PHYS 1A Work and Energy Joe Wolfe, UNSW
The scalar product. dot product
Why? e.g. Work: scalar, related to $\underline{\mathbf{F}}$, $\mathbf{d s}$ and θ.

$$
\mathrm{dW}=|\underline{\mathbf{F}}||\underline{\mathbf{d} \mathbf{s}}| \cos \theta
$$

(also $\mathrm{dV}=|\underline{\mathbf{E}}||\underline{\mathbf{d} \mathbf{s}}| \cos \theta$ etc)

\therefore define

$$
\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} \equiv \mathrm{ab} \cos \theta \quad(=\underline{\mathbf{b}} \cdot \underline{\mathbf{a}})
$$

Apply to unit vectors:

$$
\begin{aligned}
& \underline{\mathbf{i}} \cdot \underline{i}=1 \cdot 1 \cos 0^{\circ}=1=\underline{\mathbf{j}} \cdot \underline{\mathbf{j}}=\underline{\mathbf{k}} \cdot \underline{\mathbf{k}} \\
& \underline{\mathbf{i}} \cdot \underline{\mathbf{j}}=1.1 \cos 90^{\circ}=0=\underline{\underline{\mathbf{j}}} \cdot \underline{\mathbf{k}}=\underline{\mathbf{k}} \cdot \underline{\mathbf{i}}
\end{aligned}
$$

Scalar product by components

$$
\begin{aligned}
\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}= & \left(\mathrm{a}_{\mathrm{x}} \underline{\underline{i}}+\mathrm{a}_{\mathrm{y}} \underline{\mathbf{j}}+\mathrm{a}_{\mathrm{z}} \underline{\mathbf{k}}\right) \cdot\left(\mathrm{b}_{\mathrm{x}} \underline{\mathbf{i}}+\mathrm{b}_{\mathrm{y}} \underline{\mathbf{j}}+\mathrm{b}_{\mathrm{z}} \underline{\mathbf{k}}\right) \\
= & \left(\mathrm{a}_{\mathrm{x}} \mathrm{~b}_{\mathrm{x}}\right) \underline{\mathrm{i}} \cdot \underline{\underline{1}}+\left(\mathrm{a}_{\mathrm{y}} \mathrm{~b}_{\mathrm{y}}\right) \underline{\mathbf{j}} \cdot \mathbf{j}+\left(\mathrm{a}_{\mathrm{z}} \mathrm{~b}_{\mathrm{z}} \underline{\mathbf{k} \cdot \underline{\mathbf{x}}}\right. \\
& +\left(\mathrm{a}_{\mathrm{x}} \mathrm{~b}_{\mathrm{y}}+\mathrm{a}_{\mathrm{y}} \mathrm{~b}_{\mathrm{x}}\right) \underline{\mathbf{i}} \cdot \underline{\mathbf{j}} \underline{+(. .) \underline{\mathbf{j}} \underline{\mathbf{k}}+(. .) \underline{\mathbf{k}} \cdot \underline{i}}
\end{aligned}
$$

$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=\mathrm{a}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}}+\mathrm{a}_{\mathrm{y}} \mathrm{b}_{\mathrm{y}}+\mathrm{a}_{\mathrm{z}} \mathrm{b}_{\mathrm{z}}$
Problem. Find the angle between
$\underline{\mathbf{a}}=4 \underline{\mathbf{i}}-3 \underline{\mathbf{j}}+7 \underline{\mathbf{k}}$
$\underline{\mathbf{b}}=2 \underline{\mathbf{i}}+5 \underline{\mathbf{j}}-3 \underline{\mathbf{k}}$
$\mathrm{ab} \cos \theta=\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=\mathrm{a}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}}+\mathrm{a}_{\mathrm{y}} \mathrm{b}_{\mathrm{y}}+\mathrm{a}_{\mathrm{z}} \mathrm{b}_{\mathrm{z}}$
$\cos \theta=\frac{a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}}{\sqrt{a_{x}^{2}+a_{y}{ }^{2}+a_{z}^{2}} \sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}}$
$\rightarrow \theta=122^{\circ}$

