Gravity• where does it fit in?

Oravity.	where does it	110 111 .					
Gravity [general relativity]	Electric force*	Weak nuclear force	Strong nuclear force	Colour force			
gravitons	photons	intermediate vector bosons	pions	gluons			
				\sim			
				\sim			
electro-weak							
Grand Unified Theories							
Som for cl gra	e tries assical wity						
Theories Of Evenuthing							

Theories Of Everything

* Electromagnetism "unified" by Maxwell, and also by Einstein: Magnetism can be considered as the relativistic correction to electric interactions which applies when charges move.

• Only gravity and electric force have macroscopic ("infinite") range.

$$m_{graviton}? = m_{photon} = 0$$

• Gravity weakest, but dominates on large scales because it is always attractive

Greeks to Galileo:

i) things fall to the ground ('natural' places)

ii) planets etc move (variety of reasons)

but no connection (in fact, natural vs supernatural)

Newton's calculation: accelⁿ of moon

=
$$r_m \omega_m^2$$

= (3.8 10⁸ m) $\left(\frac{2\pi}{27.3 \ 24 \ 3600}\right)^2$
= 2.7 10⁻³ m.s⁻²
accelⁿ of "apple" = 9.8 ms⁻²

$$\frac{a_{apple}}{a_{moon}} = 3600; \quad \frac{r_m}{R_e} = \frac{385000 \text{ km}}{6370 \text{ km}} = 60; \\ \left(\frac{r_m}{R_e}\right)^2 = 3600$$

Newton's brilliant idea: What if the apple and the moon accelerate according to the same law? \rightarrow What if every body in the universe attracts every other, inverse square law?

Newton's law of gravity:

$$F = -G \frac{\underline{m_1 m_2}}{r^2} \qquad Negative sign means}$$

Why is it inverse square? Wait for Gauss' law in electricity.

Newton already knew Kepler's empirical law:

For planets, $r^3 \propto T^2$ orbit radius and period Now if $F \propto a_c \propto \frac{1}{r^2}$ then constant = $a_c r^2 = r \omega^2 r^2 = r^3 \omega^2$

Planet	<u>r from sun</u>	T_	ω	<u>rw</u> ²	<u>$r^3\omega^2$</u>
	million km	Ms	rad.s ⁻¹	ms ⁻²	
Mercury	58	7.62	8.25 10-7	3.95 10 ⁻⁵	1.31 10 ²⁰ m ³ s ⁻²
Venus	108	19.4	3.23 10-7	1.13 10 ⁻⁵	1.32 10 ²⁰ m ³ s ⁻²
Earth	150	31.6	1.99 10 ⁻⁷	5.94 10 ⁻⁶	1.33 10 ²⁰ m ³ s ⁻²
etc					

How big is G? **Cavendish's experiment** (1798)

F = $-G \frac{m_1 m_2}{r^2}$

3

From deflection and spring constant, calculate F, know m_1 and m_2 , \therefore can calculate G. $G = 6.67 \ 10^{-11} \ \text{Nm}^2 \text{kg}^{-2}$ (or $m^3 \text{kg}^{-1} \text{s}^{-2}$ Now also weight of m: $|W| = \text{mg} \cong G \frac{\text{m.M}_e}{\text{R}_e^2}$

: Cavendish first calculated mass of the earth:

$$M_e = \frac{gr_e^2}{G} = \frac{9.8 \text{ m.s}^{-2} \text{ x } (6.37 \text{ } 10^6 \text{ m})^2}{6.67 \text{ } 10^{-11} \text{ Nm}^2 \text{kg}^{-2}} = 6.0 \text{ } 10^{24} \text{ kg}$$

see http://www.physicscentral.com/action/action-01-5-print.html and http://physics.usask.ca/~kolb/p404/cavendish/

Some numbers

What is force between two oil tankers at 100 m?

$$F = -G \frac{m_1 m_2}{r^2}$$

What happens when more there are ≥ 3 bodies?

Superposition principle.

