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An experimental study of the aerodynamic damping of oscillating plates has been
undertaken. Plates of various shapes were placed into an air #ow normal to the plate and
excited to oscillate parallel to the #ow direction by electromagnetic forces of equal
amplitudes and random frequencies. The aerodynamic damping of oscillating plates,
evaluated in terms of a quality Q-factor from a frequency response resonance curve, was
found to vary linearly with the absolute pressure in stationary surrounding air and with the
air #ow velocity in moving air. The #ow velocity was also found to a!ect the aerodynamic
damping more than the absolute pressure. A simple empirical model has been developed to
predict the variation of the aerodynamic damping with the #ow velocity.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

There have been extensive studies of the behaviour of pressure-controlled self-oscillating
valves in woodwind instruments [1}5]. Despite the geometric and dynamic complexities of
various valves, the mechanism of self-oscillation was found to be commonly based on
oscillating pressure forces induced by the valve motion [6].

It has proved helpful to classify the valves according to the e!ect of the upstream or
downstream overpressure on the tendency of the valves to open further or to close. Thus,
the valve will be called blown-closed when upstream overpressure tends to close the valve
and downstream overpressure tends to open it. Similarly, the valve will be called
blown-open when the upstream blowing pressure tends to open the valve (see Figure 1).
Woodwind-type reeds are good examples of blown-closed valves while the human larynx
and players lips in brass musical instruments could be considered as blown-open valves.
A detailed explanation of the valve classi"cation with a description of di!erent types of
pressure-controlled valves may be found in Fletcher [6].

The mechanism of self-oscillations of blown-open valves was studied experimentally
recently [6, 7]. Even when the velocity of the jet through the valve is very small, jet
separations on the valve edges cause the development of a random turbulence of broad
frequency spectrum. The turbulence gives rise to unsteady pressure forces which excite
random vibration of the valves of small amplitude of the order of the valve thickness. The
small vibration is unstable and, when the pressure forces overcome damping, the valve
� Permanent address. Research School of Physical Sciences and Engineering, Australian National University,
anberra 0200, Australia.
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Figure 1. Schematic of blown-open pressure-controlled self-oscillating valves, where P
��

is the upstream
blowing pressure.
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vibration tends to grow rapidly to large amplitude establishing self-oscillations with the
frequency close to the valve resonance frequency. The amplitude of large oscillations was
found to be of the order of the jet thickness. A quasi-steady approximation to time-varying
#ow gives a good estimate of the threshold pressure [6] of self-oscillations.

The theoretical and experimental studies [6, 7] suggest that the valve oscillations largely
depend on the damping characteristics of the valve. Since damping is contributed both by
internal material losses and by aerodynamic e!ects, knowledge about the aerodynamic
damping is important.

The aerodynamic damping has received much attention in the past. Beginning with
Stokes' classical paper on the motion of pendulums in unlimited viscous #uid [8], most of
the work is, however, related to a body oscillating in a stationary surrounding with
a relatively small Reynolds number. The aerodynamic damping in these cases is mostly due
to large viscous forces [9}11]. Studies of body oscillation in a cross #ow shows a large
dependency of the aerodynamic damping on the vortex development [12]. Recent #ow
visualization results of a pressure-controlled self-oscillating valve also show the
development of a stable vortex downstream of the valve [13]. However, it was found that
the vortex does not a!ect much the valve self-oscillation [4, 13].

The aerodynamic damping of a pressure-controlled self-oscillating valve of musical
instruments has not received much attention in the past. In order to simplify the analysis, we
examine the aerodynamic damping of an oscillating plate placed into an air #ow
perpendicular to the plane of the plate and oscillated parallel to the #ow direction.

2. BACKGROUND THEORY

Since the ratio of the dissipated energy E
�

to the mechanical energy E
�

of an oscillating
system is inversely proportional to a so-called quality factor Q, it is a common practice to
represent the damping of an oscillating system by using the Q-factor [14]:

E
�

E
�

"

2�
Q

. (1)



Figure 2. Schematic of the theoretical model of the plate oscillation in air #ow.
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Our aim of the following theoretical development is to establish a relationship between
the aerodynamic damping in terms of the quality Q-factor and parameters of
a self-oscillating valve.