Definition of work

When force varies, use differential displacement ds

$$
\begin{aligned}
& \mathrm{dW}=\mathrm{F} \mathrm{ds} \cos \theta \\
& \mathrm{~W}=\int_{0} \mathrm{~F} \cos \theta \mathrm{ds}(d s \cos \theta)
\end{aligned}
$$

if F and θ are constant, we get $\mathrm{W}=\mathrm{FL} \cos \theta$
SI Unit: 1 Newton $\times 1$ metre $=1$ Joule

Example. How much work is done by lifting 100 kg vertically by 1.8 m very slowly?

Slow $\therefore \mathrm{F}_{\text {applied }} \cong \mathrm{mg}$
$\mathrm{W}=\mathrm{mgd} \cos 0^{\circ}$

$$
=1.8 \mathrm{~kJ} \text {. }
$$

Not a lot, yet it is hard to do, because the force is inconveniently large.
Consider:

If the rope and pulleys are light, and if the acclerations are negligible, then
Force on LH pulley
$\mathrm{ma} \cong 0=2 \mathrm{~T}-\mathrm{mg}$
$\therefore \mathrm{T}=\mathrm{mg} / 2$
If mass rises by D , word done $=\mathrm{mgD}$.
But rope shortens on both sides of rising pulley,
if mass rises by D , rope must be pulled 2D,
so work done $=T * 2 \mathrm{D}=\mathrm{mgD}$

Example. What is the work done by gravity in a circular orbit?
$\mathrm{W}=\int \mathrm{Fds} \cos \theta=0$

Example. $\mathrm{F}_{\text {grav }} \propto 1 / \mathrm{r}^{2}$. How much work is done to move $\mathrm{m}=1$
tonne from earth's surface $(\mathrm{r}=6500 \mathrm{~km})$ to $\mathrm{r}=\infty$?

$$
\begin{aligned}
\mathrm{W} & =\int \mathrm{F} \mathrm{ds} \cos \theta \\
& =\int \mathrm{Fdr}
\end{aligned}
$$

$\mathrm{F}=-\mathrm{F}_{\text {grav }}=\frac{\mathrm{Cm}}{\mathrm{r}^{2}}$

On surface $\mathrm{F} / \mathrm{m}=9.8 \mathrm{~ms}^{-2}$
$\therefore C=\left(9.8 \mathrm{~ms}^{-2}\right)\left(6.510^{6} \mathrm{~m}\right)^{2}=4.110^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
$\mathrm{W}=6500 \int_{\mathrm{kmr}^{2}}^{\infty} \frac{\mathrm{Cm}}{\mathrm{dr}}$
$=-\mathrm{Cm}\left(\frac{1}{\infty}-\frac{1}{6.510^{6}}\right)$
$=6.310^{10} \mathrm{~J}=63 \mathrm{GJ}$.

Work to deform spring

$\mathrm{F}_{\text {spring }} \quad \mathrm{F}_{\text {applied }}$

No applied force $(x=0)$
Hooke's law: $F=-k x$
Work done by spring $=\int \mathrm{F}_{\text {spring }} . \mathrm{dx}$

$$
=\int-\mathrm{kx} \cdot \mathrm{dx}=-\frac{1}{2} \mathrm{kx}^{2}
$$

Work done on spring $=\int \mathrm{F}_{\text {applied }} \cdot \mathrm{dx}$

$$
=\int \mathrm{kx} \cdot \mathrm{dx}=+\frac{1}{2} \mathrm{kx}^{2} \quad(=\text { work stored in spring })
$$

The work-energy theorem

(Total) force F acts on mass m in x direction.

Work done by $F=\int_{i}^{f} F d x$ (use $F=m a$)

$$
\begin{aligned}
& =\int_{i}^{f} m \frac{d v}{d t} d x=\int_{i}^{f} m \frac{d x}{d t} d v \\
& =\int_{i}^{f} m v \cdot d v=\left[\frac{1}{2} m v^{2}\right]_{i}^{f}
\end{aligned}
$$

Work done by $F=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \equiv \Delta K$
Define kinetic energy $K \equiv \frac{1}{2} \mathrm{mv}^{2}$
Increase in kinetic energy of body $=$ work done by total force acting on it.