 $\mathbf{\underline{F}}_{all objects together} = \mathbf{\underline{\Sigma}} \mathbf{\underline{F}}_{individual}$

or $\underline{\mathbf{F}}_1 = \sum_{i} \underline{\mathbf{F}}_{1i}$ force on m_1 due to masses m_i continuous $\underline{\mathbf{F}}_1 = \int_{body} d \, \underline{\mathbf{F}}$

Shell theorem

A uniform shell of mass M causes the same gravitational force on a body outside is as does a point mass M located at the centre of the shell, and zero force on a body inside it.

Example. If ρ_{earth} were uniform (it isn't), how long would it take for a mass to fall through a hole through the earth to the other side?

$$\begin{split} M_r &= \rho \cdot \frac{4}{3} \pi r^3 \\ \therefore \ F_r &= -G \frac{m \rho \cdot \frac{4}{3} \pi r^3}{r^2} \\ F &= -Kr \quad \text{where } K = Gm \rho \cdot \frac{4}{3} \pi \\ \therefore \text{ motion is SHM with } \omega &= \sqrt{\frac{K}{m}} \qquad \text{Simple Harmonic Motion: discussed later} \\ T &= \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{G\rho \cdot \frac{4}{3} \pi}} = \frac{2\pi}{\sqrt{GM/R^3}} = \dots = 84 \text{ minutes} \end{split}$$

:. falls through (one half cycle) in 42 minutes (actually faster for real density profile)

Gravity near Earth's surface

$$W = |F_g| = G \frac{Mm}{R_e^2}$$
$$W = mg_o = G \frac{M_em}{r^2}$$

go is accelⁿ in an inertial (non-rotating) frame

$$g_o = G \frac{M_e}{r^2}$$

Usually, $r \cong R_e$, but

where g_s is g_o at surface

Other complications:

- i) Earth is not uniform (especially the crust) useful for prospecting
- ii) Earth is not spherical
- iii) Earth rotates (see Foucault pendulum)

 $\begin{array}{ll} (\text{Weight}) &= - (\text{the force exerted by scales}) \\ \text{At poles,} & \underline{\mathbf{F}} - \underline{\mathbf{N}} = 0 \\ \text{At latitude } \theta, & \underline{\mathbf{F}} - \underline{\mathbf{N}} = m\underline{\mathbf{a}} \\ & \text{where } \mathbf{a} = r\omega^2 = (R_e \cos \theta)\omega^2 \\ & = \dots = 0.03 \text{ ms}^{-2} \text{ at equator} \\ & = 0 \text{ at poles} \\ \text{We define } -\underline{\mathbf{g}} = \frac{\underline{\mathbf{N}}}{m} = \frac{\underline{\mathbf{F}} - m\underline{\mathbf{a}}}{m} \end{array}$

So $\underline{\mathbf{g}}$ is greatest at the poles, least at the equator, and does not (quite) point towards centre.

horizontal $\perp \underline{g}$ Earth is flattened at poles

Puzzle: How far from the earth is the point at which the gravitational attractions towards the earth and that towards the sun are equal and opposite? Compare with distance earth-moon (380,000 km)

Gravitational field. A field is ratio of force on a particle to some property of the particle. For gravity, (gravitational) mass is the property:

 $\frac{\underline{\mathbf{F}}_{grav}}{m} = \underline{\mathbf{g}} = \underline{\mathbf{g}}(\underline{\mathbf{r}}) \qquad \text{is a vector field}$

cf electric field $\frac{\mathbf{\underline{F}}_{elec}}{q} = \mathbf{\underline{E}}(\mathbf{\underline{r}})$ later in syllabus

Gravitational potential energy. Revision:

Potential energy

=

For a **conservative** force $\underline{\mathbf{F}}$ (i.e. one where work done against it, $W = W(\underline{\mathbf{r}})$) we can define potential energy U by $\Delta U = W_{against}$. i.e.