In the following analysis, the pressure-controlled self-oscillating valve is simpli"ed to
a plain rectangular plate placed into a potential air #ow perpendicular to the plane of the
plate and harmonically oscillated parallel to the #ow direction (see Figure 2). Since all forces
acting on the plate must be in balance, the equation of motion of the oscillating plate can be
written as

m
�
xK#R

�
xR #K

�
x"F

�
, (2)

where m
�

is the mass of the plate, R
�

is the structural damping coe$cient, K
�

is the
structural sti!ness and F

�
is the aerodynamic force [6]. Here, subscripts S and A refer to

internal structural forces and external aerodynamic forces respectively.
Assuming that the motion of the plate is much smaller than its size, the "rst order

expansion of the aerodynamic force may then be written in the form [15]
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where x is the co-ordinate of the plate in the #ow direction, x
�

is the equilibrium position of
the plate where the velocity is xR

�
, and F

��
is the aerodynamic force at the equilibrium

position. Note that F
��

is the constant of the aerodynamic force and may be interpreted as
the drag force of a stationary plate in a steady #ow. For analysis it is more convenient to
select the equilibrium position such that xR

�
"0 which is associated with a steady motion.

Assuming that the plate oscillates harmonically with x"A
�

cos(�t), the equilibrium
position is then x

�
"A

�
, xR

�
"0. Substituting equation (3) into equation (2), we have

m
�
xK#R�xR #K�(x!A

�
)"F

��
. (4)

Here the second term represents a damping force due to the combined e!ect of structural
and aerodynamic energy dissipations with R�"R

�
!�F

�
/�xR . The third term is the #exible



798 A. Z. TARNOPOLSKY E¹ A¸.
force due to the combined e!ect of structural and aerodynamic sti!ness of the oscillating
system [15], with K�"K

�
!�F

�
/�x. Since F

��
is associated with a steady motion, it is

related to the drag coe$cient C
�

as

F
��

"�
�
C

�
�S;�

�
, (5)

where � is the density of the #uid, ;
�

is the #uid velocity and S is the surface area of the
plate. It can be seen from equation (4) that since F

��
is the constant part of the aerodynamic

force, it does not have any e!ect on the aerodynamic damping.
The damping energy is then

E
�
"�

�

�
�R�

!

�F
�

�xR � xR � dt. (6)

Aerodynamic force, on the other hand, is due to momentum exchange between a #ow
stream and a moving object and is proportional to the product of the mass #ow and the
velocity of the object in relative motion:
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whereC
	

is the coe$cient of proportionality. For steady #ows, this coe$cient is equal to the
drag coe$cient and is well de"ned experimentally for many di!erent body shapes [16].
The coe$cients di!er for unsteady cases [9], however, and have therefore to be de"ned for
the present case.

It is reasonable to assume that in musical instruments the #ow velocity is larger than the
velocity of the valve oscillation and therefore we always would have (;

�
!xR )'0. The force

derivatives with respect to the plate velocity can then be obtained from equation (7) as
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Substituting equation (8) into equation (6) and using x"A
�

cos(�t), the integral in
equation (6) can be then expressed in the form

E
�
"��A�

� �R�
#C

	��S;�
#

8

3�
��SA

���. (9)

The mechanical energy of the oscillating system can be de"ned as
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where E



is the kinetic energy, E
�

is the potential energy and subscript MAX refers to
maximum. Finally, the ratio of the dissipated energy to the mechanical energy during one
period of the valve oscillation can be obtained from equations (9) and (10) as
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Here we introduce a resistance constant R
�

due to the aerodynamic damping

R
�
"C

	��S;�#

8

3�
��SA

��. (12)



Figure 3. Plates of various sizes and shapes used to measure aerodynamic damping; (a) in stationary
surrounding; (b) and (c) in the wind tunnel.
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Note that �S;
�

in equation (12) is the mass #ow on the valve cross-section due to the plate
steady motion and ��SA