This is a theorem, ie a tautology
because it is only true by definition of KE and by Newton 2.
\therefore restatement of Newton 2 in terms of energy. Not a new law

Power. is the rate of doing work
Average power $\quad \overline{\mathrm{P}} \equiv \frac{\mathrm{W}}{\Delta \mathrm{t}}$
Instantaneous power $P=\frac{d W}{d t}$
SI unit: 1 Joule per second $\equiv 1$ Watt (1 W)
Example Jill ($\mathrm{m}=60 \mathrm{~kg}$) climbs the stairs in Matthews Bldg and rises 50 m in 1 minute. How much work does she do against gravity? What is her average output power? (neglect accelerations)
$\mathrm{W}=\int \underline{\mathbf{F}} \cdot \underline{\mathbf{d s}}=\int \mathrm{F}_{\mathrm{y}} \mathrm{dy}$
$\mathrm{F}_{\mathrm{y}} \cong \mathrm{mg}$
$\mathrm{W}=\mathrm{mg} \int \mathrm{dy}=\mathrm{mg} \Delta \mathrm{y}$
$=29 \mathrm{~kJ} \quad\left(c f K=\frac{1}{2} m v^{2} \sim 20-40 \mathrm{~J}\right)$
$\overline{\mathrm{P}} \equiv \frac{\mathrm{W}}{\Delta \mathrm{t}}=\frac{\mathrm{mg} \Delta \mathrm{y}}{\Delta \mathrm{t}}=490 \mathrm{~W}$
(humans can produce 100s of W, car engines several tens of $k W$)
(1 horsepower $\equiv 550$ ft.lb. $\mathrm{s}^{-1}=0.76 \mathrm{~kW}$)

Potential energy.

e.g. Compress spring, do W on it, but get no K . Yet can get energy out: spring can expand and give K to a mass. \rightarrow Idea of stored energy.
e.g. Gravity: lift object (slowly), do work but get no K. Yet object can fall back down and get K.
Recall $\mathrm{W}_{\text {against grav }}=\mathrm{mg} \Delta \mathrm{y}$ i.e. $\mathrm{W}=\mathrm{W}(\mathrm{y})$
But: Slide mass slowly along a surface. Do work against
friction, but can't recover this energy mechanically. Not all forces "store" energy

Conservative and non-conservative forces

(same examples)
$W_{\text {against grav }}=-\int_{i}^{f} F_{g} d r \cos \theta$

$$
\begin{aligned}
& =-\int_{i}^{f} F_{g} d z \\
& =\operatorname{mg} \int_{i}^{f} d z \\
& =\operatorname{mg}\left(z_{f}-z_{i}\right) \quad \text { in uniform field }
\end{aligned}
$$

W is uniquely defined at all $\underline{\mathbf{r}}$, i.e. $\mathrm{W}=\mathrm{W}(\underline{\mathbf{r}})$
If $\mathrm{z}_{\mathrm{f}}-\mathrm{z}_{\mathrm{i}}$ are the same, $\mathrm{W}=0$.
$\therefore \quad$ Work done against gravity round a closed path $=0$
Gravity is a conservative force

Compare spring

$\mathrm{W}_{\text {against spring }}=-\int_{\mathrm{i}}^{\mathrm{f}} \mathrm{F}_{\text {spring }} \cdot \mathrm{dx}=-\int_{\mathrm{i}}^{\mathrm{f}}-\mathrm{kx} \cdot \mathrm{dx}$

$$
=\frac{1}{2} \mathrm{k}\left(\mathrm{xf}^{2}-\mathrm{x}_{\mathrm{i}}^{2}\right)
$$