$$\Delta \mathbf{U} = -\int_{\mathbf{i}}^{\mathbf{f}} \mathbf{F} \cdot \mathbf{d}\mathbf{r}$$

near Earth's surface, $\underline{F}_g = m\underline{g} \cong constant$

$$-\int_{\mathbf{i}}^{\mathbf{f}} (-\mathbf{m}\mathbf{g}\mathbf{k}) \cdot (\mathbf{d}\mathbf{x}\mathbf{\underline{i}} + \mathbf{d}\mathbf{y}\mathbf{\underline{j}} + \mathbf{d}\mathbf{z}\mathbf{\underline{k}})$$
$$= \mathbf{m}\mathbf{g}\mathbf{\underline{k}} \cdot \mathbf{\underline{k}}\int_{\mathbf{i}}^{\mathbf{f}} \mathbf{d}\mathbf{z} = \mathbf{m}\mathbf{g}(\mathbf{z}_{f} - \mathbf{z}_{i})$$

choose reference at $z_i = 0$, so U = mgz

Gravitational potential energy of m and M.

$$M \longrightarrow F_g \quad M \longrightarrow$$

Convention: take $r_i = \infty$ as reference: $U(r) = -\frac{Grad}{r}$

U = work to move one mass from ∞ to r in the field of the other. Always negative. Usually one mass >> other, we talk of U of one in the field of the other, but it is U of both.

Escape ''velocity''. Escape "velocity" is **minimum** speed v_e required to escape, i.e. to get to a large distance $(r \rightarrow \infty)$.

Projectile in space: no non-conservative forces so conservation of mechancial energy

$$\begin{split} & K_{i} + U_{i} = K_{f} + U_{f} \\ & \frac{1}{2} m v_{e}^{2} - \frac{GMm}{R} = 0 + 0 \\ & v_{esc} = \sqrt{\frac{2GM}{R}} \\ & \text{For Earth:} \quad v_{esc} = \sqrt{\frac{2 \ 6.67 \ 10^{-11} \ m^{3} \text{kg}^{-1} \text{s}^{-2} \ 5.98 \ 10^{24} \ \text{kg}}{6.37 \ 10^{6} \ \text{m}}} \\ & = 11.2 \ \text{km.s}^{-1} = 40,000 \ \text{k.p.h.} \end{split}$$

Put launch sites near equator: $v_{eq} = R_e \omega_e = 0.47 \text{ km.s}^{-1}$

Question In Jules Verne's "From the Earth to the Moon", the heros' spaceship is fired from a cannon*. If the barrel were 100 m long, what would be the average acceleration in the barrel?

$$v_f^2 - v_i^2 = 2as$$

 $a = \frac{v_e^2 - 0}{2s} = \frac{(1.12 \ 10^4 \ ms^{-2})^2}{2 \ x \ 100 \ m}$
 $= 630,000 \ ms^{-2} = 64,000 \ g$

* why? If you burn all the fuel on the ground, you don't have to accelerate and to lift it. *Much* more efficient.

Planetary motion

"The music of the spheres" - Plato

Leucippus & Democritus C5 B.C.

heliocentric universe

Hipparchus (C2 BC) & Ptolemy (C2 AD) geocentric universe Tycho Brahe (1546-1601) - very many, very careful, naked eye observations.

Johannes Kepler joined him. He fitted the data to these *empirical* laws:

Kepler's laws:

1 All planets move in elliptical orbits, with the sun at one focus.

Except for Pluto and Oort cloud objects, these ellipses are \cong *circles.*

 $M_{sun} >> m_{planet}$, so sun is $\cong c.m$.

2 A line joining the planet to the sun sweeps out equal areas in equal time.

Slow at apogee (distant), fast at perigee (close)

3 The square of the period \propto the cube of the semi-major axis

Slow for distant, fast for close

Newton's explanations:

Law of areas:

Area =
$$\frac{1}{2}$$
 r.r $\delta\theta$

i.e. for same δt , $\frac{1}{2}r^2\delta\theta$ = constant Conservation of angular momentum **<u>L</u>**. Sun at c.m.

$$\therefore |\mathbf{L}| = |\mathbf{r} \times \mathbf{p}| = |\mathbf{r} \times \mathbf{m}\mathbf{y}| = \mathbf{m} \operatorname{momentum}_{= \mathbf{p}. see \ later}$$

$$= \operatorname{mrv}_{\text{tangential}}$$

$$= \operatorname{mr.r}\omega = \operatorname{mr}^{2}\frac{\delta\theta}{\delta t}$$

$$= \frac{m}{\delta t}r^{2}\delta\theta = \text{constant.}$$

Conservation of $\underline{\mathbf{L}} \Rightarrow$ Kepler 2.