�
/�"2�SA

�
/¹ is the mass of displaced air during one period of

the plate oscillation and ¹"2�/� is the period of the plate oscillation. Thus, the
aerodynamic damping arises from the energy dissipation due to the steady plate motion and
the oscillating plate motion. According to equation (12), the "rst term of the aerodynamic
damping varies linearly with the #ow velocity and the second term varies linearly with the
amplitude and the frequency of the plate oscillation. Furthermore, the second term in
equation (12) represents the aerodynamic damping of a plate oscillating in stationary air
and is a constant for a given plate at a given absolute pressure. Thus from equation (12), the
aerodynamic damping of a plate oscillating in moving air varies linearly with the free stream
velocity ;

�
at a given absolute pressure. In order to evaluate the structural and

aerodynamic damping and to verify these theoretical results, the experiments described
below were conducted.

3. EXPERIMENT

Plates of various sizes and shapes were placed in a steady air #ow normal to the plate and
were excited to oscillate parallel to the #ow. Figure 3 shows the con"gurations
of the various plates tested. The plate #aps were cut from a #at brass sheet of 0)15 mm
thickness.

In order to obtain the frequency response resonance curve, an exciting force of constant
amplitude and random frequency was applied to the plate using an electromagnet. A small
permanent magnet of mass 184 g was glued to the valve surface. The valve response was
measured using a small B&K type 4734 accelerometer with a dynamic mass of 0)65 g. The
accelerometer was placed close to the clamping end of the valve to minimize the e!ect on the
valve behaviour.



Figure 4. Schematic of the experimental set-up: (a) measurements in stationary air using vacuum/pressure
chamber; (b) measurements in the wind tunnel: (c) instrumentation.

800 A. Z. TARNOPOLSKY E¹ A¸.
Figure 4 shows the schematic of the instrumentation set-up including a small B&K 4734
accelerometer, an ONOSOKI dual channel FFT analyser, B&K power (Type 2706) and
charge (Type 2635) ampli"ers and a random noise generator covering a frequency band
from 0 to 200 Hz with a frequency resolution of 0)125 Hz.

First, the aerodynamic damping was measured in a stationary surrounding air. Thus, two
plain plates of thickness 0)15 mm and dimensions 35 mm�30 mm and 70 mm�30 mm (see
Figure 3(a)) were each placed into a specially made vacuum/pressure chamber and the
frequency response resonance curves were obtained at various absolute pressures from 1 to
800 kPa. In order to reduce the e!ect of the structural damping, the clamping length of the
second plate was made 35 mm similar to the "rst plate (see Figure 3(a)).

After completing the measurements in the vacuum/pressure chamber, the set-up with the
plates was placed into a wind tunnel with the #ow normal to the plate. The frequency
response resonance curves were then obtained for various #ow velocities. Two valves of
di!erent frontal shapes were also tested: a hemisphere of diameter 35 mm and
a semicylinder of diameter 35 mm and length 70 mm (see Figure 3(c)).

The procedure used to evaluate the aerodynamic damping in terms of the Q-factor from
the experimentally determined frequency response resonance curves is described in the
appendix.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

Since the frequency response data were obtained over 1000 cycles of oscillation, the
Q-factor was determined as an average rather than an instantaneous value. Figure 5 shows
some typical experimental frequency response resonance curves measured by the
accelerometer for the randomly excited rectangular plates in stationary surrounding air



Figure 5. Experimental frequency response resonance curves of plates of various sizes oscillating in stationary
surrounding air for various absolute pressure. � Plate, 35 mm�30 mm; P"1 kPa; � Plate, 35 mm�30 mm;
P"800 kPa; � Plate, 70 mm�30 mm; P"1 kPa; � Plate, 70 mm�30 mm; P"800 kPa.

Figure 6. Variation of aerodynamic damping of oscillating plates in stationary air with absolute pressure.
�, experiments with plate 35 mm�30 mm; �, experiments with plate 70 mm�30 mm; , equation (11)
(plate 35 mm�30 mm); , equation (11) (plate 70 mm�30 mm).
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using the vaccum/pressure chamber. It is obvious that the Q-factor incorporates both
structural and aerodynamic damping.

