gathered teams. At the end of five minutes each team
submits in writing its estimate. The team with the esti-
mate closest to the ‘‘correct answer’’ earns a point. In the
case of two or more teams submitting an estimate within
a factor of 2 of the accepted answer, each of those teams
earns a point. After ten questions, the team with the most
points wins.

The winner of the competition receives ‘‘The Coveted
Klavier Stimmer Award,”’ the title based on Fermi’s
legendary question, ‘‘How many piano tuners are there in
Chicago?”’ The certificate presented to the members of
the winning team reads, ‘‘In recognition of outstanding
performance in order-of-magnitude estimates, the board of
directors of the Klavier Stimmer Foundation proudly pre-

sents the annual Klavier Stimmer Award to the following
team members.”’

The competition sparks considerable interest and gener-
ates vigorous debate. The placing of professors into the
same arena with students seems to remove some of the
barriers which often exist between students and teachers.
Furthermore, topics for the questions can vary over a
wide range, which hopefully increases the validity of the
claim that skills learned in our discipline can be applied
outside traditional physics topics.

!D. Hafemeister, Am. J. Phys. 41, 1191 (1973).
’D. Hafemeister, Am. J. Phys. 42, 625 (1974).
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In the study of quantum mechanics it is the analysis of
physical systems for which the Schrodinger equation can
be solved exactly that students often find most satisfying
and illuminating. The systems commonly discussed are
those of importance in both classical and quantum
mechanics: a free particle, a confined particle, a simple
harmonic oscillator and a particle in a central field. It is
therefore surprising that the problem of a charged particle
in a homogeneous magnetic field, ‘‘the quantum cyclo-
tron,’’ is rarely treated in textbooks on quantum
mechanics. This system is of interest in both classical and
quantum mechanics and has been studied extensively,'™
most recently by Thomson.*

The object of this article is to point out two properties
of the system and its quantum-mechanical solution that
may be useful in an elementary treatment of the problem:
first, that the eigenfunctions can be simply expressed in
terms of generalized Laguerre polynomials which are
familiar from a solution of Schrodinger’s equation for the
hydrogen atom; second, that a calculation of the magnet-
ic flux provides a useful connection between the classical
and quantum theory.

A particle of charge ¢ and mass m in a homogeneous
magnetic field B in the z direction has eigenfunctions of
the form?:3

Zl),u(’r, 9)=eil9Rnl(/y~)’ 1=0, £1, 2,..., (1)
when the Schrodinger equation is solved in cylindrical
polar coordinates. The free particle motion along the field

direction will be excluded from the discussion.
The radial function satisfies the differential equation

p(OR) + (0 =T —phR=0 (2)

where p? =eBr?/2h, the prime signifies differentiation
with respect to p, and the energy eigenvalues are given
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by
E=[(\/2) =] hw /2. (3)

w, = eB/m is the Larmor frequency and the constant A
arises in the usual way from separation of the
Schrodinger equation.

The problem is therefore, for given /, to find A and R
that satisfy (2) and its boundary conditions. This equation
also arises when the isotropic harmonic oscillator problem
is solved in cylindrical polar coordinates,® and its solu-
tions may be written in different forms.?> The solutions
can also be expressed simply in terms of generalized
Laguerre polynomials.

If we make the substitutions

2
R(p)=e*p'y(p?), x=p° @)
in Eq. (2), then y(x) satisfies

ay!+9' (11 +1 =x)+ny=0, (5)

where the prime now means differentiation with respect
tox, and A = 2(2n + || + 1) or, using (3),

Ey= @n+ |11 =1+ 1w, /2. ©)

The solutions of (5) for which R is finite at infinity
are, in the notation of Abramowitz and Stegun,®

y=L M (x), »n=0,1,2,..., (1)

which are the generalized Laguerre polynomials. These
are the familiar polynomials that occur in the radial part
of the hydrogen atom eigenfunctions, though note that
Pauling and Wilson® use a different suffix notation.

The eigenvalues of the present problem are therefore
given by Eq. (6) and the eigenfunctions are
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d,"l(,r’ eneplzl -p /2 Ln”'(pz), p2=eB1'2/27Z. (8)

The eigenfunctions that describe the classical circular
motion about the origin are those for n = 0 and !/
negative.? Since L,"'(x) = 1 the eigenfunctions (8) are
those given by Thomson* in this case. The form (8) of
the eigenfunctions is particularly useful since the
mathematical properties of the associated Laguerre func-
tions have been extensively studied.

As an example of the use of this form of the eigenfunc-
tions consider the expectation value of the quantum
mechanical magnetic flux ®.

(®) = {(r¥’B)
= (@nhi/e){ [ e L ()] ax}
. X{ fo” e""x'”[L"”l(x)]z dx}'1 (g)

with the relevant integrals written in terms of the variable
= n2

x =p
This expression can be evaluated by the use of the re-

currence and orthogonality relations®

@n+1+1—=x)Li(x)+ (m+ 1)L} 1(x)=0
f0 e*x L ()L (6) dx = [(1+ 7)1 /7116,

(n+1)LL(x) -

The numerator of (9) can then be reduced to
(2n + || + 1) times the denominator so that
(@)= 2n+ 11l +1)2r%/e. (10)

The case n = 0 corresponds to- the classical motion in a
circle about the origin so that for these eigenfunctions
(@)= @n/e){L,)+1), (11)

where L, is the z component of angular momentum. The
eigenfunctions for n # 0 are related to circular motions
about some other center* and in this general case the ex-

pectation value of the flux is the expression (10).
The classical result can be derived as follows.

'using the cylindrical vector potential A

& =1v2B=(1/e)muor, (12)
where r is the radius and v the velocity of the particle in

the classical orbit. Now the generalized momentum p is
given by

mv=p - A, (13)
where A is the vector potential, and so
mur=L,+eBr?/2 (14)

= (B xr)/2. Com-
paring (12) and (14) gives
®=Q2n/e)L, (15)

The difference between (12) and (15) emphasizes the
importance of the distinction in Hamiltonian mechanics
between momentum and the mass—velocity product.

Comparing the expressions (11) and (15) we see that
the classical and quantum results agree apart from a zero
point flux.

Finally, it is interesting to note that the eigenvalues of
the system are not of the form

E=(n + 3w + (n,+ 3 )iw,

which would be the case for two orthogonal harmonic os-

cillators. The zero point energy is Aw/2 and not iw since
the circular motion is a combination of two coupled har-
monic oscillators.
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Erratum: ‘‘Precision timing applied to a driven mechanical oscillator.”” J. Morris Blair [Am. 1.

Phys. 43, 1076 (1975)].

On p. 1077, in Sec. B, the second and third paragraphs should read as follows:

With a single supporting spring, there is a tendency for the moving system to wobble at some
frequencies. Much smoother vibrations are obtained if two springs are used, one above the mass
M and one below it. With two springs the value of K is the sum of the constants of the two
springs and the effective driving amplitude is the amplitude of the motion applied to the top of the
upper spring multiplied by K,/(K, + K,), where K, is the constant of the upper spring and K, is

that for the lower one.

For convenience and accuracy in determining the amplitude of motion of the mass M, a simple
cathetometer using an open sight-bar instead of a telescope has been found useful.
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