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An analytical, numerical, and experimental study of the vibrational modes of
beams with constant curvature, ranging from small values up to helices with large
numbers of turns, is presented. It is shown that, after an initial stage at low
curvature in which extensional symmetrical modes hybridize so as to become
inextensional, all modes show a decrease in frequency with increasing beam
curvature. The frequency reaches a minimum at a value of the curvature which is
a function of mode number and successive minima are separated by steps of n in the
opening angle of the beam. For large values of curvature it is shown that, for both
symmetric and antisymmetric modes, there are two types of vibrational modes with
comparable frequencies. Modes develop into one or the other of these types in
a way that is precisely de"ned but that has the appearance of being random.
Physical descriptions of the processes involved are given, and the modes of the two
types are described.
1. INTRODUCTION

The free in-plane vibration of beams with constant curvature has attracted the
attention of researches since the last century [1}15] (for a detailed overview of the
literature on the topic the reader is referred to review articles [10, 11]). The
majority of the research has been devoted to the vibration of circular arches with
opening angle up to n, and a more limited number to the vibration of incomplete
rings with opening angle less than 2n. In the authors' previous papers [12, 14],
a phenomenon of mode transition from extensional to inextensional that
accompanies an increase in beam curvature and occurs at relatively small values of
the beam opening angle has been examined. It has been observed that upon
0022-460X/99/470305#28 $30.00/0
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completion of the mode transition, the frequencies of all modes decrease with
increase in beam curvature. It was the purpose of the present paper to examine the
changes in vibrational behaviour that take place with further increase in beam
curvature. While the initial motivation of the study was to examine the behaviour
of moderately curved vibrating foils in ultrasonic transducers, it has proved
possible to apply the formalism developed to arbitrarily large curvature. Once the
curvature has increased to an extent that the opening angle becomes greater than
2n, it is, of course, impossible to realize a strictly planar uniformly curved beam of
this type. To an adequate approximation, however, a beam with large constant
curvature can be treated as a helix, provided that the helical pitch is small
compared with its diameter and that motion parallel to the helical axis is ruled out.
Under these assumptions, the width of the beam is of no consequence, provided it is
constant, but we assume the width to be very small compared with the radius of
curvature so that the helix to which the beam is curved when the opening angle
exceeds 2n has a very small pitch. In practical terms, the ratio of helical pitch to its
diameter of about 1 : 10 and beams with width at least as large as 10 times their
thickness are found to conform to the theory.

For long beams with very large constant curvature, our analysis converges
towards some aspects of published work on helical springs [16}22]. The approach
in such work is however generally very di!erent from that employed here.
Three-dimensional equations for vibration of helices are generally too di$cult to
solve analytically and most work reduces to the calculation of natural frequencies
by various numerical techniques. The importance of simpli"ed models that provide
a deep insight into di!erent e!ects inherent in helices vibration has long been
recognized [19]. A simpli"ed model presented in this paper considers a helix as
a planar uniformly curved beam vibrating in the plane of the beam curvature and is
essentially di!erent from the published simpli"ed models [16}19]. Although our
model does not take into account the longitudinal vibration and is limited to
a small helical pitch, it provides an insight into the association of the modes of
a helix with the modes of a curved beam and it reveals that di!erent types of helix
modes in fact originate from the same type of the curved beam modes.

The analysis of this paper reveals that the non-dimensional eigenvalue and
displacements are functions of beam opening angle only (which is a product of
beam curvature and length), and therefore the changes in vibrational behaviour
observed when the beam curvature is increased pertain equally to the case when the
curvature is held constant while the length of the beam is increased. The transition
from non-dimensional eigenvalue to natural frequency is straightforward, but it
should be borne in mind that the frequency versus opening angle curves will be
di!erent for the case when the length of the beam is held constant while the
curvature is increased and for the opposite case.

The analysis consists of two parts: (1) analysis of vibrational behaviour at
relatively small opening angle (but larger than that encompassing the initial mode
transition); and (2) analysis of vibrational behaviour at arbitrarily large opening
angle. For both cases, simple analytic approximations for non-dimensional
eigenvalue and mode shape are obtained. An interesting feature of the vibrational
behaviour at smaller opening angle, revealed by the analysis, is the occurrence of
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a minimum of the non-dimensional eigenvalue at a value of the opening angle that
is a function of the mode number. This minimum relates to the minimum of strain
energy. The analysis also reveals that there are two di!erent types of vibrational
behaviour at large opening angle, characterized by quite di!erent mode shapes.
These modes, and their succession in the frequency spectrum, are examined in detail
and found to conform to simple rules.

Numerical calculations illustrating the vibrational behaviour at di!erent ranges
of opening angle and con"rming the validity of the analytical approximations are
presented and a physical interpretation of the forms of the various modes and their
transitions is given.

Finally, the results of the analysis have been con"rmed by the experiments with
both moderately curved beams and helices with increasing numbers of turns.

2. GOVERNING EQUATIONS

As mentioned in the introduction, the equations of in-plane vibration of
a uniformly curved beam with large opening angle give an appropriate
approximation for the vibration of a helix, provided that the helical pitch is small
compared with its diameter and that the motion in the direction of the helical axis is
neglected. The equations of free in-plane vibration of a uniformly curved beam can
be found in many sources [1}14]. We have used the non-dimensional form of the
equations given in [12]:

(u@!av)@#eKu"0, (1)

!e(a4v#2a2vA#vAA)#(u@!av)a#eKv"0, (2)

where u and v are the non-dimensional tangential and normal displacements, a is
the opening angle, which is the ratio of beam length l to its radius of curvature R,
K is a non-dimensional eigenvalue and e is a slenderness parameter of the beam,
de"ned by

K"

ol2u2

eE
, (3)

e"
h2

12l2
, (4)

where h is the beam thickness, o is the density, E is Young's modulus and u is the
frequency. Primes denote di!erentiation with respect to the non-dimensional
coordinate sN"s/l measured along the beam centreline. In these equations,
rotational inertia e!ects have been neglected. It is also assumed that the beam has
rectangular cross-section, but it is straightforward to generalize the results of this
paper for other forms of cross-section. We also assume that the ends of the beam are
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clamped, so that

u"0 at sN"0, 1, (5)

v"v@"0 at sN"0, 1. (6)

3. ANALYSIS OF THE EQUATIONS

In this section, we present an analysis of the equations of free vibration of beams
with constant curvature. Firstly, we show that at large opening angle these
equations can be approximated with su$cient accuracy by the equations of
inextensional vibrations. We then derive analytical approximations for two cases:
for relatively small opening angle and for large opening angle. Finally, we compare
the analytical approximations with numerical solutions.