Figure 6 shows the variation with absolute pressure of the damping 2�/Q of a plate
oscillating in stationary air. It can be seen that 2�/Q varies linearly with the absolute
pressure. Since the temperature of air was kept constant, this linear variation with pressure
can also be interpreted as a linear variation with density. A linear function was then "tted to
the experimental data using the least-squares method. The "tted function at zero pressure
gives an estimate of the average structural damping in terms of the Q-factor. Theoretically,
the structural damping should be the same for both valve con"gurations because the size of



Figure 7. Variation of aerodynamic damping of oscillating plates in wind tunnel with #ow velocity. �,
experiments with plate 35 mm�36 mm; , equation (11) (plate 35 mm�36 mm); �, experiments with plate
70 mm�36 mm; , equation (11) (plate 70 mm�36 mm); �, experiments with semi-cylinder D"35 mm;

, equation (11) (semi-cylinderD"35 mm); � , experiments with hemisphereD"38 mm; , equation (11)
(hemisphere D"38 mm); , experiments with plate attached to reservoir; , equation (11) (plate attached to
reservoir).
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clamping edges in both cases was kept the same. In practice, it was not easy to ensure the
same clamping conditions during the change from one plate to another because of various
factors such as clamping screw tension, accelerometer placement. It can be seen from
Figure 6 that at normal atmospheric pressure, the damping increase due to the aerodynamic
damping is small compared to the structural damping.

In order to calculate the aerodynamic damping in stationary air, the #ow velocity in
equation (12) was set equal to zero and the coe$cient of proportionality C

�
was taken as

unity. The experimental coe$cient R
�

of the average structural damping at zero absolute
pressure was used for the calculations. Figure 6 shows that equation (11) predicts
su$ciently well the variation of the aerodynamic damping with the absolute pressure.
According to equation (11), if we increase the area of the plate, the ratio 2�/Q would not
increase because the mass of the plate would also increase by the same amount. However,
the mass m

�
in equation (11) is the mass moved by the exciting force. In our case this is the

e!ective mass which consists of the mass of the constant magnet and the plate. The magnet
has nearly the same mass as the plate and is glued at about �

�
length from the moving edge of

the plate. Therefore, when the plate area is doubled, the e!ective mass is increased by only
1)34 times and, as a result, we have an increase of 2�/Q by about 1)5 times.

Measurements of the aerodynamic damping were then performed in a wind tunnel with
the #ow direction being normal to the plane of the plates. Two #at plates similar to the
previous experiment (see Figure 3(b)) were tested "rst. The experimental results in
Figure 7 show that the aerodynamic damping varies linearly with the #ow velocity. The
di!erent slopes of the graphs can still be explained by the fact that the increase in the
e!ective mass is less than the increase in the area when the plate area is doubled.

In order to evaluate the e!ect of the constant part of the aerodynamic forces on the
aerodynamic damping (see equation (5)), two other valves, one with an upstream
hemispherical cross-section of 35mm diameter, and another valve of dimensions
70 mm�36 mm with a semicylinder 35 mm in diameter and with the plate clamping length
of 70 mm (see Figure 3(c)) were tested. According to reference [16], when a hemisphere is
placed on a plate, the drag coe$cient in equation (5) is reduced from about 1)9 to about 0)42
and when a semicylinder is placed on a plate, the drag coe$cient is reduced to about 1)15.
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The constant part of the aerodynamic force (see equation (5)) was therefore reduced relative
to the #at plate by a factor of 4)5 for the hemisphere and by a factor of 1)6 for the
semicylinder.

The results of the measurements are shown in Figure 7. It can be seen that the plate with
semicylinder shows a minimum damping for a #ow velocity of about 10 m/s, but above this
velocity, damping increases linearly with the #ow velocity. It is interesting to note that
irrespective of plate shapes and sizes, the damping increases linearly with the #ow velocity.
According to equation (5), the constant part of the aerodynamic forces acting on an
oscillating plate is associated with the drag in steady #ow and therefore has no e!ect on the
aerodynamic damping of oscillating plates in moving air. The simple model as given by
equations (11) and (12) indicates that the aerodynamic damping of plates oscillating in
moving air varies linearly with the #ow velocity at a given absolute pressure. It can be seen
from Figure 7 that equation (11) gives a reasonably good prediction of the aerodynamic
damping with C

�
"1 for all cases regardless of plate shapes and sizes.

