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An asymptotic analysis is carried out for the equations of free vibrations of a beam
having varying curvature and cross-section. The effect of splitting the asymptotic limit for
eigenvalues into two families is revealed and its connection with boundary conditions is
discussed. The analysis of the properties of the asymptotic solution explains the
phenomenon of transformation of mode shape with change in curvature and provides a
method for predicting the spectrum of curved beams. The asymptotic solution obtained also
gives a simple approximation for high mode number extensional vibrations of curved beams
which are difficult to analyse by other means. The asymptotic behaviour of the solution
is illustrated numerically for different types of curvature including antisymmetric curvature.
An experimental verification of the asymptotic behaviour of mode frequencies is presented.
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1. INTRODUCTION

Despite the long history and large number of publications on beam vibrations, studies of
beams of variable curvature and cross-section are limited. In fact, the work in this area
relates to the last two decades, and references [1–7] provide a useful starting point to the
literature. A particularly useful reference is [1] which contains a detailed overview of the
literature on the topic.

Several authors [1, 3, 6, 8, 9] have reported on a transformation phenomenon which is
characterised by the sharp increase in frequencies of some modes that occurs at certain
combinations of curvature and length of the beam and is accompanied by a significant
change in the mode shape. As a result, the usual mode sequence in the spectrum can be
changed. The understanding of this phenomenon is very important for correct selection
of the supporting or connecting points for beam-type structures in practical applications.
The possibility of the interpretation of the behaviour of frequency with change in curvature
in terms of two separate approximate theories (membrane and bending theories) has been
suggested in [9], where the vibration of a particular case of an S-shaped strip of uniform
cross-section has been studied. There is, however, still no comprehensive analysis of
the transformation phenomenon for even the simplest geometry of a beam, and, as a
consequence, there are no proper explanations and methods for prediction for the
spectrum of a curved beam. This is possibly due to the fact that numerical simulations,
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commonly employed for the analysis, provide little analytical insight into the vibrational
problem. Asymptotic methods, which prove to provide a very useful insight into the
physics of the phenomenon, seem, however, not to have been applied so far.

In the present paper, the theory of the transformation phenomenon in vibrational
behaviour of a beam of varying curvature and cross-section with change in curvature is
developed on the basis of the asymptotic analysis of the equations of free vibrations. A
non-dimensional parameter proportional to the squared ratio of the characteristic
thickness of the beam to its length is considered to be small. There is a feature of the
problem that puts it beyond the scope of the traditional singular perturbation analysis and
does not allow the application of a conventional expansion. Specifically, the eigenfunctions
of the perturbed problem differ from those of the unperturbed problem by an oscillatory
term which does not vanish in the limit as the perturbation parameter tends to zero. The
analysis of a beam of constant curvature and cross-section proves to give a useful insight
into the structure of the approximate solution, which is then used for the analysis of beams
of arbitrarily varying curvature and cross-section. The asymptotic analysis reveals that the
structure of the solution together with certain types of boundary conditions create a special
feature of the eigenvalue problem, namely the splitting of the asymptotic limit for
eigenvalues into two families of asymptotic limits. The analysis of the properties of
eigenvalues and eigenfunctions gives an explanation of the transformation phenomenon
as well as a method for predicting the spectrum of curved beams. Several numerical
examples illustrating the asymptotic behaviour of the eigenvalues and the accuracy of the
asymptotic approximation for beams of thickness to length ratio up to 0·01 are given in
the paper. They embrace different types of curvature variation, including curvature
changing sign. The effect of variation of the cross-section on the beam spectrum is
illustrated by the examples of linearly varying thickness and width. Experimental
verification of the asymptotic behaviour of mode frequencies is also presented.

2. GOVERNING EQUATIONS

In this section the equations of in-plane vibrations of a curved beam of varying
cross-section are derived on the basis of Hamilton’s principle and the assumptions of
classical beam theory. An outline of the derivation is given below.

A curvilinear orthogonal system of reference associated with the undeformed beam
geometry is introduced so that the position of an arbitrary point on the beam in the plane
of initial curvature (which is assumed to be the plane of symmetry) is uniquely specified
by the length s of the arc along the center line and the co-ordinate z along the normal
to the center line (positive outward). A local Cartesian co-ordinate system (t, n) is chosen
so that the unit tangent vector t is co-directional with increasing s and the unit vector pair
t, n is counterclockwise. The curvature of the center line k(s) is considered to be positive
if n is directed towards the center of curvature. The position vector of an arbitrarily point
in the plane of symmetry before deformation is given by

x(s, z)= r0(s)+ zn, (1)

where r0(s) is a position vector of the point on the center line. The metric tensor G in this
system of reference is G11 = (1− kz)2, G22 =1, G12 =G21 =0. The position vector x̂ of the
point after deformation at time t is given by

x̂(s, z, t)= x(s, z)+ u(s, z, t)t(s)+ v(s, z, t)n(s), (2)
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where u and v are tangential and normal displacements respectively. The components of
the strain tensor oij are given by [10]

o11 =
1

(1− kz) 01u
1s

− kv1, o22 =
1v
1z

, o12 = o21 =
1
2 $1u

1z
+

1
1− kz 01v

1s
+ ku1%. (3)

Using the Bernoulli-Euler hypothesis, the displacements of the arbitrary point can be
expressed in terms of the displacements of the point on the center line. So, to leading order

u= u0 − z(1v0/1s+ ku0), v= v0,

where u0 and v0 are the displacements of the point on the center line. The components of
strain tensor can now be expressed as

o11 =
1

1− kz $1u0

1s
− kv0 − z

1

1s 01v0

1s
+ ku01%, o22 =0, o12 =0. (4)

In what follows the index will be omitted in the notations for displacements keeping in
mind that the displacements are taken on the center line.

