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Gravity    Notes for PHYS 1121-1131. Joe Wolfe, UNSW

Gravity:   where does it fit in?
Gravity
[general

relativity]
           

Electric
force*          

Weak
nuclear
force

        
Strong
nuclear
force

       
Colour

force

gravitons       photons   
intermediate

vector bosons   pions   gluons

  

    
       electro-weak

       Grand Unified Theories

       
Some tries
for classical

gravity

               Theories Of Everything
*  Electromagnetism "unified" by Maxwell, and also by Einstein: Magnetism
can be considered as the relativistic correction to electric interactions which
applies when charges move.

•   Only gravity and electric force have macroscopic ("infinite")
range.

mgraviton?  =  mphoton  =  0

•  Gravity weakest, but dominates on large scales because it is
always attractive

Greeks to Galileo:
i) things fall to the ground ('natural' places)
ii) planets etc move (variety of reasons)
but no connection (in fact, natural vs supernatural)

Newton's calculation:    acceln of moon

=  rmωm2

= (3.8 108 m)( )2π
27.3 24 3600

2

=  2.7 10-3 m.s-2

acceln of "apple" = 9.8 ms-2

aapple
amoon

  =  3600;  
rm
Re

  =  
385000 km

6370km   =  60;

   
 


 
rm

Re

2
  =  3600

Newton's brilliant idea: What if the apple and the moon accelerate according to the same law? →
What if every body in the universe attracts every other, inverse square law?
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Newton's law of gravity:

F  =  − G 
m1m2

r2
    

 Negative sign means
 F_ // − r_

Why is it inverse square?  Wait for Gauss' law in electricity.

F_12  =  − F_21   Newton 3

Newton already knew Kepler's empirical law:

For planets,  r3  ∝  Τ 2      orbit radius and period

Now if   F  ∝   ac  ∝   
1
r2

then constant = acr2  =  rω2r2   =  r3ω2

Planet r from sun            T               ω                      rω2                        r3ω2

million km Ms rad.s-1 ms-2

Mercury 58 7.62 8.25 10-7  3.95 10-5 1.31 1020 m3s-2

Venus 108 19.4 3.23 10-7 1.13 10-5 1.32 1020 m3s-2

Earth 150 31.6 1.99 10-7 5.94 10-6 1.33 1020 m3s-2

etc
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How big is G? Cavendish's experiment        (1798)

F  =  − G 
m1m2

r2

From deflection and spring constant, calculate F, know m1 and m2, ∴  can
calculate G.     G  =  6.67 10-11 Nm2kg-2 ( or  m3kg-1s-2

Now also weight of m:   |W|  =  mg   ≅   G 
m.Me
Re2

∴   Cavendish first calculated mass of the earth:

Me  =  
gre2

G   =  
9.8 m.s-2 x (6.37 106 m)2

6.67 10-11 Nm2kg-2 =  6.0 1024 kg

see http://www.physicscentral.com/action/action-01-5-print.html
and http://physics.usask.ca/~kolb/p404/cavendish/

Some numbers
What is force between two oil tankers at 100 m?

F  =  − G 
m1m2

r2

What happens when more there are ≥ 3 bodies?
Superposition principle.

F_all objects together  =  Σ F_individual

or     F_1 =  Σ
i
 F_1i

force on m1
due to masses mi

continuous
body

 F_1 =  ∫
body

  d F_
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Shell theorem

A uniform shell of mass M causes the same gravitational
force on a body outside is as does a point mass M located at the
centre of the shell, and zero force on a body inside it.

dθ

dm

R

Fg

M

m
F=0

r

Fg  =  
GMm

R2

Example. If ρearth were uniform (it isn't), how long would it take
for a mass to fall through a hole through the earth to the other
side?