W is uniquely defined at all x , i.e. $\mathrm{W}=\mathrm{W}(\mathrm{x})$
$\mathrm{x}_{\mathrm{f}}=\mathrm{x}_{\mathrm{i}} \Rightarrow \mathrm{W}=0$.
$\therefore \quad$ Work done round a closed path $=0$
Spring force is a conservative force
so it has stored or potential energy: symbol U.

with friction

$\mathrm{dW}_{\text {against fric }}=-\mathrm{F}_{\mathrm{f}} \mathrm{ds} \cos \theta$
but $\underline{\mathbf{F}}_{f}$ always has a component opposite $\underline{\mathbf{d s}}$
$\therefore \mathrm{dW}$ always ≥ 0. (we never get work back)
\therefore cannot be zero round closed path, $\therefore \mathrm{W} \neq \mathrm{W}(\underline{\mathbf{r}})$
\therefore friction is a non-conservative force
Note that direction of friction (dissipative force) is always against motion.

Potential energy

For a conservative force \mathbf{F} (i.e. one where work done against it, $\mathrm{W}=\mathrm{W}(\underline{\mathbf{r}})$) we can define potential energy U by $\Delta \mathrm{U}=\mathrm{W}_{\text {against }}$. i.e.

$$
\Delta U=-\int_{i}^{f} F \operatorname{dr} \cos \theta
$$

Same example: spring

$$
\begin{aligned}
\Delta U_{\text {spring }} & =-\int_{i}^{f} F_{\text {spring. }} d x \\
& =\frac{1}{2} k\left(x_{f}^{2}-x_{i}^{2}\right)
\end{aligned}
$$

Choice of zero for \mathbf{U} is arbitrary.

Here $U=0$ at $x=0$ is obvious, so

$$
\mathrm{U}_{\text {spring }}=\frac{1}{2} \mathrm{kx}^{2}
$$

From energy to force:

$\mathrm{U}=-\int \mathrm{F}$ ds where ds is in the direction $/ / \mathrm{F}$

$$
\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{ds}}
$$

$$
\text { in fact } \quad F_{x}=-\frac{d U}{d x}, F_{y}=-\frac{d U}{d y}, F_{z}=-\frac{d U}{d z}
$$

Spring: $\mathrm{U}_{\text {spring }}=\frac{1}{2} \mathrm{kx}^{2} \quad \therefore \quad \mathrm{~F}_{\text {spring }}=-\mathrm{kx}$
Gravity: $U_{g}=m g z \quad \therefore F_{g}=-\frac{d U}{d z}=-m g$
Energy of interaction:

Conservation of mechanical energy

Recall: Increase in K of body = work done by total force acting on it. (restatement of Newton 2)
But, if all forces are conservative, work done by these forces = $-\Delta \mathrm{U}$ (definition of U)
\therefore if only conservative forces act, $\Delta \mathrm{K}=-\Delta \mathrm{U}$
We define mechanical energy

$$
\mathrm{E} \equiv \mathrm{~K}+\mathrm{U}
$$

so, if only conservative forces act, $\Delta \mathrm{E}=0$.

> we can make this stronger.

Work done by non-conservative forces
Define internal energy $\mathrm{U}_{\text {int }}$ where

$$
\begin{aligned}
\Delta \mathrm{U}_{\text {int }} & =- \text { Work done by n-c forces } \\
& (=+ \text { Work done against n-c forces })
\end{aligned}
$$

Recall def ${ }^{\mathrm{n}}$ of $\mathrm{K}: \Delta \mathrm{K}=$ work done by Σ force

$$
\begin{array}{ll}
\therefore & \Delta \mathrm{K}=-\Delta \mathrm{U}-\Delta \mathrm{U}_{\mathrm{int}} \\
\therefore & \Delta \mathrm{~K}+\Delta \mathrm{U}+\Delta \mathrm{U}_{\text {int }}=0
\end{array}
$$