Hamilton’s principle states that

d g
t1

t0

(T−W) dt=0, (5)

where T and W are kinetic and strain energies. They are given by [10], [8]

W=
E
2 gV

o2
11(1− kz) ds dz dy, T=

r

2 g
l

0

A$01u
1t1

2

+01v
1t1

2

% ds, (6, 7)

where E is Young’s modulus and r is the density. Rotary inertia effects have been neglected
in the expression for the kinetic energy of the beam. Substituting (4) in (6) produces

W=
E
2 g

l

0 6A01u
1s

− kv1
2

+Q$01u
1s

− kv1
2

−
2
k 01u

1s
− kv1 1

1s 01v
1s

+ ku1+
1
k2 0 1

1s 01v
1s

+ ku11
2

%7 ds, (8)

where A(s) is the cross-sectional area, l is the length of a beam and

Q(s)=gA(s)

k2z2

1− kz
dA(s).

Denoting by h0, d0 the characteristic dimensions of the cross-section in the plane of initial
curvature and in the normal plane respectively, a transformation to non-dimensional
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variables s̄= s/l, z̄= z/h0, A�=A/(h0d0), k̄= kl can be made. Hamilton’s principle (5) in
non-dimensional form becomes

d g
t1

t0
g

1

0 6CA�$01u
1t1

2

+01v
1t1

2

%−A�(u'− k̄v)2 − ōI[k̄2(u'− k̄v)2

−2k̄(u'− k̄v)(v'+ k̄u)'+ (v'+ k̄u)'2]7 ds̄ dt=0, (9)

where

C= rl2/E, ō = h2
0 /l2, I=gA�

z̄2 dA�.

In the expression for strain energy only terms of first order in ō are retained and
differentiation with respect to s̄ is denoted by a prime.

The equations of vibration can be obtained by taking the first variation of the integral
in (9) with respect to the displacements. Making use of the fact that the displacements are
harmonic functions of time with frequency v, the equations of free vibrations can be
written in the form

−ō{−[Ik̄2(u'− k̄v)]'+ k̄[k̄I(u'− k̄v)]'+ [k̄I(v'+ k̄u)']'− k̄[I(v'+ k̄u)']'}

+[A�(u'− k̄v)]'+ lA�u=0,

−ō{−Ik̄3(u'− k̄v)− [k̄I(u'− k̄v)]0+ k̄2I(v'+ k̄u)'+ [I(v'+ k̄u)']0}

+A�k̄(u'− k̄v)+ lA�v=0, (10)

where l is a non-dimensional eigenvalue

l= rl2v2/E. (11)

Here and henceforth u and v denote the non-dimensional amplitudes of the displacements.
The boundary conditions to be considered are:

u=0, v=0, v'=0 at a clamped end, (12)

u=0, v=0, v0=0 at a hinged end. (13)

Equations (10–13) form the basis of the present analysis.

3. ASYMPTOTIC ANALYSIS

In this section, the asymptotic analysis of the equations of vibrations of a beam with
arbitrarily varying curvature and cross-section is performed under the assumption that the
beam is thin. A parameter proportional to the squared ratio of the characteristic thickness
and the length of the beam is considered to be a small parameter.

3.1.      -

A beam of constant curvature and cross-section is first considered as it gives a useful
insight into the general properties of the eigenvalue problem of interest.
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3.1.1. Structure of the solution
First, one looks for a leading approximation of the general solution of the set of

differential equations (10). Consider a beam of constant curvature and non-varying
rectangular cross-section with width d0 and thickness h0. Equations (10) take the form

(u'− k̄v)'+ lu=0, −o(k̄4v+2k̄2v0+ v2)+ (u'− k̄v)k̄+ lv=0, (14)

where o= ō/12= h2
0 /(12l2). In the following analysis o will be considered to be a small

parameter.
One looks for a solution of (14) of the form

u= g1 ea(s̄−0·5), v= g2 ea(s̄−0·5),

where a is determined by the characteristic equation

−a6o− a4o(2k̄2 + l)+ a2(−2ok̄2l− ok̄4 + l)− olk̄4 + l2 − lk̄2 =0. (15)

This equation has two regular (a1, a2) and four singular (a3, a4, a5, a6) roots. The leading
approximation for regular roots can be found from

a2
0l0 + l2

0 − l0k̄
2 =0,

where l0 is the leading approximation to the eigenvalue.
In further analysis one investigates the region of the spectrum satisfying the condition

l0 e k̄2. (16)

Under this condition the leading approximations to regular roots are given by

a1 = izl0 − k̄2, a2 =−izl0 − k̄2.

Singular roots can be obtained on the basis of the principle of least degeneracy [11] using
the change of variable a= j/o1/4. The leading approximations for singular roots are given
by

a3 =−il1/4
0 o−1/4, a4 = il1/4

0 o−1/4, a5 =−l1/4
0 o−1/4, a6 = l1/4

0 o−1/4.