3.1. APPROXIMATION FOR EQUATIONS

In order to show that equations (1, 2) can be approximated by the equations of
inextensional vibration, it is convenient to reduce equations (1, 2) to a single
equation in terms of the transverse displacement v only. Di!erentiating equation
(1), multiplying equation (2) by a and subtracting them yields

(u@!av)A#(u@!av) (Ke!a2)#ea(a4v#2a2vA#vAA)"0. (7)

Substituting for u@!av from equation (2) gives

vAAA#2a2vAA#(a4!K)vA#Kva2#e[K(a4v#2a2vA#vAA!Kv)]"0. (8)

The boundary conditions (5, 6) can also be rewritten in terms of the transverse
displacement v. Expressing u from equation (1) and substituting for u@!av from
equation (2) gives

u"
e(a4v@#2a2vA@#v@AA)!Kev@

aeK
. (9)

The boundary condition (5) can be expressed in terms of the transverse
displacement v by substituting the boundary conditions (5) and (6) into equation (9):

vAA@#2a2v@A"0 at sN"0, 1. (10)

When the opening angle a is su$ciently large, the non-dimensional eigenvalue K is
of order O(a2) and the number of oscillations in transverse displacement is of order
a (this will be discussed later), and therefore the terms in square brackets in
equation (8) are of the same order of magnitude as the largest term outside the
brackets. This suggests that the leading approximation to equation (8) can be
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obtained by setting e"0, i.e.,

vAAA#2a2vAA#(a4!K)vA#Kva2"0. (11)

This equation with boundary conditions

v"v@"vAA@#2a2v@A"0 at sN"0, 1 (12)

gives a leading-order approximation K
0

to the non-dimensional eigenvalue K,

K"K
0
#O(e).

Note that the validity of the equation (11) for large a is limited by the condition
h/R@1.

Equation (11) is a familiar equation of inextensional (or #exural) in-plane
vibration of a ring or portion of a ring [23]. A feature of this equation is that it does
not explicitly depend on the beam slenderness parameter (in fact, the slenderness
parameter e enters only the non-dimensional eigenvalue K), which suggests that the
slenderness parameter of helices and beams with larger opening angle a!ects only
the scaling of natural frequencies. Numerical results show that the inextensional
approximation (11, 12) provides su$cient accuracy (up to few per cent) for the
non-dimensional eigenvalue of beams with a thickness to length ratio of up to 0)1.

3.2. APPROXIMATION FOR SMALL OPENING ANGLE

In this section, we derive analytical approximations for the non-dimensional
eigenvalue of the lower modes using Rayleigh's principle. In doing so, we take
advantage of the fact that, for the range of opening angle studied in the present
paper, a su$ciently accurate approximation for the non-dimensional eigenvalue
may be obtained by assuming that the vibrations are inextensional.

3.2.1. Modes antisymmetric in v

An approximation for non-dimensional eigenvalue can be obtained from
Rayleigh's principle provided that a reasonable approximation for mode shape is
known. We assume that the shape of the transverse displacements of a curved beam
is little a!ected by curvature and therefore can be approximated by that at
curvature approaching zero. In the case of antisymmetric modes, the transverse
displacements of a straight beam can be taken as an approximation for transverse
displacements of a corresponding mode of a curved beam

v"a Gcos
b
2

sinhCbAsN!
1
2BD!cosh

b
2

sinCbAsN!
1
2BDH , (13)
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where b"K1@4Da/0
. In order to satisfy the boundary conditions (6) we require

cos
b
2

sinh
b
2
!cosh

b
2

sin
b
2
"0. (14)

With reasonable accuracy the roots of equation (14) are given by b+n/2#2nn,
where n is the mode number and n"1 corresponds to the lowest antisymmetric
mode.

The expression for tangential displacements u can be obtained by satisfying the
condition

u@!av"0, (15)

that the centreline of the beam is unextended. From equation (15) and the boundary
condition (5) we have

u"a P
sN

0

vdsN"
aa
b Gcos

b
2

coshCbAsN!
1
2BD

#cosh
b
2

cosCbAsN!
1
2BD!2 cos

b
2

cosh
b
2H. (16)

By Rayleigh's principle, ¹"=, where= and ¹ are strain (bending) and kinetic
energies. The expressions for these are given by

="

Ebh3

24l3 P
1

0

[(v@#au)@]2dsN , (17)

¹"

u2obhl
2 P

1

0

[u2#v2] dsN , (18)

where b is the width of the cross-section. Substituting the expressions for
displacements (13, 16) into the expressions for strain and kinetic energies (17, 18)
and using (14) yield

="

a2Ebh3

48bl3 G(b2#a2)2(sinhb!b) cos2
b
2
!(b2!a2)2(sinb!b) cosh2

b
2H , (19)

¹"

a2u2obhl
4b GA

a
bB

2

C!10 cos
b
2

cosh
b
2 Acosh

b
2

sin
b
2
#cos

b
2

sinh
b
2B

#bAcos2
b
2
#cosh2

b
2B#8b cos2

b
2

cosh2
b
2D#bAcosh2

b
2
!cos2

b
2BH. (20)
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An expression for the non-dimensional eigenvalue K can then be obtained from
Rayleigh's principle as

K"G(b2#a2)2 (sinhb!b) cos2
b
2
!(b2!a2)2(sinb!b) cosh2

b
2H

]GA
a
bB

2

C!10 cos
b
2

cosh
b
2 Acosh

b
2

sin
b
2
#cos

b
2

sinh
b
2B

#bAcos2
b
2
#cosh2

b
2B#8b cos2

b
2

cosh2
b
2D#bAcosh2

b
2
!cos2

b
2BH

~1
.