Mr  =  ρ.4
3
 πr3

∴   Fr  =  − G 
mρ.4

3
 πr3

r2

    F    =  − Kr where  K  =  Gmρ.4
3
 π

∴  motion is SHM with  ω  =  √ K
m Simple Harmonic Motion: discussed later

Τ  =  
2π
ω   =  

2π

√Gρ.4
3
 π

  =   
2π

√GM/R3
 = ....  =  84 minutes

∴   falls through (one half cycle) in 42 minutes   (actually faster for real density profile)



5
Gravity near Earth's surface

W =  |Fg|   = G 
Mm
Re2

W  =  mgo  =  G 
Mem

r2

go is acceln in an inertial (non-rotating) frame

go  =  G 
Me
r2

Usually, r ≅   Re, but

go  =  G 
Me

(Re + h)2
  =  gs  


 
Re

Re + h
2

       
=  gs  


 
1

1 + h/Re

2             where gs is
go at surface

Other complications:
i) Earth is not uniform (especially the crust)  useful for prospecting

ii) Earth is not spherical
iii) Earth rotates (see Foucault pendulum)

(Weight)   =  − (the force exerted by scales)
At poles,          F_  −  N_   =  0
At latitude θ,    F_  −  N_   =  ma_

where a =  rω2 =  (Re cos θ)ω2

      = ....  =  0.03 ms-2  at equator
                       =  0 at poles

We define   − g_  =   
 N_  
m   =   

F_ − ma_
 m

So g_ is greatest at the poles, least at the equator, and does not
(quite) point towards centre.

horizontal _|   g_
Earth is flattened at poles
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Puzzle:   How far from the earth is the point at which the
gravitational attractions towards the earth and that towards the sun
are equal and opposite? Compare with distance earth-moon
(380,000 km)

|Fe|  =  |Fs|
GMem

d2    =   
GMsm
(re - d)2

Me(re − d)2 = Msd2

re2 − 2red + d2  =  
Ms
Me

 d2

 


 
Ms

Me
 − 1 d2  + 2red − re2  =  0

d = ....  =  ?

Gravitational field.  A field is ratio of force on a particle to some
property of the particle. For gravity, (gravitational) mass is the
property:

 
F_grav

m   =  g_  = g_(r_)  is a vector field

cf    electric field    
F_elec

q   = E_(r_)      later in syllabus

Gravitational potential energy. Revision:
Potential energy
For a conservative force F_   (i.e. one where work done against it, W =
W( r_)) we can define potential energy U by ∆U = Wagainst.     i.e.

∆U  = − ∫
i

f
  F_  . dr__

near Earth's surface, F_ g = mg_  ≅  constant

= − ∫
i

f
 (-mgk_) . (dxi_ + dyj_ + dzk_)

=  mg k_ . k_ ∫
i

f
 dz  =  mg (zf - zi)

choose reference at zi = 0, so U  =  mgz

Gravitational potential energy of m and M.

M m
r

F dsg

     ∆Ug  ≡ − ∫
i

f
  F_g . ds__ =  ∫

i

f
 Fgdr =  ∫

i

f
 G 

Mm
r2

 dr   =  − GMm[1
rf

 − 
1
ri
]

 Convention:  take ri = ∞ as reference: U(r)  =  − 
GMm

r
U = work to move one mass from ∞ to r in the field of the other. Always negative.
Usually one mass >> other, we talk of U of one in the field of the other, but it is U of both.
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Escape "velocity".
Escape "velocity" is minimum speed ve  required to escape, i.e.
to get to a large distance (r →  ∞).

M

mr
R

v

Projectile in space:  no non-conservative forces so
conservation of mechancial energy

Ki + Ui  =  Kf + Uf

1
2
 mve2 − 

GMm
R   =  0 + 0

vesc  =  √2GM
R

For Earth:   vesc  =  √2 6.67 10-11 m3kg-1s-2 5.98 1024 kg
6.37 106 m

         =  11.2 km.s-1 =  40,000 k.p.h.

Put launch sites near equator:   veq = Reωe = 0.47 km.s-1

Question    In Jules Verne's "From the Earth to the Moon", the
heros' spaceship is fired from a cannon*. If the barrel were 100 m
long, what would be the average acceleration in the barrel?

vf2 − vi2  =  2as

a  =  
ve2 - 0

2s   =  
(1.12 104 ms-2)2

2 x 100 m

   =  630,000 ms-2  =  64,000 g

* why? If you burn all the fuel on the ground, you don't have to
accelerate and to lift it. Much more efficient.