A fundamental set of real solutions can be rewritten as

ũ(1) 0−q sin [q(s̄−0·5)] ṽ(1) 0 k̄ cos [q(s̄−0·5)] ũ(2) 0 q cos [q(s̄−0·5)]

ṽ(2) 0 k̄ sin [q(s̄−0·5)] ũ(3) 0 (k̄/b) sin [b(s̄−0·5)] ṽ(3) 0 cos [b(s̄−0·5)]

ũ(4) 0 (k̄/b) cos [b(s̄−0·5)] ṽ(4) 0−sin [b(s̄−0·5)]

ũ(5) 0 (k̄/b)(−e−bs̄ +e−b(1− s̄)) ṽ(5) 0 e−bs̄ +e−b(1− s̄)

ũ(6) 0−(k̄/b)(e−bs̄ +e−b(1− s̄)) ṽ(6) 0 e−bs̄ −e−b(1− s̄)

where q=zl0 − k̄2, b= l1/4
0 o−1/4. The general solution is given by

u= s
6

m=1

cmũ(m), (17)

v= s
6

m=1

cmṽ(m). (18)

It can be seen that the fundamental solutions can be separated in two groups with
different properties. The first group consists of the first and second solutions of the
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fundamental set, whose leading approximations do not depend on o. They represent a
slowly varying part of the eigenmode. The third to sixth solutions form a second group.
The leading approximations of the solutions of this group contain o1/4 as a divisor of the
arguments of the functions involved and therefore this is a group of fast variations. While
the first two solutions of this group (third and fourth solutions of the fundamental set)
are oscillatory functions with the region of fast variation including the whole length of the
beam, the other two (fifth and sixth solutions of the fundamental set) are the boundary
terms. Another property of this group is that all tangential displacements are of order o1/4.
In view of all these considerations it is convenient to represent the general solution in the
following way

u= u0 + o1/4u1, v= v0 + v1, (19)

where

u0 = u0c1, u1 = u1c2, v0 = v0c1, v1 = v1c2,

cT
1 = (c1 c2), cT

2 = (c3 c4 c5 c6), u0 = (ũ(1) ũ(2)), v0 = (ṽ(1) ṽ(2)),

u1 = (1/o1/4)(ũ(3) ũ(4) ũ(5) ũ(6)), v1 = (ṽ(3) ṽ(4) ṽ(5) ṽ(6)).

The form of the solution (19) is the basis of the subsequent analysis. It will be seen later
that this form of the solution is valid for the general case of vibration of the beam with
arbitrarily varying curvature and cross-section.

3.1.2. Properties of eigenvalues and eigenfunctions
In this section it is shown that the form of the solution (19) together with the specified

boundary conditions yield specific properties of the solution to the eigenvalue problem.
Note that the analysis of this section is applicable for a beam with varying curvature and
cross-section, as the form of the solution (19) is valid for this general case (see Section 3.2).

The boundary conditions corresponding to clamped or hinged ends contain two
conditions in terms of tangential displacement and four conditions in terms of normal
displacement and its derivatives. They can be written in the form

Dc=0, (20)

where

cT = (c1 c2 c3 c4 c5 c6),

D= 2u0(0)
u0(1)
F0

o1/4u1(0)
o1/4u1(1)

F 3. (21)

The matrices F0 and F contain the boundary values of normal displacement and their
derivatives involved in the specified boundary conditions. So the 4×4 matrix F contains
the boundary values of normal displacements in terms of v1, while the rectangular 4×2
matrix F0 contains the boundary values of normal displacements in terms of v0.

The leading approximation to the eigenvalues can be found from the condition that
equation (20) has a non-trivial solution

det D(l0)=0.
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As o tends to zero, l0(o) tends to a root of the equation

det M(l0)det F(l0)=0,

where

M=0u0(0)
u0(1)1.

Therefore, there are two asymptotic limits for eigenvalues, defined by the equations

det M(l0)=0 (22)

and

det F(l0)=0. (23)

Note, however, that this splitting of the asymptotic limit does not occur in the case of a
beam with simply supported ends, as the boundary condition u'=0 gives terms of the
same order of magnitude in the first two rows of the matrix D.

The leading approximations for the eigenvalues defined by (22) do not depend on o. They
coincide with the eigenvalues of free vibrations of a ‘‘membrane’’ described by the equation
obtained from (14) by setting o=0

u0+(l− k̄2)u=0, (24)

with boundary conditions in terms of tangential displacements

u(0)= u(1)=0.

The eigenvalues of this problem (called ‘‘membrane eigenvalues’’) are given by

l(m)
n = k̄2 + p2n2 n=0, 1, . . . . (25)

The first two solutions of the fundamental set coincide with the eigenfunctions of the
vibration of a membrane. These solutions represent the extensional part of the
eigenfunction as they originate from the extensional energy of deformation. The solution
defined by (23) gives the eigenvalues of flexural vibrations of a straight beam

ov2− lv=0 (26)

with boundary conditions coinciding with those of the curved beam in terms of normal
displacement. The last four solutions of the fundamental set coincide with the
eigenfunctions of this problem and represent the inextensional (flexural) part of the
eigenmode.

The following approximations for the eigenvalues of (26) (denoted by l(fl)) are valid for
ne 2:

l(fl ) = o(p/4+ pn)4 clamped-hinged beam, (27)

l(fl ) = o(p/2+ pn)4 clamped-clamped beam, (28)

l(fl ) = o(p+ pn)4 hinged-hinged beam. (29)

3.1.3. Interaction of flexural and extensional modes
Two sets of asymptotic curves for the eigenvalues of (14) are given by the eigenvalues

of membrane (25) and one of the expressions (28), (29) or (27) for the eigenvalues of
flexural vibrations of a straight beam with clamped-clamped, hinged-hinged and
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Figure 1. Asymptotic curves for the eigenvalues of a beam of constant curvature and cross-section with
slenderness parameter o=10−6. Note that non-dimensional eigenvalue l is proportional to squared frequency
v2. The broken lines show the asymptotic curves for inextensional vibration.