(21)

From expressions (19, 20), one can see that while the integral in the expression for
kinetic energy increases quadratically in a, the strain energy is fourth power of
a and is expected to have a minimum. The value a

*
that yields a minimum strain

energy can be calculated from the condition L=/La"0 and is given by

a2
*
"b2

(b!sinb) cosh2 (b/2)#(b!sinh b) cos2(b/2)
(b!sinb) cosh2 (b/2)!(b!sinhb) cos2(b/2)

. (22)

It can be seen that the value of opening angle that delivers the minimum to the
strain energy is a function only of non-dimensional eigenvalue of the corresponding
mode of the straight beam. The structure of this dependence becomes more
apparent when considering larger values of b. Equation (22) can then be
approximated by a

*
+b+n/2#2nn and it can be seen that the minima of strain

(bending) energy for consecutive antisymmetric modes are spaced 2n apart.
Because the integral in the expression for kinetic energy increases with increasing

opening angle of the beam, the position of the minimum of the non-dimensional
eigenvalue K is shifted a little toward larger opening angle compared to the position
of minimum of strain energy. For example, for the lowest antisymmetric mode the
minimum of strain energy occurs at a*"2)16n, while the minimum of the
non-dimensional eigenvalue K occurs at a*"2)43n.

3.2.2. Modes symmetric in v

In the case of the modes symmetric in v, the approximation for transverse
displacements can be obtained from equation (11) in the limit aP0 and is given by

v"a Gsinh
b
2

cosCbAsN!
1
2BD#sin

b
2

cosh CbAsN!
1
2BD

!cosh
b
2

sin
b
2
!cos

b
2

sinh
b
2H. (23)
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The boundary conditions (6) are satis"ed by requiring

cosh
b
2

sin
b
2
#cos

b
2

sinh
b
2
!

4
b

sin
b
2

sinh
b
2
"0. (24)

The expression for tangential displacements u satisfying the boundary condition (5)
and the conditions that the vibrations are inextensional (15) is given by

u"aP
sN

0

vdsN"
aa
b Gsin

b
2

sinhCbAsN!
1
2BD

#sinh
b
2

sinCbAsN!
1
2BD#2 sin

b
2

sinh
b
2

(1!2sN )H. (25)

By substituting the expressions for displacements into the expressions for potential
and kinetic energies (17, 18) and using Rayleigh's principle gives, for the
non-dimensional eigenvalue K,

K"G(b2#a2)2(sinhb#b) sin2
b
2
#(b2!a2)2(sinb#b) sinh2

b
2

!

16
b

(b4#a4) sin2
b
2

sinh2
b
2H GA

a
bB

2

CbAsinh2
b
2
!sin2

b
2B

!10 sin
b
2

sinh
b
2 Acosh

b
2

sin
b
2
!cos

b
2

sinh
b
2B#

8b
3

sin2
b
2

sinh2
b
2 D

#bAsinh2
b
2
#sin2

b
2B!

8
b

sin2
b
2

sinh2
b
2H

~1
, (26)

where the allowed b values are the roots of equation (24).
The behaviour of the strain and kinetic energy, and as a result the behaviour of

non-dimensional eigenvalue, with increasing opening angle, is similar to that of
antisymmetric modes considered in the preceding section. In the case of symmetric
modes, the value of opening angle that provides the minimum in the strain energy is
given by

a2
*
"b2

(b#sinb) sinh2b/2!(b#sinhb) sin2b/2
(b#sinb) sinh2b/2#(b#sinhb) sin2b/2!(16/b) sin2 b/2 sinh2b/2

. (27)

For larger values of b we have a*+b+2nn#3n/2. One can see that, in the same
manner as in the case of antisymmetric modes, the minima of the non-dimensional
eigenvalue for consecutive symmetric modes are spaced 2n apart and that they
lag behind the minima of the antisymmetric modes by n. The minima of the
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non-dimensional eigenvalue K are again shifted towards larger values of opening
angle compared to the minima of strain energy.

3.3. APPROXIMATION FOR LARGE OPENING ANGLE

In this section, we obtain approximations for the non-dimensional eigenvalue
and mode shape at large opening angle on the basis of asymptotic analysis of the
equation of inextensional vibration (11). In the following analysis, a parameter
d"JK/a2 is considered to be small and it is assumed that d"O(1/a).

3.3.1. Non-dimensional eigenvalues of symmetric modes

For the modes symmetric in v, the general solution of equation (11) has the form

v"c
1
cos [b

1
a(sN!1/2)]#c

2
cos [b

2
a (sN!1/2)]#c

3
cos [b

3
a(sN!1/2)], (28)

where b
i
are the roots of the equation

b2(b2!1)2"d2(b2#1).

It is easy to show that

b
1
"d#O(d2), b

2
"1!

d

J2
#O (d2), b

3
"1#

d

J2
#O (d2). (29)

The non-dimensional eigenvalue K can be obtained by substituting expression (28)
into the boundary conditions (12) and requiring that the resulting system of
equation in c

i
has a non-trivial solution. Thus

K
cos (b

1
a/2) cos (b

2
a/2) cos (b

3
a/2)

b
1
sin (b

1
a/2) b

2
sin (b

2
a/2) b

3
sin (b

3
a/2)

b3
1
(b2

1
!2) sin (b

1
a/2) b3

2
(b2

2
!2) sin (b

2
a/2) b3

3
(b2

3
!2) sin (b

3
a/2) K"0.

