Alex HamiltonB.Sc. Imperial College, London 1988. ARC Professorial Fellow, School of Physics.DepartmentCondensed Matter Physics - Quantum Electronic Devices Group |
|
The continual demand for faster, smaller, and more efficient integrated circuits ("chips") is pushing technology such that future devices will soon approach the scale of large molecules, and quantum, rather than classical physics, will determine device performance.
I study the fundamental electronic properties of state-of-the art nanoscale semiconductor devices, where the device size becomes comparable to the electron's wavelength, so that the electrons behave more as waves than as particles. In these regime devices classical physics breaks down, and a myriad of new quantum effects determine how the device operates. In order to develop these nanoscale devices I am interested in all aspects of semiconductor device nanofabrication, and developing new technologies for fabricating atomically precise electronic devices. In particular our research group is a world leader in the design and fabrication of p-type (hole based) nanostructures, where interaction effects are and spin-orbit coupling are strong. It is interesting that although half of all transitors on an integrated circuit use holes rather than electrons, there is not even a basic theory of the quantum properties of holes in nanostrcutures!
Research interests include (see our group website for further details):
Quantum dots:
The Impact of Small-Angle Scattering on Ballistic Transport in Quantum Dots,
A. M. See, I. Pilgrim, B. C. Scannell, R. D. Montgomery, O. Klochan, A. M. Burke, M. Aagesen, P. E. Lindelof, I. Farrer, D. A. Ritchie, R. P. Taylor, A. R. Hamilton, and A. P. Micolich, Physical Review Letters 108, 196807 (2012).Observation of the Kondo Effect in a Spin-3/2 Hole Quantum Dot,
O. Klochan, A. P. Micolich, A. R. Hamilton, K. Trunov, D. Reuter, and A. D. Wieck, Physical Review Letters 107, 076805 (2011).
Quantum wires:
Compressibility Measurements of Quasi-One-Dimensional Quantum Wires,
L.W. Smith, A. R. Hamilton, K. J. Thomas, M. Pepper, I. Farrer, J. P. Griffiths, G. A. C. Jones, and D. A. Ritchie,
Physical Review Letters 107, 126801 (2011).Resistively Detected Nuclear Magnetic Resonance in n- and p-Type GaAs Quantum Point Contacts,
Z. K. Keane, M. C. Godfrey, J. C. H. Chen, S. Fricke, O. Klochan, A. M. Burke, A. P. Micolich, H. E. Beere, D. A. Ritchie, K. V. Trunov, D. Reuter, A. D. Wieck, and A. R. Hamilton,
Nano Letters 11, 3147-3150 (2011). .0.7 Structure and zero bias anomaly in ballistic hole quantum wires
R. Danneau, O.Klochan, W. R. Clarke, L. H. Ho, A. P. Micolich, M. Y. Simmons, A. R. Hamilton, M. Pepper and D. A. Ritchie,
Physical Review Letters 100, 016403 (2008).Zeeman splitting in ballistic hole quantum wires
R. Danneau, O. Klochan, W. R. Clarke, L.H. Ho, A. P. Micolich,M. Y. Simmons, A. R. Hamilton, M. Pepper, D. A. Ritchie and U. Zuelicke,
Physical Review Letters 97, 026403 (2006).Enhanced g factors of a one-dimensional hole gas with quantized conductance,
A.J. Daneshvar, C.J.B. Ford, A.R. Hamilton, M.Y. Simmons, M. Pepper and D.A. Ritchie,
Phys. Rev. B Rapid Communications 55, R13409 (1997).Back-gated split-gate transistor: A one dimensional ballistic channel with variable Fermi energy,
A.R. Hamilton, J.E.F. Frost, C.G. Smith, M.J. Kelly, et al,
Appl. Phys. Lett., 60, p. 2782 (1992).