clamped-hinged ends respectively. As an example, the asymptotic curves for a beam of
slenderness parameter o=10−6 with clamped ends are shown in Figure 1 (the ‘‘membrane’’
asymptotic curves are shown with full lines, while the flexural asymptotic curves are shown
with dashed lines). It can be seen that the asymptotic curves of the two families intersect
at certain values of non-dimensional curvature. One would expect that the transition
between flexural and extensional vibrations happens at the values of non-dimensional
curvature corresponding to the intersection points. In order to understand this
phenomenon the behaviour of the extensional and flexural parts of the eigenfunctions is
examined as the eigenvalues approach the asymptotic curves of one or another family. The
normalization condition

>u>2 + >v>2 =1 (30)

is introduced to define the eigenfunctions uniquely (up to a sign). It is convenient to
consider the modes with symmetric and antisymmetric component v0 separately. First
consider the eigenmode with symmetric v0. In this case c2 =0 and the order of the system
(20) is reduced by one. If c1 is chosen to be found later from condition (30), then the
remaining coefficients c2 can be found from the system

Fc2 =−c1f01,

where the vector f01 contains the first column of the matrix F0. The solution for the
coefficients c2 can be represented as

c2 = c1c
0
2, (31)
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where c0
2 is a solution of the equation

Fc0
2 =−f01. (32)

It is seen that the components of c0
2 increase infinitely as det F:0, i.e., when the eigenvalues

tend to the eigenvalues of the flexural vibrations of a straight beam l( fl )

c0
2:a as l:l( fl ).

In view of (31), the solution (19) can be represented in the form

v= c1ṽ(1) + c1v1c
0
2, u= c1ũ(1) + o1/4c1u1c

0
2.

From (30)

lim
l:l ( fl )

c1 = lim
l:l ( fl )

1/z>ũ(1) + o1/4u1c
0
2>2 + >ṽ(1) + v1c

0
2>2 =0.

Similarly,

lim
l:l ( fl )

c2 =0.

This means that the extensional terms of the general eigenmode representing the
eigenfunctions of a membrane disappear in the vicinity of the point of the intersection of
the eigenvalues of the membrane l(m) = k̄2 + p2n2 with the eigenvalues of flexural vibrations
of a straight beam, and the vibrations convert into flexural ones. This also means that l(m)

is not valid as the approximation to the eigenvalues of extensional vibrations at these
points.

In the case of a beam with identical boundary conditions on both ends, the general
symmetry of the problem implies that the eigenmodes can be separated into two
groups—symmetric and antisymmetric. Considering them separately in the way described
above, one comes to the conclusion that the extensional terms of the eigenmode, symmetric
in v0, of a curved beam disappear in the vicinity of the point of intersection of the
eigenvalues of a membrane l(m) with the eigenvalues of symetric modes of flexural
vibrations of a straight beam, while the extensional terms of the eigenmode, antisymmetric
in v0, of a curved beam disappear in the vicinity of the point of intersection of eigenvalues
of membrane l(m) with the eigenvalues of antisymmetric modes of flexural vibrations of
a straight beam.

Whilst the slowly varying extensional terms of eigenfunctions disappear as the
eigenvalues approach the eigenvalues of flexural vibrations of a straight beam,
the oscillatory terms originating from the bending energy are always present in the
eigenfunctions of a beam of constant curvature. As the eigenvalues approach
the eigenvalues of a membrane, the eigenfunctions represent the combination of the
eigenfunction of a membrane and the eigenfunction of flexural vibrations of a straight
beam with the boundary values of normal displacements and their derivatives taken as
those of a membrane with the negative sign. It is possible to investigate the conditions
under which the relative contribution of extensional terms is maximum, i.e. the quantities
=c1 =/=c3 =, =c1 =/=c4 =, =c2 =/=c3 =, =c2 =/=c4 = approach their maximum. For example, for the
symmetric modes of a beam with clamped ends this condition is given by b= p/2+2pm,
me 2, i.e. the extensional terms approach their maximum when the eigenvalues approach
the intermediate value between two successive eigenvalues of the symmetric modes of
flexural vibrations of a straight beam.

As an illustration, the shape of the normal displacement v of the symmetric mode was
calculated using (18) for the lowest membrane mode (l0 = k̄2). The extensional terms of
normal displacement are ṽ (1) = 1, ṽ (2) = 0. First, the value of curvature k̄0 was taken so that
l0 is between two consecutive eigenvalues of the symmetric modes of flexural vibrations
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Figure 2. The shape of the normal displacement for two values of non-dimensional curvature k̄ for a beam
of constant curvature and cross-section, o=10−6. L.H. k̄=1·5; R.H. k̄=1·75.

of the corresponding straight beam. At this value of curvature the contribution of the
extensional term is maximum (Figure 2a), the eigenfunction v is the sum of the oscillatory
eigenfunction of flexural vibrations of a straight beam and a constant (eigenfunction of
membrane). As the curvature departs from the value k̄0, the eigenvalue l0 approaches one
of the eigenvalues of the flexural vibrations of a straight beam, the amplitude of the
extensional term decreases and the shape of the eigenmode becomes closer to the shape
of the flexural vibration mode (Figure 2b). The number of half-waves in the oscillatory
part is determined by the parameter b= l1/4

0 o−1/4 and increases with increase in curvature
(0k̄1/2) and decrease in slenderness (0o−1/4).