Up to order O(d3), this equation can be reduced to

!b
1
sin (b

1
a/2) [b3

3
(b2

3
!2) sin (b

3
a/2) cos (b

2
a/2)

!b3
2
(b2

2
!2) cos (b

3
a/2) sin (b

2
a/2)]"0.

Obviously, this equation has two families of solutions. The "rst family is given by
the equation

sin (b
1
a/2)"0

the solution of which is
KI

k
"4a2(nk)2, k"1, 2,2 (30)
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The second family is given by the equation

b3
3
(b2

3
!2) sin (b

3
a/2) cos (b

2
a/2)!b3

2
(b2

2
!2) cos (b

3
a/2) sin (b

2
a/2)"0,

which can be rewritten, up to the order O(d2), as

sinC
a (b

3
!b

2
)

2 D"
a (b

3
!b

2
)

2
sin a

a
.

Given that sin a/a"O (d), this equation can be solved asymptotically for small d.
Thus, to O (kd2), we have

(b
3
!b

2
)a/2"knC1!(!1)k

sin a
a D ,

and therefore the non-dimensional eigenvalue for the second family is given by

KII
k
"2k2n2a[a!(!1)k 2 sin a]#O(1), k"1, 2,2 (31)

3.3.2. Non-dimensional eigenvalues of antisymmetric modes

In a similar manner, an approximation for non-dimensional eigenvalue can be
derived for antisymmetric modes. In this case, the general solution has the form

v"c
1

sin [b
1
a (sN!1/2)]#c

2
sin [b

2
a (sN!1/2)]#c

3
sin [b

3
a(sN!1/2)] (32)

and the non-dimensional eigenvalue is de"ned by the equation

K
cos (b

1
a/2) cos (b

2
a/2) cos (b

3
a/2)

b
1
sin (b

1
a/2) b

2
sin (b

2
a/2) b

3
sin (b

3
a/2)

b3
1
(b2

1
!2) sin (b

1
a/2) b3

2
(b2

2
!2) sin (b

2
a/2) b3

3
(b2

3
!2) sin (b

3
a/2) K"0.

which can be written up to O(d3) as

!b
1
cos (b

1
a/2) [b3

3
(b2

3
!2) cos (b

3
a/2) sin (b

2
a/2)

!b3
2
(b2

2
!2) sin (b

3
a/2) cos (b

2
a/2)]"0.

The two families of solutions for the non-dimensional eigenvalue are given by

cos (b
1
a/2)"0



TABLE 1

Non-dimensional eigenvalue of the two families of approximations

Symmetric Antisymmetric

k KI
k

KII
k

KI
k

KII
k

1 4(na)2 2(na)2 (na)2 2(na)2
2 16(na)2 8(na)2 9(na)2 8(na)2
3 36(na)2 18(na)2 25(na)2 18(na)2

TABLE 2

Approximations in ascending order of frequency

Symmetric KII
1
, KI

1
, KII

2
, KI

2
, KII

3
, KI

3

Antisymmetric KI
1
, KII

1
, KII

2
, KI

2
, KII

3
, KI

3
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and

b3
3
(b2

3
!2) cos (b

3
a/2) sin (b

2
a/2)!b3

2
(b2

2
!2) sin (b

3
a/2) cos (b

2
a/2)

"sin C
a(b

3
!b

2
)

2 D!
a (b

3
!b

2
)

2
sin a

a
#O(d2)"0.

The non-dimensional eigenvalue corresponding to the "rst family is given by

KI
k
"(na)2 (2k!1)2, k"1, 2,2, (33)

while the non-dimensional eigenvalue for the second family is given by

KII
k
"2k2n2a[a#(!1)k 2 sin a]#O(1), k"1, 2,2 (34)

The values of non-dimensional eigenvalue for the three lowest approximations at
large a are shown in Table 1. It can be seen that the non-dimensional eigenvalues as
functions of opening angle for approximation of a given symmetry do not intersect
and it is therefore possible to arrange them in ascending order of frequency (see
Table 2). This order is di!erent for symmetric and antisymmetric modes, and it will
be seen later that it de"nes the order in which the modes of a curved beam take one
or another type of vibrational behaviour at large opening angle. While this order is
actually well de"ned, it has the appearance of being almost random.
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3.3.3. Mode shapes at large opening angle

In this section, we shall obtain the approximations for the eigenfunctions and
show that they have a speci"c structure depending on the value of the
non-dimensional eigenvalue.

In order to obtain the expressions for eigenfunctions up to a multiplying
constant, we can set one of the coe$cients c

i
in expressions (28, 32) equal to 1 and

estimate the remaining coe$cients from boundary conditions. If we set c
3
"1, then

c
1
"

!b
2
f A

b
3
a

2 B g A
b
2
a

2 B#b
3

f A
b
2
a

2 B g A
b
3
a

2 B
b
2

f A
b
1
a

2 B gA
b
2
a

2 B!b
1

f A
b
2
a

2 B g A
b
1
a

2 B
,

c
2
"

!b
3
f A

b
1
a

2 B g A
b
3
a

2 B#b
1

f A
b
3
a

2 B g A
b
1
a

2 B
b
2

f A
b
1
a

2 B gA
b
2
a

2 B!b
1

f A
b
2
a

2 B g A
b
1
a

2 B
,

where

f,G
cos
sin

for symmetric modes,
for antisymmetric modes,

g,G
sin
cos

for symmetric modes,
for antisymmetric modes.