Law of periods: (we consider only circular orbits) Kepler 3: $T^2 \propto r^3$

Newton 2 \rightarrow

$$F = ma = m r\omega^{2}$$

$$G \frac{Mm}{r^{2}} = mr \left(\frac{2\pi}{T}\right)^{2}$$

$$T^{2} = \left(\frac{4\pi^{2}}{GM}\right)r^{3} \rightarrow \text{Kepler } 3$$

(works for elipses with semi-major axis a instead of r) Newton 2 & \Rightarrow Kepler 3 Newton 2 & $also \Rightarrow$ Kepler 1

Example What is the period of the smallest earth orbit? ($r \cong R_e$) What is period of the moon? ($r_{moon} = 3.82 \ 10^8 \ m$)

$$T_{1} = \sqrt{\left(\frac{4\pi^{2}}{GM}\right)r^{3}} = \sqrt{\frac{4\pi^{2}}{6.67\ 10^{-11}\ 5.98\ 10^{24}}\ (6.37\ 10^{6})^{3}} s$$

= 84 min
or 3: $T^{2} \propto r^{3}$

Kepler 3: $T^2 \propto r$

$$\frac{T_2}{T_1} = \left(\frac{r_2}{r_1}\right)^{3/2} = \left(\frac{3.82\ 10^8}{6.37\ 10^6}\right)^{3/2} = 464$$
$$T_2 = 464\ T_1 = 27.2\ days$$

For other planets: most have moons, so the mass of the planet can be calculated from

$$T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$$

Orbits and energy

No non-conservative forces do work, so mechanical energy is constant:

$$E = K + U$$
$$= \frac{1}{2}mv^2 - \frac{GMm}{r}$$

Let's remove v. Consider circular orbit:

$$\frac{v^2}{r} = a_c = \frac{F}{m} = \frac{GMm}{r^2m}$$

$$\therefore \quad \frac{1}{2}mv^2 = \frac{1}{2}\frac{GMm}{r}$$

$$E = K + U$$

$$= \frac{1}{2}\frac{GMm}{r} - \frac{GMm}{r}$$

$$= -\frac{GMm}{2r}$$

i.e. $F = {}^1 U$ or $K = {}^1 U$ or $K = {}^F$

i.e. $E = \frac{1}{2}U$, or $K = -\frac{1}{2}U$, or K = -E.

Small $r \Rightarrow U$ very negative, K large. (inner planets fast, outer slow)

Example A spacecraft in orbit fires rockets while pointing forward. Is its new orbit faster or slower?

 $\mathbf{\underline{F}} // \mathbf{\underline{ds}} :$ Work done on craft

 $\mathbf{W} = \int \mathbf{\underline{F}} \cdot \mathbf{\underline{ds}} > 0.$

 \therefore E = $-\frac{GMm}{2r}$ increases, i.e. it becomes less negative. (R is larger). K = -E, \therefore K smaller, so it travels *more slowly*.

called "Speeding down"

Quantitatively:

$$\begin{split} K_i &= - \, E_i \ K_f \,=\, - \, E_f \,=\, - \, \left(E_i + \Delta E \right) \\ K_f &= \ K_i - \Delta E \\ \frac{1}{2} \, m v_f{}^2 &=\, \frac{1}{2} \, m v_f{}^2 - W \end{split}$$

Looks odd, but need lots of work to get to a high, slow orbit.

Manœuvring in orbit.

Example: In what orbit does a satellite remain above the same point on the equator?

Called the Clarke Geosynchronous Orbit

- i) Period of orbit = period of earth's rotation
- ii) Must be circular so that ω constant

T = 23.9 hours
T² =
$$\left(\frac{4\pi^2}{GM}\right)r^3$$

r = $\sqrt[3]{\frac{GMT^2}{4\pi^2}}$ =
= 42,000 km popular orbit!