3.2.      -

Results similar to those of the preceding section can be obtained for beams with
arbitrary curvature and arbitrary variation of cross-section along their length using a
singular perturbation technique. Assume the following expansion of the solution to the
problem (10).

u= s
a

n=0

u(n)onm, v= s
a

n=0

v(n)onm, l= s
a

n=0

lno
nm, (33)

where o= h2
0 /(12l2), h0 is a characteristic thickness of the beam and m is a positive real

number. Following the results of the preceding section a leading approximation is sought
as the sum of slowly and rapidly varying terms in the form

u(0) = u0(s̄)+ o1/4u1(j), v(0) = v0(s̄)+ v1(j), (34)

where j= s̄/o1/4. It is also assumed that

v0 =O(1); v1 =O(1); u0 =O(1); u1 =O(1); (35)

g
1

0

u1(s̄) ds̄:0, g
1

0

v1(s̄) ds̄:0 as o:0. (36)

and that the derivatives of v0 and u0 with respect to s̄ are of the same order as the derivatives
of v1 and u1 with respect to j. By substituting (34) in the first equation of (10) and equating
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to zero the coefficients of leading powers of o the following equations are obtained for
slowly varying and rapidly varying components

o1/4u'1 − k̄v1 = const, (37)

[A�(u'0 − k̄v0)]'+ lA�u0 =0. (38)

The derivatives here are with respect to s̄. In view of the assumption about the oscillatory
nature of u1 and v1 and the assumption (36) it can be seen that the constant in (37) is zero.
The same procedure applied to the second equation of (10) yields

−o(Iv01 )0+ k̄A�(u'0 − k̄v0)+ lA�v0 + lA�v1 =0.

By separating the oscillatory and slowly varying terms one obtains

k̄(u'0 − k̄v0)+ lv0 =0, −o(Iv01 )0+ lA�v1 =0.

Finally the equations for slowly varying components are

[A�(u'0 − k̄v0)]'+ lA�u0 =0, k̄(u'0 − k̄v0)+ lv0 =0 (39)

and for oscillatory components

o1/4u'1 − k̄v1 =0, −o(Iv01 )0+ lA�v1 =0. (40, 41)

It can be seen that the system (39) is the equations of free vibrations of a membrane and
represents the so-called ‘‘reduced problem’’ which can be obtained from (10) by setting
o=0. Equation (41) describes the flexural vibrations of a straight beam with the
cross-section varying in the same manner as for the curved beam.

It is convenient to introduce the function

f=−(1/l)(u'0 − k̄v0) (42)

so that from equations (39)

(A�f)'=A�u0, v0 = k̄f. (43)

These can be combined in a single equation for f

((A�'/A�)f)'+f0+(l− k̄2)f=0, (44)

which represents the reduced problem.
The boundary conditions corresponding to a clamped end are

v0 + v1 =0, v'0 + v'1 =0, u0 + o1/4u1 =0.

Using (43) the boundary conditions can be rewritten in terms of the variable f as

k̄f+ v1 =0, ((k̄'A�− k̄A�')/A�)f+ v'1 =0, (A�f)'/A�+ o1/4u1 =0. (45–47)

With a precision up to o1/4 these boundary conditions can be split in the following way

(A�f)'=0 (48)

and

v1 =−k̄f, v'1 = [(k̄'A�− k̄A�')/A�]f. (49)

so that the reduced problem (44) is solved subject to boundary conditions (48) while
equation (41) for oscillatory component is solved subject to boundary conditions (49). A
discrepancy in boundary condition for u of order o1/4 that arises in the leading
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approximation can be removed in the next approximation if m=1/4 in (33). This is also
consistent with the equations derived above.

For a hinged end boundary conditions for equation (41) take the form

v1 =−k̄f, v01 =$−k̄0+2k̄'
A�'
A�

− k̄0A�'
A�1

2

+ k̄0A�'
A�1'+ k̄(l− k̄2)%f. (50)

The analysis of the properties of eigenvalues and eigenfunctions of Sections 3.1.2 and
3.1.3 is valid for a beam of varying curvature and cross-section, as it is based entirely on
the form of the solution (34) and boundary conditions (12, 13). The asymptotic curves
for eigenvalues in the general case, however, cannot be given by explicit formulae, but
can be found by solving the eigenvalue problems (41), (44) and (48) with boundary
conditions of a curved beam in terms of normal displacements. The eigenfunctions are a
combination of the eigenfunctions of the vibrations of a curved membrane and the flexural
vibrations of a straight beam. The extensional terms in the eigenfunctions disappear as the
eigenvalues approach those of a straight beam. As the eigenvalues approach those of a
membrane, the eigenfunctions are generally a combination of the eigenfunctions of a
membrane and flexural vibrations of a straight beam with non-homogeneous boundary
conditions in terms of the normal displacements of a membrane. The exception is the case
when the boundary conditions of the problem (41) and (44) are completely uncoupled. This
is possible when the right-hand sides of (49) or (50) do not depend on f. It causes a
situation in which oscillatory terms disappear as the eigenvalues approach the eigenvalues
of a membrane. An example is given in Section 3.2.

4. NUMERICAL RESULTS

All the numerical results were obtained using a collocation software for boundary-value
ODEs Colnew [12].

4.1.      -

A plot of non-dimensional eigenvalues verses non-dimensional curvature for a beam
with clamped ends is shown in Figure 3. The asymptotic curves are shown with dashed
lines. An example of the transformation of the mode shape at the stage of the increase
in eigenvalues is shown in Figure 4. Similar results have been obtained in [8] using finite
element analysis. They agree well with the present results, although it seems that there is
a tendency of the finite element method to overestimate the frequencies for larger values
of curvatures (this agrees with the comparison of the finite-element results with the exact
solution performed by the authors of [8]). Only the eigenvalues of the lowest membrane
mode are shown in Figure 3 and, as predicted, only the symmetric bending modes are
involved in transformation. The increase in eigenvalues is accompanied by the
transformation of the symmetric bending mode with n half-waves to the bending mode
with n+2 half-waves. During this transformation the mode shape takes the form
corresponding to the lowest extensional mode shape shown in Figure 2a. The eigenvalues
of the reduced model asymptotically approximate the eigenvalues of bending modes during
the stage of their extensional transformation with the accuracy of approximation increased
for smaller o.