Firstly, consider the non-dimensional eigenvalue given by the second family of
solutions (31) and (34). Substituting these expressions into equation (29), and the
latter into the above expressions for c

1
and c

2
, and taking limit aPR yield

c
1
P0, c

2
P(!1)k`1,

where k is the mode index de"ned by equations (31, 34). Therefore, the form of
normal displacements at large opening angle is, up to a constant,

v+G
cos [a (sN!1/2)] cos [kn(sN!1/2)]
sin [a(sN!1/2)] sin [kn(sN!1/2)]

for odd k,
for even k

for symmetric modes, and

v+G
sin [a(sN!1/2)] cos [kn(sN!1/2)]
cos [a (sN!1/2)] sin [kn(sN!1/2)]

for odd k,
for even k
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for antisymmetric modes. We can see that the normal displacements in this case are
highly oscillatory functions with spatial frequency of oscillation proportional to the
opening angle, modulated by a slowly varying function with frequency
proportional to the mode index k in the particular family of approximations. The
tangential displacements in this case have similar structure and are of the same
order of magnitude as the transverse displacements.

When the non-dimensional eigenvalue takes the values from the "rst family of
solutions (30) and (33), the structure of the normal displacements is more
complicated and generally all three terms in expressions (28, 32) play signi"cant
roles. In this case, it is convenient to consider the structure of the tangential
displacements, which is more clearly de"ned. The tangential displacements have the
form

u"b
1
g [b

1
a(sN!1/2)]#b

2
g [b

2
a(sN!1/2)]#b

3
g[b

3
a (sN!1/2)]#const, (35)

where

b
j
"

c
j

b
j

, j"1, 2, 3. (36)

It is convenient in this case to set c
1
"1, then we have the following expressions for

the remaining coe$cients:
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By substituting the expressions for K from equations (30, 33) into equation (29) and
the latter into equations (37, 38) and (36), it is easy to show that

b
1
"O(a), b

2
"O(1), b

3
"O(1) as aPR.

The shape of tangential displacements, up to the leading order, is given by

u+G
a sin [2kn(sN!1/2)]
a cos [(2k!1)n (sN!1/2)]

for symmetric modes,
for antisymmetric modes,

where k"1, 2,2 It can be seen that the leading-order part of the tangential
displacements is a slowly varying function with a number of half-waves
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proportional to the mode index k in a corresponding family of approximations. The
transverse displacements in this case are of smaller order of magnitude than the
tangential ones

v"O(1).

It can be seen that the major di!erence in the structure of mode shape for the two
families of approximations, in terms of tangential displacements, is that in the case
of the "rst family the tangential displacements are, to the leading order, slowly
varying functions, with number of oscillations proportional to the mode index in its
family, while in the case of the second family the tangential displacements are highly
oscillatory functions with number of oscillations proportional to the value of
opening angle. In what follows, we designate these as type I and type II modes,
respectively.

Finally, it should be noted that the results with respect to vibrational behaviour
at larger opening angle can be obtained, in less rigorous but perhaps more
illuminating way, directly from Rayleigh's principle, which can be written in terms
of tangential displacements as

K"min
u

:1
0
(u@A/a#au@)2dsN

:1
0
(u2#u@3/a2) dsN

. (39)

There are two possibilities to consider here in the limit of large opening angle. The
"rst is to assume that the tangential displacements are relatively slowly varying
functions, with number of half-waves of an order less than a. Then, in the limit of
large opening angle, equation (39) can be considerably simpli"ed to

K"min
u

:1
0
(au@)2dsN

:1
0
u2dsN

as aPR

which is equivalent to the equation

a2uA"Ku.

Obviously, this equation with boundary conditions u(0)"u(1)"0 produces the
solution for the non-dimensional eigenvalue of the "rst family.

Another possibility is to suggest that all terms in the integrands of equation (39)
are of the same order, which means that the number of half-waves in u is of order a.
It can be shown that with this assumption equation (39), solved in the limit of large
opening angle, will produce the solution for the non-dimensional eigenvalue of the
second family.

4. NUMERICAL RESULTS

The non-dimensional eigenvalue of the lowest symmetric mode of a uniformly
curved beam is shown in Figure 1. Broken lines represent the numerical solution for



Figure 1. Non-dimensional eigenvalue K as a function of opening angle a for lowest symmetrical
mode. The length of the beam remains constant and the curvature is increased. Inextensional
approximation is shown by solid line, broken lines show the numerical solution for di!erent values of
e : - - - e"10~6, -) -) - e"10~5, ) ) ) ) e"10~4.
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di!erent values of the slenderness parameter e, calculated using equations (1, 2).
The solid line shows the inextensional solution calculated using equations (11, 12).
We can see that the inextensional solution represents an accurate approximation
everywhere outside the region of initial small-curvature transformation of the
modes.

In Figure 2, we have plotted the numerical inextensional solution and small
opening angle analytic approximations for the non-dimensional eigenvalue of the
lowest antisymmetric and symmetric modes versus opening angle. We can see that
the analytic approximation provides an accurate description of the region of
decrease and subsequent rise of the non-dimensional eigenvalue and also gives an
accurate prediction of the position of its minimum. However, the vibrational
behaviour for larger opening angle cannot be predicted by this approximation. This
is not surprising because the assumption that the mode shape remains without
change becomes invalid at that stage.

