{rmv} \sin \theta
\end{aligned}
$$

Example: Person on rotating seat

What is the increase in ω ? Is K conserved?
Rough estimates: $\mathrm{k}_{\text {person }}$ about long axis $\sim 15 \mathrm{~cm}$

No external torques $\Rightarrow L_{i}=L_{f}$

$$
\left(\mathrm{I}_{\mathrm{p}}+2 \mathrm{I}_{\mathrm{m}}\right) \omega_{\mathrm{i}}=\left(\mathrm{I}_{\mathrm{p}}+2 \mathrm{I}_{\mathrm{m}}^{\prime}\right) \omega_{\mathrm{f}}
$$

$$
\frac{\omega_{\mathrm{f}}}{\omega_{\mathrm{i}}}=\frac{\mathrm{I}_{\mathrm{p}}+2 \mathrm{I}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{p}}+2 \mathrm{I}_{\mathrm{m}}^{\prime}} \sim 2.4
$$

$$
\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{~K}_{\mathrm{i}}}=\frac{\frac{1}{2}\left(\mathrm{I}_{\mathrm{p}}+2 \mathrm{I}_{\mathrm{m}}\right) \omega_{\mathrm{f}}^{2}}{\frac{1}{2}\left(\mathrm{I}_{\mathrm{p}}+2 \mathrm{I}_{\mathrm{m}}^{\prime}\right) \omega_{\mathrm{f}}^{2}}=2.4
$$

Arms do work: $\mathrm{Fds}=$ ma $_{\text {centrip }}$.ds
Example Space-walking cosmonaut ($\mathrm{m}=80 \mathrm{~kg}, \mathrm{k}=0.3 \mathrm{~m}$ about short axes) throws a 2 kg ball (from shoulder) at $31 \mathrm{~ms}^{-1}$ (\mathbf{v} displaced 40 cm from c.m.). How fast does she turn? Is this a record?

In orbit so no ext torques so $\underline{\mathbf{L}}$ conserved

$$
\begin{aligned}
\underline{\mathbf{L}}_{\mathrm{i}} & =\underline{\mathbf{L}}_{\mathrm{f}}=\underline{\mathbf{L}}_{\text {ball }}+\underline{\mathbf{L}}_{\mathrm{cos}} \\
0 & =\underline{\mathbf{r}} \times \mathbf{m} \underline{\mathbf{v}}-\mathrm{I} \omega \\
& =\mathrm{rmv}-\mathrm{Mk}^{2} \omega \\
\omega & =\frac{\mathrm{rmv}}{\mathrm{Mk}^{2}} \\
& =3.4 \mathrm{rad} . \mathrm{s}^{-1} \\
& =33 \frac{1}{3} \mathrm{r} . \mathrm{p} . \mathrm{m} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{p}}=\mathrm{Mk}^{2}=\sim 70 \mathrm{~kg} .(.15 \mathrm{~m})^{2} \text { include moving } \\
& \mathrm{I}_{\mathrm{p}} \sim 1.6 \mathrm{kgm}^{2} \\
& \mathrm{I}_{\mathrm{m}}=\mathrm{mr}^{2} \cong 2.2 \mathrm{~kg} .(0.8 \mathrm{~m})^{2} \\
& \mathrm{I}_{\mathrm{m}} \cong 1.4 \mathrm{kgm}^{2} \\
& \text { (arms extended) } \\
& \mathrm{I}_{\mathrm{m}}{ }^{\prime}=\mathrm{mr}^{\prime} \text { ² } 2.2 \mathrm{~kg} .(0.2 \mathrm{~m})^{2} \\
& \cong 0.1 \mathrm{kgm}^{2} \\
& \text { (arms in) }
\end{aligned}
$$