If $n-c$ forces do no work, then $\Delta \mathrm{U}_{\text {int }}=0$, so:
If non-conservative forces do no work,

$$
\Delta \mathrm{E} \equiv \Delta \mathrm{~K}+\Delta \mathrm{U}=0
$$

or: mechanical energy E is conserved
Equivalent to Newton 2, but useful for many mechanics problems where integration is difficult.
State the principle carefully! Never, ever write: "kinetic energy = potential energy"

Classic problem. Child pushes off with v_{i}. How fast is the $s / h e$ going at the bottom of the slide? Neglect friction (a nonconservative force).

i) By Newton 2 directly:
$\mathrm{v}=\underset{\text { top }}{\text { bottom }} \int_{\text {a }} \mathrm{dt}=\int_{\text {top }}^{\text {bottom }} \frac{\mathrm{F}}{\mathrm{m}}=\int_{\text {top }}^{\text {bottom }} \mathrm{g} \cos \theta \mathrm{dt}=\ldots .$.
ii) Using work energy theorem (Newton 2 indirectly):

Non-conservative forces do no work, \therefore mechanical energy is conserved, ie.

$$
\begin{array}{lc}
\Delta \mathrm{E}=\Delta \mathrm{K}+\Delta \mathrm{U}=0 & \mathrm{E}_{\mathrm{f}}=\mathrm{E}_{\mathrm{i}} \\
\mathrm{~K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=0 & \mathrm{~K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}=\mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}} \\
\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2}-\frac{1}{2} \mathrm{mv}_{\mathrm{i}}^{2}+m g y_{\mathrm{f}}-\mathrm{mgy} \\
\mathrm{i} & =0 \\
\text { rearrange } \rightarrow \mathrm{v}_{\mathrm{f}}=\sqrt{\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{~g}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{f}}\right)}
\end{array}
$$

Conservation of energy

observation: for many forces, $\mathrm{W}=\mathrm{W}(\underline{\mathbf{r}}) \therefore$ useful to define $\mathrm{U}=\mathrm{U}(\underline{\mathbf{r}})$. observation: for all systems yet studied, $\mathrm{U}_{\text {int }}$ is a state function, i.e. $\mathrm{U}_{\mathrm{int}}=\mathrm{U}_{\mathrm{int}}$ (measured variables)

Hence idea of internal energy. e.g.:
Friction, $\left(-U_{\text {int }}\right)=$ heat produced when work is done against friction.
Air resistance $\left(-U_{\text {int }}\right)$ is sound and heat.
Combustion engines and animals: $+U_{\text {int }}$ comes from chemical energy

$$
\Delta \mathrm{K}+\Delta \mathrm{U}+\Delta \mathrm{U}_{\mathrm{int}}=0
$$

is statement of Newton 2 plus definitions of $\mathrm{K}, \mathrm{U}, \mathrm{U}_{\mathrm{int}}$.
The statement that $\Delta \mathrm{U}_{\text {int }}$ is a state function is the first law of thermodynamics. It is a law, ie falsifiable. More on this in Heat.

Example. Freda ($\mathrm{m}=60 \mathrm{~kg}$) rides pogo stick ($\mathrm{m} \ll 60 \mathrm{~kg}$) with spring constant $\mathrm{k}=100 \mathrm{kN} \cdot \mathrm{m}^{-1}$. Neglecting friction, how far does spring compress if jumps are 50 cm high?

Non-conservative forces do no work, \therefore mechanical energy is conserved, ie.

$$
\begin{aligned}
& \mathrm{E}_{\text {bottom }}=\mathrm{E}_{\text {top }} \\
& \mathrm{K}_{\mathrm{b}}+\mathrm{U}_{\mathrm{b}}=\mathrm{K}_{\mathrm{t}}+\mathrm{U}_{\mathrm{t}} \quad\left(U=U_{\text {grave }}+U_{\text {spring }}\right) \\
& \frac{1}{2} \mathrm{mv}_{\text {horiz }}{ }^{2}+\left(\mathrm{mgyb}_{\mathrm{b}}+\frac{1}{2} \mathrm{kx}_{\mathrm{b}}{ }^{2}\right) \\
& \cong \frac{1}{2} \operatorname{mv}_{\text {horiz }}{ }^{2}+\left(\mathrm{mgyt}_{\mathrm{t}}+\frac{1}{2} \mathrm{kx}_{\mathrm{t}}{ }^{2}\right)
\end{aligned}
$$