In Figures 3 and 4, the non-dimensional eigenvalues of the lowest three
symmetric and antisymmetric modes are shown together with large opening angle
analytic approximations. It can be seen that the analytic approximations give an
accurate prediction of non-dimensional eigenvalues for large values of opening



Figure 2. Non-dimensional eigenvalue as a function of opening angle for the lowest antisymmetric
and symmetric modes (lower non-dimensional eigenvalue corresponds to antisymmetric mode).
Inextensional solution is shown by solid line, while analytical approximations are shown by dashed
lines.
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angle. The analytic approximations for the lowest two symmetric and
antisymmetric modes are almost indistinguishable from the exact numerical
solution for a wide range of the opening angle. It is interesting to note that in the
case of symmetric modes, the second mode belongs to the "rst type of vibrational
behaviour at large opening angle, while the lowest and the third modes belong to
the second type. This is also clearly demonstrated in Figure 5, where the
displacements of the three lowest symmetric modes are shown at large value of
opening angle. In the case of antisymmetric modes the order is di!erent. The lowest
mode belongs to the "rst type of vibrational behaviour, while the next two modes
belong to the second type (see also Figure 6). It appears that the order of the modes
(when arranged in ascending order of frequency) in the analytic approximation of
a particular type of symmetry de"nes the order in which the modes of a curved
beam of the same type of symmetry take one or another type of vibrational
behaviour at large opening angle.

5. PHYSICAL INTERPRETATION

Because the vibrational phenomena discussed above are complex, it is important
to be able to describe them in simple terms and to give physical reasons for their
appearance and behaviour. Speci"cally, a physical explanation is desirable for (1)



Figure 3. Numerical solution (solid lines) and large opening angle analytic approximations for
non-dimensional eigenvalue of symmetric modes. The analytic approximations of the "rst family are
shown by dotted lines, while the approximations of the second family are shown by dashed-dotted
lines (note that the approximation is virtually indistinguishable from the non-dimensional eigenvalue
of the lowest mode).
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the decrease in mode frequency to a minimum value for moderate curvature, and
the relationship between the mode number and the curvature for which this
minimum occurs, and (2) the mode behaviour at very high values of curvature. We
approach these in turn.

As discussed in our earlier papers [12, 14], the transverse modes of a straight
beam are, of course, inextensional to "rst order. When the beam is curved, those
modes that are antisymmetric about the centre of the beam remain inextensional,
while symmetric modes have an extensional component that is proportional to the
non-dimensional beam curvature (or opening angle) a. The frequencies of
antisymmetric modes are therefore independent of curvature, to a "rst
approximation, and need concern us no further. The frequencies of symmetric
modes, on the other hand, rise sharply with increasing curvature. It then becomes
energetically favourable, in the sense of a variational principle, to modify each
symmetric mode function by adding to it a proportion of the next-higher symmetric
mode function in such a way that the extensions have opposite signs and cancel as
discussed in reference [14]. The resulting variational energy, and thus the
frequency, lies between those of the two modes that have been combined and, the
new mode being inextensional, su!ers no further frequency change as the curvature
is increased. It is these modi"ed modes that formed the starting point for our
present analysis, for these transformations all occur for a@1.



Figure 4. Numerical solution (solid lines) and large opening angle analytic approximations for
non-dimensional eigenvalue of antisymmetric modes. The analytic approximations of the "rst family
are shown by dotted lines (the approximation is virtually indistinguishable from the non-dimensional
eigenvalue of the lowest mode), while the approximations of the second family are shown by
dashed-dotted lines (second and third modes).
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For values of the opening angle a small compared with 2n, the beam
displacements are predominantly transverse, so that longitudinal kinetic energy
can be ignored when calculating the frequency by means of Rayleigh's principle. As
the opening angle is increased, however, longitudinal motion becomes more and
more important, if we assume the transverse form of the beam modes to remain
unaltered. This is because a simple expansion of one turn of a helix is necessarily
coupled to a longitudinal motion that is 2n times as large.

As the opening angle a is increased, a situation is reached in which the number of
turns in the helix is equal to the number of full wavelengths in the mode function
under consideration. At this point, each turn of the helix su!ers a transverse
displacement of the form sin /, where / is the azimuthal angle around the helix, and
to this is coupled a longitudinal displacement cos/, resulting in a simple sideways
motion of the whole helical turn with no elastic distortion whatever. The whole
helix, except near its clamped ends, su!ers a similar displacement. This is the
situation when a+2nn for antisymmetric modes and when a+(2n#1)n for
symmetric modes, where n is the mode number of the modi"ed modes discussed
above. Almost the only elastic distortion in this case occurs at the clamped ends of
the helix, and the mode concerned has a frequency minimum near this value of a.
When the curvature matching condition is not exactly met, then the displacement



Figure 5. Displacements of the three lowest symmetric modes at a"50. Transverse displacements
are shown by solid lines, while tangential displacements are shown by dashed lines: (a) "rst mode,
(b) second mode, (c) third mode.
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of the helix is to the form of a super-helix with about n!a/2n turns, the sign of this
quantity determining whether the super-helix winds in the same or the opposite
sense to the base helix. The elastic energy associated with this super-helical
distortion ensures that the frequency rises quadratically with a!2nn in the
immediate vicinity of the minimum.

For very large values of a, the analysis of section 3 shows that the transverse
displacement v for symmetric modes can be expressed as the sum of three terms as
in equation (28). Each term is sinusoidal and has a spatial frequency b

i
given by

equation (29). Now, from equations (3) and (4), the parameter d occurring in
equation (29) is seen to be simply d"ul/c, where c is the transverse wave speed on
the original straight beam. The three terms in v therefore represent transverse



Figure 6. Displacements of the two lowest anti-symmetric modes at a"50. Transverse displace-
ments are shown by solid lines, while tangential displacements are shown by dashed lines:
(a) "rst mode, (b) second mode.
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disturbances with respectively n, (a/2n)!(n/J2) and (a/2n)#(n/J2) sinusoidal
wavelengths along the helical centreline. From our discussion above, on the
assumption that n@a, these represent, in turn, a periodic dilatational motion of the
helix, and super-helical distortions of opposite sense. From the discussion in section
3.3.3, there are two types of resulting modes. In modes of type II, the second and
third terms dominate and are approximately equal in magnitude, so that the
super-helices combine to give a plane-polarized wave-like distortion to the helix, as
shown in Figure 7(b). In modes of type I, the "rst term dominates, and the
distortion is a dilatational one, as shown in Figure 7(a). The exact form of these
modes depends a little upon whether or not a/n is an integer, as indicated in
equations (31, 34), representing an integral number of half-turns on the helix.