Planetary motion
"The music of the spheres" - Plato

Leucippus & Democritus C5 B.C.
heliocentric universe

Hipparchus (C2 BC) & Ptolemy (C2 AD) geocentric universe
Tycho Brahe (1546-1601)  -  very many, very careful, naked eye
observations.
Johannes Kepler joined him. He fitted the data to these empirical
laws:
Kepler's laws:
1 All planets move in elliptical orbits, with the sun at one

focus.
Except for Pluto and Oort cloud objects, these ellipses are ≅  circles.

Msun >> mplanet, so sun is ≅  c.m.

2 A line joining the planet to the sun sweeps out equal areas in
equal time.

Slow at apogee (distant), fast at perigee (close)

3 The square of the period ∝  the cube of the semi-major axis
Slow for distant, fast for close
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Newton's explanations:
Law of areas:

Area  =  1
2
 r.rδθ

i.e.      for same δt,   1
2
 r2δθ   =  constant

Conservation of angular momentum L_. Sun at c.m.

∴     |L_|  =  |r_  x  p_|   =  |r_  x  mv_|    momentum
= p. see later

=  mrvtangential

=  mr.rω  =  mr2
δθ
δt

=  
m
δt r

2δθ  =  constant.

Conservation of L_  ⇒   Kepler 2.
Law of periods:        (we consider only circular orbits)

Kepler 3:             T2  ∝   r3

Newton 2  → F  =  ma  =  m rω2

G 
Mm
r2

  =  mr  


 
2π

T
2

      T2  =   


 
4π2

GM  r3    →   Kepler 3

(works for elipses with semi-major axis a instead of r)

Newton 2 &   
Newton's gravity     ⇒    Kepler 3

Newton 2 &   
Newton's gravity     also   ⇒    Kepler 1

Example  What is the period of the smallest earth orbit? (r ≅  Re)
What is period of the moon? (rmoon = 3.82 108 m)

T1  =  √    
4π2

GM  r3  =  √ 
4 π2

6.67 10-11 5.98 1024  (6.37 106)3  s

=  84 min

Kepler 3: T2  ∝  r3

T2
T1

  =   
 


 
r2

r1

3/2
  =  

 


 
3.82 108

6.37 106
3/2

  =  464

T2 =  464 T1 =  27.2 days

For other planets: most have moons, so the mass of the planet
can be calculated from

      T2  =   


 
4π2

GM  r3
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Orbits and energy
No non-conservative forces do work, so mechanical energy is
constant:

E  =  K  +  U

     =  1
2
 mv2 − 

GMm
r

Let's remove v.  Consider circular orbit:

v2

r   =  ac  =  
F
m  =   

GMm
r2m

∴  1
2
 mv2  =   1

2
 
GMm

r
 E  =  K  +  U

     =   1
2
 
GMm

r   − 
GMm

r

      =  − 
GMm

2r

i.e. E = 1
2
 U,   or  K = − 1

2
 U,  or K  =  − E.

Small r  ⇒   U very negative, K large.   (inner planets fast, outer slow)

Example  A spacecraft in orbit fires rockets while pointing
forward. Is its new orbit faster or slower?

F_ // ds__   ∴     Work done on craft

   W  =  ∫ F_ . ds__  > 0.

∴    E   =  − 
GMm

2r   increases,  i.e. it becomes less negative. (R is

larger).  K =  - E,  ∴   K smaller, so it travels more slowly.
called "Speeding down"

Quantitatively:
Ki  =  − Ei Kf  =  − Ef  =  −  (Ei + ∆E)
Kf  =  Ki − ∆E
1
2
 mvf2 =  1

2
 mvf2 − W

Looks odd, but need lots of work to get to a high, slow orbit.
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Manœuvring in orbit.

To catch up, vessel 1 fires engines backwards, and loses energy.
It thus falls to a lower orbit where it travels faster, until it catches
up. It then fires its engines forwards in order to slow down (it
climbs back to the original, slower orbit).

Example:   In what orbit does a satellite remain above the same
point on the equator?

Called the Clarke Geosynchronous Orbit

i)     Period of orbit = period of earth's rotation
ii)    Must be circular so that ω constant

T       =    23.9 hours

T2  =      


 
4π2

GM  r3

r  =   √
3

GMT2

4π2   =  .....

    =  42,000 km       popular orbit!