The convergence can be illustrated with the plot of the scaled eigenvalue b=(l/o)1/4

versus scaled curvature h=zk̄/o1/4 (Figure 5). This plot is also convenient from a practical
point of view. As the function b(h) is invariant in o in the region be h, this plot allows
a determination of the non-dimensional eigenvalue l and the number of wiggles in the
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Figure 3. Non-dimensional eigenvalue as a function of non-dimensional curvature for a beam of constant
curvature and cross-section, o=10−6. Asymptotic curves are shown with dashed lines.

oscillatory component for any given values of curvature and slenderness ratio of the beam.
It also shows the error of approximation and allows an estimation of the eigenvalues in
the vicinity of the points of intersection of the asymptotic curves, where the asymptotic
approximation is not valid.

Figure 6(a) shows the eigenvalues of the two lowest membrane modes (bold lines) and
the eigenvalues of the first 14 bending modes (the symmetric modes are shown with full
lines and the antisymmetric ones with dashed lines). It can be seen that the extensional
transformation of the antisymmetric bending modes is connected with the second
membrane mode (antisymmetric in v). The eigenfunction of beam vibrations at this stage

Figure 4. Transformation of the mode shape for the fifth mode with change in non-dimensional curvature k̄
for a beam of constant curvature and cross-section, o=10−6. Normal and tangential displacements (almost zero)
are shown with full and dashed lines respectively.
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Figure 5. Scaled eigenvalue b versus scaled curvature parameter h for a beam of constant curvature and
cross-section.

of extensional transformation is the sum of the eigenfunction of the second membrane
mode and the eigenfunction of the flexural vibration of a straight beam (Figure 6(b)). The
number of half-waves in oscillatory term of the extensional mode is connected with the

Figure 6. a) Non-dimensional eigenvalues of the first 14 bending modes (antisymmetric modes are shown with
dashed lines) with two lowest membrane asymptotic curves (heavy lines) for a beam of constant curvature and
cross-section. b) Typical shape of an extensional mode with eigenvalue close to the eigenvalue of the second
membrane mode. (Normal and tangential displacements are shown with full and dashed lines respectively);
o=10−5.
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number of half-waves in the bending mode that is transforming at the given value of
curvature and, therefore, increases with increase in the curvature parameter and with
decrease in o.

4.2.    - 

As an example of a beam of non-symmetric positive curvature a beam with curvature
given by the asymmetric function is considered;

k̄= b cos (p/2(s̄−0·2)).

The eigenvalues versus shape parameter b are shown in Figure 7(a). As is expected, in this
case all modes are involved in the transformation. As a typical example of the transformed
mode shape the shape of the fourth bending mode at the stage of the transformation is
shown in Figure 7(b). The shape is a combination of the lowest eigenmode of a membrane
and the eigenmode of flexural vibrations of a straight beam.

Two examples of beams with the curvature changing sign are given in Figures 8 and 9.
Figure 8 shows the eigenvalues of a beam of asymmetric curvature

k̄= b cos (p(s̄+0·3)),

while Figure 9 shows the eigenvalues of a beam of antisymmetric linear curvature

k̄= b(2s̄−1).

The behaviour of the eigenmodes during the transformation stage is similar to those in
the previous example. For larger values of curvature, however, the decrease in eigenvalues
is much more pronounced and is accompanied by further transformation of mode shape
as shown in Figure 10. In the case of antisymmetric curvature it only affects the symmetric
in v eigenmodes, while in the case of asymmetric curvature all modes are involved in
transformation. It seems that this additional transformation phenomenon is a feature of
the spectrum of beams whose curvature changes sign. It cannot be described by the
asymptotic solution obtained in this paper, as it occurs outside the region of the spectrum

Figure 7. Beam of varying curvature k̄= b cos (p/2(s̄−0·2)); o=10−7; a) Non-dimensional eigenvalue as a
function of shape parameter b. b) Mode shape during the transformation for the fourth mode.
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Figure 8. Beam of varying curvature k̄= b cos (p(s̄+0·3)); o=10−7; a) Non-dimensional eigenvalue as a
function of shape parameter b. b) Mode shape during the transformation for the fourth mode.

covered by the present asymptotic analysis. Although this phenomenon is pronounced for
slender beams, it cannot be detected from a simplified model frequently used for the
analysis of the vibration of a slender beam. In this simplified model the terms (1− kz)

Figure 9. Beam of antisymmetric linear curvature, o=10−7. a) Non-dimensional eigenvalue as a function of
shape parameter b. b) Mode shape during the transformation for the fourth mode.
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Figure 10. Transformation of the mode shape of third mode with change in shape parameter b for a beam
of antisymmetric linear curvature; o=10−7.

in the expression for the strain component (4) and potential energy (6) are replaced with
unity, which can only be justified for reasonably small values of non-dimensional
curvature. The present calculations according to the simplified model have shown that it
gives accurate results for smaller values of the non-dimensional curvature (k̄E 1). For
larger values of non-dimensional curvature the simplified model gives frequencies and
mode shapes that are close to those of the flexural vibration of a straight beam, and fails
to show the decrease in frequencies and the transformation of the mode shape that occur
with increase in non-dimensional curvature. This limitation of the simplified slender beam
model should be kept in mind.

An interesting case from a practical point of view is a beam whose curvature satisfies
the conditions

k̄(0)= k̄(1)= k̄'(0)= k̄'(1)=0.

In this case, as can be seen from (45, 46), there is complete uncoupling of boundary
conditions for equations defining the rapidly varying and slowly varying terms of the
solution. As an example of this one takes the curvature to be

k̄= b sin2 (ps̄).