The fact that type I and Type II modes have comparable energies is, at "rst sight,
strange. Type II modes clearly have much less elastic distortion energy than do type
I modes, but this is compensated for by the very large inertia associated with
longitudinal motion in type I modes. Rather more surprising is the fact that, in the
large curvature limit, the energies of these two types of modes are locked into
a numerical relationship, as shown in Tables 1 and 2.

Viewing the two types of modes macroscopically as vibrations of a helix, rather
than microscopically as those of a curved beam, modes of type I might be termed
&&varicose'' and those of type II &&sinuous''. From a slightly di!erent macroscopic
viewpoint, type I modes could be characterized as torsional, with the torsion axis
being the axis of the helix, since for these modes tangential displacements are much
larger than radial ones. Type II modes could similarly be termed transverse on the
macroscopic helix. Note that macroscopic longitudinal modes of the helix derive
from out-of-plane modes of the original slightly curved beam, and so are not
included in the present analysis.



Figure 7. Displacement associated with a typical mode in the region of large a: (a) mode of type I;
(b) mode of type II.
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6. EXPERIMENTAL VERIFICATION

The predictions of the theory were examined in several experiments. The "rst two
experiments examined the behaviour of the mode frequencies as the opening angle
was increased, in one case by simply increasing from zero to a moderately large
value the curvature of a beam of constant length, and in the other by progressively
reducing the length of a helix of constant curvature. In the "nal experiment, the
vibrational modes of a compact helix were examined and their forms related to the
predictions of the theory. While it would have been possible in principle to use
a standard instrumented hammer and accelerometer to examine the mode
structure, this proved impractical because of the lightness of the helix, and
alternative methods were therefore used.

6.1. MODE FREQUENCIES

In each of the "rst two experiments, the beam was formed from a strip of
galvanized steel sheet with thickness 1 mm and width 10 mm. In the "rst



Figure 8. Experimental arrangement for the frequency spectrum measurements of the beam, for
small and large curvatures. Note the accelerometer placed in this case in the centre of the beam.
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experiment, the length of the beam was 800 mm, and its two ends were clamped in
angularly adjustable vices which were in turn clamped to a solid bench as shown in
Figure 8. In this way, the curvature of the strip could be varied from zero to a helix
of several turns by plastic deformation, so that the opening-angle range 0)a)25
could be explored. In the second experiment, a strip of initial length 2400 mm was
plastically deformed to a helix of constant radius 48 mm and pitch just a few
millimetres greater than the width of the strip. The accuracy of the beam shape was
approximately $3% of its helical radius over its entire length. During the
experiment, the opening-angle range 6)a)50 was explored by progressively
reducing the length of the helix from 2400 to 300 mm by cutting material from one
end.

The curved beam or helix was excited into vibration by giving it a sharp tap with
a light rod. The position of the tap could be varied to aid in identi"cation of the
modes. The vibration was monitored using a sub-miniature Bruel and Kjaer
accelerometer, Type 4374, "xed to the surface of the bar with wax. The weight of
this accelerometer, the range of which extends to 26 kHz, is only 0)65 g, so that its
extra load had negligible e!ect on the bar vibration. A dual-channel FFT analyzer
(ONOSOKKI model CF-350/360 with 100 kHz sampling rate) was then used to
collect, process and store the experimental data from the accelerometer.

To reduce measurement uncertainties, 16 measurements were taken for each
experimental condition. Each set of data was subjected to a FFT and all 16 sets of
results were then averaged. In order to identify symmetric and antisymmetric
modes in the frequency spectrum, two sets of measurements with di!erent tapping



Figure 9. Typical measured vibrational spectra for a curved beam (a) tapped near the mid-point
and (b) tapped near one end. In each case, the accelerometer positions were in the centre of the beam.
Symmetric and antisymmetric modes are clearly identi"able.
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positions were taken. Thus, tapping the bar in the centre excited symmetric modes,
while tapping the bar near one of the ends excited all modes nearly equally. Two
typical frequency spectra with tapping in the centre and near one of the ends of the
bar respectively are shown in Figure 9. For each experiment, four di!erent
accelerometer positions were used to help identify modes within these categories.
Thus, an accelerometer position about one-quarter of the length from one end of
the helix gave maximum response for the second and sixth antisymmetric modes,
while a placement at one-eighth of the length accentuated the fourth antisymmetric
mode, and so forth. The fact that the accelerometer is sensitive only along its axis
ensured identi"cation of axial modes along the helix, which are not included in the
theoretical discussion.

Figure 10 shows the measured mode frequencies for the case in which the length
of the bar was maintained constant and the curvature varied. Theoretical curves
were calculated using equations (1, 2). Since the values of Young's modulus and
thickness of the experimental beam were not known to high accuracy, it was
impossible to check absolute agreement between measured and calculated
frequency. Excellent agreement between theoretical and experimental results is
obtained if the parameters of the beam are in the range 5300)JE/o)5400 m/s,
which is consistent with the manufacturer's data. Figure 11 shows the same
information for the case in which the curvature was held constant and length
varied, thus encompassing a much greater range of the parameter a. Again, the
theoretical curves are in good agreement with those in the experiment.



Figure 10. Measured mode frequencies, as functions of beam opening angle, for the case in
which the beam length l was kept constant and the curvature varied. Curves show the calculated
behaviour (symmetric modes are shown by solid lines, while antisymmetric modes are shown by
dashed lines).
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6.2. MODE SHAPES

The experiments described above, however, give very limited information about
mode shape, and such information is important in view of the predicted existence of
modes of two distinct types for large values of the curvature. The "nal set of
experiments aimed to examine this prediction.