The #ow was not constrained in the wind tunnel experiments and was free to move
around the plates. In pressure-controlled self-oscillating valves attached to a pressure
reservoir over an aperture of size similar to the plate [7], the #ow becomes constrained,
escaping from the reservoir as a jet through a small gap between the valve and the reservoir
wall in a direction nearly parallel to the plane of the valve. Another experiment was
therefore performed in order to measure the aerodynamic damping in constrained air #ow.
Thus, a plate of thickness 0)15 mm and dimensions 52 mm�30 mm was placed on a large
reservoir over an aperture of size just equal to that of the plate. The volume of the reservoir
was large enough to avoid plate self-oscillations [7]. Then the variation of quality Q-factor
with jet velocity was examined, the jet velocity being calculated from the reservoir blowing
pressure. The result of the measurements is also presented in Figure 7.

It can be seen in Figure 7 that the variation of Q-factor with #ow velocity is very similar
between constrained and non-constrained #ow. The results indicate that the aerodynamic
damping varies linearly with the #ow velocity and does not depend signi"cantly on the #ow
direction. It is interesting to note that equation (11) gives a reasonably good prediction of
the aerodynamic damping when the coe$cient of proportionality in the equation is taken as
C

�
"1, as in all other cases.
Comparison between the experimental results in Figures 6 and 7 reveals that within the

range of pressure and velocity tested, the aerodynamic damping depends more on the #ow
velocity than on the absolute pressure. For example, a "ve times increase in #ow
velocity would nearly double the aerodynamic damping whereas an increase of the
absolute pressure from 1 to 800 kPa gives only about 20% increase in the aerodynamic
damping.

5. CONCLUSIONS

The aerodynamic damping of oscillating plates of various shapes and sizes has been
studied experimentally in stationary and moving air. The experimental results show that the
aerodynamic damping of plates oscillating in stationary air varies linearly with absolute
pressure. The aerodynamic damping of a rectangular plate oscillating in stationary air at
atmospheric pressure is small compared with structural damping for the plates tested. The
measurements in a wind tunnel show that the aerodynamic damping of oscillating plates at
atmospheric pressure is much larger in moving air than in stationary air. Furthermore, the
aerodynamic damping of oscillating plates in moving air at atmospheric pressure varies
linearly with the #ow velocity. The measurements show insigni"cant di!erence between the
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aerodynamic damping obtained when the air #ow is constrained and that when it is not
constrained.

A simple model has been developed to predict the aerodynamic damping of oscillating
plates in stationary and moving air. The simple model suggests that the constant part of
aerodynamic forces is associated with the drag of a stationary plate in steady #ow and
therefore does not have any e!ect on the aerodynamic damping of oscillating plates. It was
found that for oscillating plates, the coe$cient of proportionality of C

�
"1 gives

a reasonably good prediction for all the experimental cases irrespective of the plate sizes and
shapes. Thus, unlike the drag coe$cient for a stationary plate in steady #ow, the coe$cient
of proportionality C

�
for oscillating plates appears to be independent of the plate shapes

and Reynolds number for the conditions tested.
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APPENDIX A: DETERMINATION OF Q-FACTOR FROM FREQUENCY
RESPONSE CURVES

The frequency response of an oscillating system with a single degree of freedom is given
by [17]

� (�)"
1

�(K�!��m)�#(�
�
R�)�

, (A.1)

where �(�) is the magnitude of receptance. However, because the experimental frequency
response data of the oscillating plate was obtained by using an accelerometer, the inertance
of the oscillating system rather than the receptance was acquired. Therefore, since
��
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�
m

�
/R� , the experimental frequency response data from the

accelerometer can be described by
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where < denotes the signal value measured by the accelerometer in millivolts and A is
a scale coe$cient. In order to evaluate the Q-factor from the experimental data, equation
(A.2) can be written as a second order equation
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By "tting a second order polynomial to the experimental data near the peak of the
response curve using the least-squares method, the values of the coe$cients a

�
, a

�
and a

�
, in

equations (A.4) were obtained. The three equations in (A.4) were then solved to give an
estimate of the Q-factor.
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