$m g\left(y_{t}-y_{b}\right) \cong \frac{1}{2} \mathrm{kx}_{\mathrm{b}}{ }^{2}$
$\therefore \quad \mathrm{x}_{\mathrm{b}} \cong \sqrt{\frac{2 \mathrm{mg}\left(\mathrm{yt}_{\mathrm{t}}-\mathrm{yb}_{\mathrm{b}}\right)}{\mathrm{k}}} \cong 80 \mathrm{~mm}$.

Example. Slide starts at height h_{1}. Later there is a hump with height h_{2} and (vertical) radius r. What is the minimum value of $\mathrm{h}_{2}-\mathrm{h}_{1}$ if slider is to become airborne? Neglect friction, air resistance.
Over hump, $\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{r}}$ (down). Airborne if $\mathrm{g}<\mathrm{a}_{\mathrm{c}}$, i.e. if $\mathrm{v}_{2}^{2}>\mathrm{gr}$.
No non-conservative forces act so

$$
\begin{aligned}
& \mathrm{E}_{2}=\mathrm{E}_{1} \\
& \mathrm{U}_{2}+\mathrm{K}_{2}=\mathrm{U}_{1}+\mathrm{K}_{1} \\
& \mathrm{mgy}_{2}+\frac{1}{2} \mathrm{mv}_{2}^{2}=\mathrm{mgy}_{1}+\frac{1}{2} \mathrm{mv}_{1}^{2} \\
& \frac{1}{2} \mathrm{mv}_{2}^{2}=\operatorname{mg}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \\
& \left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)=\frac{\mathrm{v}_{2}^{2}}{2 \mathrm{~g}}>\frac{\mathrm{gr}}{2 \mathrm{~g}}=\frac{\mathrm{r}}{2}
\end{aligned}
$$

Example Bicycle and rider (80 kg) travelling at $20 \mathrm{~m} . \mathrm{s}^{-1}$ stop without skidding. $\mu_{\mathrm{s}}=1.1$. What is minimum stopping distance? How much work done by friction between tire and road? Between brake pad and rim? Wheel rim is $\sim 300 \mathrm{~g}$ with specific heat ~ 1 $\mathrm{kj} \cdot \mathrm{kg}^{-1}$, how hot does it get?
friction \rightarrow declleration \rightarrow stopping distance

$$
\begin{aligned}
& |\mathrm{a}|=\frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{~m}} \leq \frac{\mu_{\mathrm{s}} \mathrm{~N}}{\mathrm{~m}}=\mu_{\mathrm{s}} \mathrm{~g} \\
& |\mathrm{a}| \leq \mu_{\mathrm{s}} \mathrm{~g}
\end{aligned}
$$

$$
\mathrm{vf}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}=2 \mathrm{as} \quad \rightarrow \quad \mathrm{~s}=\frac{\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}}{2 \mathrm{a}}
$$

$$
\mathrm{s} \geq\left|\frac{-\mathrm{v}_{\mathrm{i}}^{2}}{2 \mu_{\mathrm{s}} \mathrm{~g}}\right|=19 \mathrm{~m}
$$

Work done by friction between tire and road?
No skidding, \therefore no relative motion, $\therefore \mathrm{W}=0$.
Between pad and rim? Here \exists relative motion.
All K of bike \& rider \rightarrow heat in rim and pad

$$
\begin{aligned}
& \mathrm{W}=\Delta \mathrm{K}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}=-16 \mathrm{~kJ} \\
& \mathrm{Q}=\mathrm{mC} \Delta \mathrm{~T} \ldots \ldots \Delta \mathrm{~T} \sim 50^{\circ} \mathrm{C}
\end{aligned}
$$

Example Which way is it easier to drag an object?