Two-dimensional physics and forbidden metal-insulator transition:
Effect of screening long-range Coulomb interactions on the metallic behavior in two-dimensional hole systems
L.H. Ho, W.R. Clarke, A.P. Micolich, R. Danneau, O. Klochan, M.Y. Simmons, A.R. Hamilton, D.A. Ritchie and M. Pepper,
Physical Review B Rapid Communications 77, 201402(R) (2008).Impact of long- and short-range disorder on the metallic behaviour of two-dimensional systems
W.R. Clarke, C.E. Yasin, A.R. Hamilton, A.P. Micolich, M.Y. Simmons, K. Muraki, Y. Hirayama, M. Pepper and D.A. Ritchie,
Nature Physics 4, 55-59 (2007).Interaction Correction to the Longitudinal Conductivity and Hall Resistivity in High Quality Two-Dimensional GaAs Electron and Hole Systems,
C. E. Yasin, T. L. Sobey, A. P. Micolich, A. R. Hamilton, M. Y. Simmons, L. N. Pfeiffer, K. W. West, E. H. Linfield, M. Pepper, D. A. Ritchie,
Physical Review B Rapid Communications 72, 241310 (2005).Evolution of the bilayer n = 1 quantum Hall state under charge imbalance,
W. R. Clarke, A. P. Micolich, A. R. Hamilton, M. Y. Simmons, C. B. Hanna, J. R. Rodriguez, M. Pepper, and D. A. Ritchie,
Physical Review B Rapid Communications 71, 081304 (2005).Metallic behaviour in dilute two-dimensional hole systems,
A.R. Hamilton, M.Y. Simmons, M. Pepper, E.H. Linfield and D.A. Ritchie,
Phys. Rev. Lett. 87, 126802 (2001).Weak localisation, hole-hole interactions, and the "metal"-insulator transition in two dimensions,
M.Y. Simmons, A.R. Hamilton, M. Pepper, and D.A. Ritchie,
Phys. Rev. Lett. 84, 2489 (2000).Re-entrant insulator-metal-insulator transition at B=0 in a two dimensional hole gas,
A.R. Hamilton, M.Y. Simmons, M. Pepper, E.H. Linfield, P.D. Rose, and D.A. Ritchie,
Phys. Rev. Lett. 82, 1542 (1999).Metal-insulator transition at B=0 in a dilute two dimensional GaAs-AlGaAs hole gas,
M.Y. Simmons, A.R. Hamilton, M. Pepper, E.H. Linfield, P.D. Rose, D.A. Ritchie, T.G. Griffiths and A.K. Savchenko,
Phys. Rev. Lett. 80, 1292 (1998).
Atomic scale devices
Ohmic conduction of sub-10 nm P-doped silicon nanowires at cryogenic temperatures, 27.
F. J. Rueß, A. P. Micolich, W. Pok, K. E. J. Goh, A. R. Hamilton, and M. Y. Simmons,
Applied Physics Letters 92, 052101 (2008)Realization of Atomically Controlled Dopant Devices in Silicon,
F. J. Rueß, W. Pok, T.C.G. Reusch, M.J. Butcher, K.E.J. Goh, L. Oberbeck, G. Scappucci, A.R. Hamilton, and M.Y. Simmons,
Small 3, 563 (2007).Fabrication of quantum wires using scanning probe microscopy,
Frank J. Rueß, L.Oberbeck, M.Y. Simmons, K.E.J. Goh, A.R. Hamilton, T. Hallam, N.J. Curson and R.G. Clark,
Nano letters 4, 1969 (2004).Electronic properties of atomically abrupt tunnel junctions in silicon,
F. J. Rueß, W. Pok, K. E. J. Goh, A. R. Hamilton, and M. Y. Simmons,
Physical Review B Rapid Communications 75, 121303 (2007).
Narrow, highly P-doped, planar wires in silicon created by scanning probe microscopy,
F J Rueß, K E J Goh, M J Butcher, T C G Reusch, L Oberbeck, B Weber, A R Hamilton and M Y Simmons,
Nanotechnology 18, 044023 (2007).
Effect of encapsulation temperature on Si:P d-doped layers,
K. E. J. Goh, L. Oberbeck, M. Y. Simmons, A. R. Hamilton, and R. G. Clark,
Applied Physics Letters 85, 4953 (2004).
Quantum computing and quantum measurement:
Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures,
D. R. McCamey, H. Huebl, M. S. Brandt, W. D. Hutchison, J. C. McCallum, R. G. Clark and A. R. Hamilton,
Applied Physics Letters, 89 (18), 182115 (2006).
Electric-field-induced charge noise in doped silicon: Ionization of phosphorus donors,
A. J. Ferguson, V. C. Chan, A. R. Hamilton, and R. G. Clark,
Applied Physics Letters 88 162117 (2006).Coherent electronic transfer in quantum dot systems using adiabatic passage,
A. D. Greentree, J. H. Cole, A. R. Hamilton, L. C. L. Hollenberg,
Physical Review B 70, 235317 (2004).Development and operation of the twin radio frequency single electron transistor for solid state qubit readout,
T.M. Buehler, D.J. Reilly, R.P. Starrett, N.A. Court, A.R. Hamilton, A.S. Dzurak, and R.G. Clark,
Journal of Applied Physics 96, 4508 (2004).
Correlated charge detection for read-out of a solid state quantum computer,
T. M. Buehler, D. J. Reilly, R. Brenner, A. R. Hamilton, A. S. Dzurak, R. G. Clark,
Applied Physics Letters 82, 577 (2003).
School of Physics
The University of New South Wales
SYDNEY 2052
Australia
alex.hamilton@unsw.edu.au
+61 2 9385 5736
+61 2 9385 6060