The frequencies and transformation of mode shapes are shown in Figure 11. It can be seen
that the oscillatory component of the eigenfunction vanishes at the extensional phase of
the vibrations, the transformation from bending to extensional mode occurs rapidly and
the frequencies of the extensional vibrations coincide almost exactly with those of the
reduced model.

4.3.     -

To examine the effect of varying cross-section on the frequency behaviour we consider
beams of varying thickness and width separately.

As an example of a beam of varying thickness, a beam of constant curvature with
non-dimensional thickness given by H=1+ s̄ is considered (so that the characteristic
thickness h0 is equal to the minimum thickness of the beam). The ‘‘membrane’’ asymptotic
curves calculated as the lowest eigenvalue of (44) are almost indistinguishable from those
of a beam of constant thickness and curvature (Figure 3). The ‘‘flexural’’ asymptotic curves
for a beam of varying thickness are higher than the corresponding asymptotic curves of
the beam with constant thickness. This determines the major difference in the spectrum
of the beams of constant and varying thickness. Another difference is that in the case of
varying thickness all modes are involved in transformation since the symmetry of modes
is destroyed by the non-symmetric thickness variation.

As an example of a beam of varying width, a beam of constant curvature and thickness
with non-dimensional width given by B=1+ s̄ is considered. In this case both families



0.6

Shape parameter b

1.0

1 2 30

0.5

0.4

0.3

0.2

N
on

-d
im

en
si

on
al

 e
ig

en
va

lu
e 

λ

b
(a)

(b)
0.18

0.2

0.3

0.47

0.49

.   .676

Figure 11. Beam of varying curvature k̄= b sin2 (ps̄); o=10−6; a) Non-dimensional eigenvalue as a function
of shape parameter b; b) Transformation of the mode shape for the third mode with change in shape parameter.

of asymptotic curves are almost indistinguishable from those of a beam with constant
curvature and cross-section, which implies that the eigenvalues of the beam of linearly
varying width are close to those of the beam with constant cross-section. The main difference
in the behaviour of the eigenvalues and mode shapes with change in curvature in this case
is the involvement of all modes in the transformation for a beam of varying width.

5. EXPERIMENTAL RESULTS

There are only a few reported experimental studies of curved bars in the literature, and
these give only a few results. Petyt and Fleisher [13] report measurements of the variation
with curvature of the frequencies of the first five modes of an aluminium sheet 50 cm long,
1·27 cm wide and 1·6 mm thick (o1 10−6) bent with constant curvature. The results agree
with their calculations and with the behaviour shown in Figure 3. Scott and Woodhouse
[9] similarly report a limited set of measurements on a narrow steel sheet about 1 m long,
150 mm wide and 0·8 mm thick (o1 5×10−8) bent to an antisymmetric linearly varying
S-shaped curvature. Again the present results agree with their calculations and with the
behaviour shown in Figure 9a.

In the authors’ experiments, the predictions of the theory were first examined using a
beam consisting of a strip of steel, 800 mm long, 25 mm wide and 1 mm thick (o1 10−7)
clamped between two heavy vices, the angle and position of which could be changed so
as to fix the foil without introducing longitudinal tension. The bar was set into free
vibration and its mode frequencies measured using the signal from a sub-minature
accelerometer near one end. Two cases were examined: that of constant curvature, and
that of linearly-varying antisymmetric curvature. In the first case, the general behaviour
shown in Figure 3 was observed, while in the second case it was the antisymmetric modes
that showed marked frequency dependence. Unfortunately, the experiment was not very
satisfactory from a quantitative point of view because of the difficulties of achieving
adequately rigid clamping. For this reason a much smaller and lighter foil beam was used
in subsequent experiments.



100

25

0
Curvature (1/m)

F
re

qu
en

cy
 (

kH
z) 20

15

10

5

20 40 60 80

(a) 80

Length (mm)

60

40

20

20 30 6040

(b)

50
0

     677

In the second experimental approach the validity of the asymptotic approximation for
high mode-number extensional vibrations was examined, using a narrow strip of PVDF
foil, 25 mm in thickness, clamped between adjustable metallic jaws. Since the foil length
varied from 10–55 mm in the experiments, o lay in the range 2×10−8–5×10−7. The foil
had electrodes evaporated on its two surfaces and could be excited into extensional
vibrations by an applied oscillating potential through the piezoelectric effect. The motion
of the foil was detected using a small microphone placed nearby. The ripples due to the
transverse modes largely cancel, and the microphone responds to the average displacement
of the foil. Since the foil was clearly not narrow enough, in the sense of being a beam,
an experiment was carried out to check the validity of this approximation. In this
experiment, after measuring the intact foil, it was slit longitudinally along its center line
and measured again. The frequency of the beam-like mode being measured was unaltered.
The experiment showed also a higher mode, associated with excitation of the foil in the
transverse direction, the frequency of which approximately doubled as a result of the
slitting operation, again confirming its identity.

In an initial set of experiments, three foils of length 20, 30 and 40 mm respectively and
width 10 mm were flexed to the same uniform curvature. The resonance frequency was the
same in each case, confirming the independence of this frequency upon length, as predicted
by the theory.

In a second set of experiments, the angles and positions of the clamped jaws were chosen
so as to achieve constant curvature of the strip. Figure 12(a) shows the measured
dependence of the lowest extensional mode frequency on curvature for the case of a
uniformly curved foil of length 45 mm and width 8 mm with the piezo-electric contraction
along the foil length. It can be seen that the resonance frequency is proportional to
the curvature as predicted by (11), (25). Absolute agreement between measured and
calculated resonance could not be checked exactly because of uncertainty in the
Young’s modulus E and density r of the foil. Excellent agreement between theoretical
and experimental results is obtained if the parameters of the foil are in the range
460pEzE/rE 480p, which is consistent with the manufacturer’s data.