Suppose we move at steady speed, $a=0$. Which requires less F ? Which requires less work?
mechanical horizontal $\mathrm{F} \cos \theta=\mathrm{F}_{\mathrm{f}}$
equilibrium \rightarrow vertical $\quad \mathrm{N}+\mathrm{F} \sin \theta=\mathrm{mg}$
sliding \rightarrow

$$
\mathrm{F}_{\mathrm{f}}=\mu_{\mathrm{k}} \mathrm{~N}
$$

$\mathrm{F} \cos \theta=\mu_{\mathrm{k}} \mathrm{N}$
eliminate $\mathrm{N} \rightarrow$
$\mathrm{F} \cos \theta=\mu_{\mathrm{k}}(\mathrm{mg}-\mathrm{F} \sin \theta)$

$$
\mathrm{F}=\frac{\mu_{\mathrm{k}} \mathrm{mg}}{\cos \theta+\mu_{\mathrm{k}} \sin \theta}
$$

when $\theta=0, \quad \mathrm{~F}^{\prime}=\mu_{\mathrm{k}} \mathrm{mg}$
$\mathrm{F}<\mathrm{F}^{\prime}$ if $\cos \theta+\mu_{\mathrm{k}} \sin \theta>1$,
i.e. if μ_{k} large
$\& \theta$ small
Work done $=F s \cos \theta=F_{f} s$
$=\mu_{\mathrm{k}} \mathrm{Ns}=\mu_{\mathrm{k}} \mathrm{s}(\mathrm{mg}-\mathrm{F} \sin \theta) \quad$ decreases with θ

Question

How high should h be so that it can loop the loop?

Example. A hydroelectric dam is 100 m tall. Assuming that the turbines and generators are 100% efficient, and neglecting friction, calculate the flow of water required to produce 10 MW of power.
The output pipes have a cross section of $5 \mathrm{~m}^{2}$.

Nett effect: ~ stationary water lost from top of dam, water appears with speed v at bottom.
Let flow be $\frac{\mathrm{dm}}{\mathrm{dt}}$.
$\mathrm{dW} \equiv \begin{gathered}\text { work done } \\ \text { by water }\end{gathered}$
$=-\frac{\text { Work done }}{\text { on water }}=-\underset{\text { ef water }}{\substack{\text { energy increase }}}$
$\mathrm{dW}=-\mathrm{dE}=-\mathrm{dK}-\mathrm{dU}$
$=-\left(\frac{1}{2} \mathrm{dmv}^{2}-0\right)-(0-\mathrm{dm} \cdot \mathrm{gh})=\mathrm{dm}\left(\mathrm{gh}-\frac{\mathrm{v}^{2}}{2}\right)$
$P=\frac{d W}{d t}=\frac{d m}{d t}\left(\mathrm{gh}-\frac{\mathrm{v}^{2}}{2}\right)$
Problem: v depends on $\frac{\mathrm{dm}}{\mathrm{dt}}$

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{A} \cdot(\mathrm{v} \cdot \mathrm{dt})}{\mathrm{dt}}=\mathrm{Av}
$$

Density: $\quad \rho \equiv \frac{\text { mass }}{\text { volume }}=\frac{\mathrm{m}}{\mathrm{V}} \quad$ so $\mathrm{m}=\rho \mathrm{V}$
$\frac{\mathrm{dm}}{\mathrm{dt}}=\rho \frac{\mathrm{dV}}{\mathrm{dt}}=\rho \mathrm{Av}$
$P=\rho A v\left(g h-\frac{v^{2}}{2}\right)$
$\mathrm{v}^{3}-(2 \mathrm{gh}) \mathrm{v}+\frac{2 \mathrm{P}}{\rho \mathrm{A}}=0 \quad$ can solve cubit, but messy
Neglect $\mathrm{v}^{3} \rightarrow \mathrm{v}=\frac{\mathrm{P}}{\operatorname{gh} \rho \mathrm{A}}=2 \mathrm{~m} / \mathrm{s}$
and indeed we see that $v^{3} \ll$ other terms