Since the mode shapes in question occur only at high values of curvature with
a'10, the experiments were carried out on a helix with approximately eight
turns (a+50). This was made from the same 1 mm steel sheet, and the helix,
again 48 mm in radius, was wound with only about 1 mm between turns. Its shape
was again maintained by stable plastic distortion of the strip, and was accurate to
about $1 mm. The helix was clamped as before between the jaws of two heavy
vices.



Figure 11. Measured mode frequencies, as functions of beam opening angle, for the case in which
the curvature was held constant and the beam length varied (the symbols used to denote the measured
frequencies of di!erent modes are as in Figure 10). Full curves show the calculated behaviour
(symmetric modes are shown by solid lines).
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A preliminary survey of the mode frequencies of the helix was made by tapping it
and analysing the signal from an attached accelerometer. The helix was then driven
sinusoidally by a shaker mounted only a few millimetres from one of the clamps in
such a way as to excite each one of the modes successively for study. With a typical
maximum vibrational amplitude of about 1 mm and a mode frequency in the range
5}20 Hz, it was quite simple to discern the shape of the modes by simple visual
observation. This was supplemented, however, by stroboscopic illumination, which
made the mode structure even more obvious. Finally, the amplitude and phase
relations between adjacent helical turns and around individual turns, for both
radial and tangential components of the vibration, were examined using
a subminiature accelerometer attached in one of two possible orientations with
wax. In this way it was very simple to determine the macroscopic shape of each
mode for comparison with Figure 7, to verify that these shapes agreed with the



TABLE 3

Experimentally observed mode characteristics

Frequency (Hz) Mode type Number of half-wavelengths

5)75 Varicose (I) 1
7)05 Longitudinal 1
7)63 Sinuous (II) 1
7)75 Sinuous (II) 1

11)1 Varicose (I) 2
13)6 Longitudinal 2
14)3 Sinuous (II) 2
16)9 Sinuous (II) 2
22)0 Varicose (I) 3
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theoretical predictions for type I and type II modes in relation to both radial and
tangential motion, and to classify each mode unambiguously.

The results of these experiments are summarized in Table 3. The third column of
the table gives the number of macroscopic half-wavelengths exhibited by the mode.
Two longitudinal modes (axial modes on the helix) are included for completeness,
but are not relevant to our current study since they derive from out-of-plane modes
of the original bent beam, which have not been included in the theory. Omitting
these longitudinal modes, it is clear that we have identi"ed both varicose (Type I)
and sinuous (type II) modes, and that the frequency sequence of these goes as
I,II,II,I,II,II,I,2 as predicted by the theory and documented in Table 1. When
there are two neighbouring modes of type I, observation shows that they occur as
linearly polarized vibrations at approximately 903 to one another, rather than as
two super-helical modes. Such a coupling is not unexpected when the e!ect of the
end-conditions is taken into account.

The experiments thus con"rm that the theory is correct in its identi"cation of two
types of vibrational modes for the large-curvature helical limit, and that the
succession of these modes is as predicted. No close comparison of measured and
predicted frequencies was made, since, as can be seen from the theoretical curves of
Figure 11 for a a little greater than 50, these depend quite strongly upon the exact
value of a in this range.

7. CONCLUSIONS

Analysis of the equations of free in-plane vibration of a uniformly curved beam
with large opening angle has shown that, after the initial rise in non-dimensional
eigenvalue and transformation of shape of symmetric modes which occurs at
a values of opening angle much less than 2n, a stage of decrease in non-dimensional
eigenvalue of all modes follows and continues up to a value of opening angle
a+K1@4

0
, where K

0
is non-dimensional eigenvalue of the corresponding mode of

a straight beam. These values of opening angle are larger than 2n and at this stage
the beam should be considered as a helix. The minimum of non-dimensional
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eigenvalue is closely related to the minimum of strain energy, as discussed in
sections 3.2 and 5. During the stage of decrease in non-dimensional eigenvalue, the
mode shape does not experience signi"cant change.

This stage is followed by a stage of increase in non-dimensional eigenvalues of all
modes, which is accompanied by transformation of mode shape. During this stage
of transformation, there are two types of vibrational behaviour with quite di!erent
mode shapes, in the limit of large opening angle. In the "rst type, the transverse and
tangential displacements are of the same order of magnitude and are highly
oscillatory functions, with the number of oscillations proportional to the number of
turns in the helix. In the second type, the tangential displacements are of higher
orders of magnitude than the transverse ones, and up to the leading order they are
slowly varying functions.

Analytic approximations for non-dimensional eigenvalue and mode shape are
obtained for both the stage of decrease and the stage of subsequent rise in
non-dimensional eigenvalue. A simple rule predicting the type of vibrational
behaviour for a particular mode at large values of opening angle has been discussed.
Comparison with numerical simulations con"rms the validity and satisfactory
accuracy of the analytic approximations.

Experiments with curved beams and with helices of small pitch amply con"rm
the validity of the theoretical predictions, both qualitatively and quantitatively, but
this leaves one conundrum to be answered: what is the physical explanation for the
two types of behaviour at large opening angles? As noted in Tables 1 and 2, the
frequency ordering of mode types at a given curvature is apparently random,
though governed by a simple mathematical rule. At the same time it is possible to
trace each mode continuously from its initial inextensional small-curvature state
out to arbitrarily large curvatures, and it is strange that two neighbouring modes
should behave in such di!erent ways. We are unable, at present, to suggest a simple
explanation.

Although, in the interests of relative simplicity, this analysis has been con"ned to
the simplest thin-beam approximation and rectangular cross-section, it can be
extended by inclusion of shear deformation and rotary inertia e!ects and to other
types of the cross-section. Similar methods of approach can also be used to study
the behaviour of beams with non-uniform curvature and cross-section.
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