In a third set of measurements, the two ends of the foil were clamped to opposite faces
of a solid block, so as to be parallel and separated by a distance of 11 mm, and the length
of the foil was varied. Under these circumstances the curvature was symmetrical about the
center of the foil strip but not constant, and even changed in sign for the longer strips.
Under these conditions it was expected all odd-numbered extensional modes to be clearly
observed. Figure 12(b) shows the measured frequencies of these two resonances and, for

Figure 12. Comparison of theoretical and experimental results for piezoelectric foil; a) frequencies of the lowest
membrane mode and experimental resonance frequencies for uniformly curved strip; b) frequencies of first and
third membrane modes and experimental resonance frequencies for non-uniformly curved strip.
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comparison, the calculated frequencies of the first and third extensional modes. In
calculations the non-dimensional curvature of the strip was taken as

k̄= a1l cos [a2l(s̄−0·5)], (51)

where the constants a1 and a2 were found from the conditions in which the ends of the
strip are parallel and the distance b1 between them is equal to 11 mm

a1 =
pa2

2 sin (a2l/2)
, b1 = l g

1

0

cos 6 p

2 sin (a2l/2)
sin [a2l(s̄−0·5)]7 ds̄.

For each value of length l in the experiment, the first and third eigenvalues of (44) were
found for the curvature given by (51). The frequencies were calculated according to (11)
with the ratio of Young’s modulus to density taken from the experiments with the foil of
constant curvature as zE/r=480p. Once again the agreement between theory and
experiment is good.

6. DISCUSSION AND CONCLUSIONS

The asymptotic analysis of the equations of free vibrations of beams having varying
curvature and cross-section reveals that there are two types of asymptotic limits for
eigenvalues in the region of spectrum satisfying the condition l0 e l(m)

0 (k̄) (l(m)
0 ) is the

lowest eigenvalue of the membrane vibrations problem; l0 is the leading approximation
to the eigenvalue of free vibrations of a curved beam). The first type is given by the
eigenvalues of a curved membrane with varying cross-section and approximates the
eigenvalues of a curved beam at the stage of extensional vibrations. The second type is
given by the eigenvalues of flexural vibrations of a straight beam with varying cross-section
and approximates the eigenvalues of a curved beam at the stage of inextensional vibrations.
Both limits approximate the eigenvalues of the same eigenmode of a curved beam. While
the eigenfunctions of a straight beam serve as an asymptotic limit for eigenfunctions of
inextensional vibrations of a curved beam, the eigenfunctions of a membrane differ from
the eigenfunctions of extensional vibrations of a curved beam and contain additional
oscillatory terms originating from the bending energy of deformation. The type of solution
described exists for beams with boundary conditions corresponding to clamped and hinged
ends and does not exist for beams with simply supported ends. This explains and provides
a method of prediction of the transformation phenomenon noticed in the behaviour of
eigenvalues and eigenfunctions of beams with clamped and hinged ends with change in
curvature.

Only the leading approximations to the eigenvalues and eigenfunctions are obtained in
the present paper. It is expected that the next approximation is of order o1/4. However, this
matter awaits further study. Generally, the higher the mode number the more accurate the
approximation. A number of numerical examples presented confirm the validity and
satisfactory accuracy of the asymptotic approximation to the eigenvalues of the lower
modes for beams of slenderness parameter o up to 10−5 (that is with thickness to length
ratio up to 0·01). Although the accuracy of the asymptotic approximation to the
eigenvalues decreases with increase of slenderness parameter o, the asymptotic solution is
important for understanding the spectrum of relatively thick beams as it indicates the
regions of the spectrum where the transformation phenomenon is present. In addition,
scaled plots, such as presented in Figure 5, allow the estimation of the frequencies of curved
beams for different, and rather larger values of o.
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Generally, the asymptotic approximation fails at the vicinities of the points of
intersection of the asymptotic curves corresponding to flexural and membrane modes with
the same symmetry of normal displacements. However, the analysis conducted reveals
special types of curvature function for which the eigenvlaues of the vibrations of curved
beam and their asymptotic approximations are almost indistinguishable. A complete
decoupling of extensional and flexural vibrations occurs in this case.

The asymptotic solution obtained allows a simple approximation for high mode-number
extensional vibrations of beams of arbitrarily varying curvature and cross-section. This is
especially important for the analysis of vibrations caused by a high frequency external
force. Experiments with piezo-electric foils confirm the validity of the asymptotic
approximation for high mode-number extensional vibrations.

Yet another interesting phenomenon has been revealed numerically in the case of a beam
whose curvature changes sign. An additional transformation of mode shape occurs for
larger values of curvature in the region not covered by the present asymptotic analysis.
Although this phenomenon has been noticed in the behaviour of the modes of beams of
very small slenderness parameter o=10−6–10−8, it cannot be revealed using the simplified
slender beam model. In connection with this it is worthwhile to notice that in all cases,
except for the case of a beam of constant curvature, the error in frequencies and mode
shapes determined from the simplified slender beam model becomes pronounced for values
of the non-dimensional curvature parameter greater than unity. This is not surprising, since
the assumption on which the simplified slender beam model is based is valid only for small
values of non-dimensional curvature. This assumption is also used in classical thin shell
theory which therefore must possess the same shortcoming.

The analysis can be extended by inclusion of shear deformation and rotary inertia
effects, and it can also be applied to thin shells.
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