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The sounds from certain types of gongs show a frequency shift, up or down, as the vibration 
decays. In order to understand this nonlinear behavior, we have studied the vibrations of a variety 
of fiat and curved plates under v•trying amounts of radial tension or compression. Flat plates show 
a nonlinearity of a hardening type {falling frequency), whereas most curved plates show softening 
behavior (rising frequency). The degree of the nonlinearity appears to be sufficient to explain the 
observed frequency shift in the gongs studied. 

PACS numbers: 43.75.Kk, 43.40,Dx, 43.40.Ga 

INTRODUCTION 

Considerable interest has been shown in the nonlinear 

vibrations of fiat plates, •'2 curved plates, 3 and conical and 
spherical shells. 4'5 Since the equations describing these vi- 
brations cannot bc solved exactly, various techniques have 
been employed for obtaining approximate solutions. Theo- 
retical investigations have bccn more commonly reported 
than experiments. 

Our own interest in the problem arises from the acousti- 
cal behavior of certain gongs, such as the gongs used in Chi- 
nese opera orchestras. These latter gongs are characterized 
by a marked pitch glide, the frequency changing by as much 
as 20% as the sound dies away after strildng. 6'7 

A vibrating system is described as hardening if its vibra- 
tional frequency increases with increasiing amplitude and 
softening, if its frequency decreases. Flat plates exhibit hard- 
ening, whereas conical and spherical shells generally exhibit 
softening. Curved plates can be of either type, depending 
upon their shape. 

It is the purpose of this paper to describe the principal 
modes of vibration of fiat and curved plates as well as certain 
types of gongs. Vibrational frequencies have been measured 
both when the plates are driven sinusoidally and when 
struck percussively with a mallet. On the basis of these data 
it is possible to explain the interesting pitch glide {upward or 
downward) in certain gongs. 

Although the vibrations of plates and she11 s at large and 
small amplitudes have been discussed ext,ansively in the pub- 
lished literature, most of the discussions are directed toward 
particular geometries of interest to the authors. Further- 
more the notations used vary widely. Thus it is worthwhile 
to review briefly in the following sections the vibrational 
theory for plates and shallow spherical slhells. 

I. SMALL-AMPLITUDE VIBRATIONS O,F PLATES 

A. Flat circular plates 

The well-known differential equation describing flex- 
ural motion of a fiat plate can be written in the form 

. o•2w 

D?4w + pit a• T = 0, (1) 
Permanent address: Department of Physics, Northern Illinois University, 
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where w is the lateral deflection, D = Eh 3/12{1 - v 2) is the 
flexural rigidity of the plate, E is Young's modulus, v is Pois- 
son's ratio, p is density, and h is plate thickness. 

Solutions to this equation for circularly symmetric 
plates have the form •'9 

w(r,O ) = [.4J m (kr) + B/m (kr)] (cos mO + ct), (2) 
where J. (kr) and I. (kr) are Bessel functions, and .4, B, a, 
and k are constants determined by the boundary conditions 
and the nature of the excitation. 

If the plate is clamped at its edge r = a, then the require- 
ments that w = 0 and Ow/Or = 0 lead to the equations 
.4J, (ka) + BI, (ka) = 0 and AJ • (ks) + BI • (ka) = 0. The 
values of k which satisfy these equations define the normal 
modes, The allowed values are labeled kmn, where rn gives 
the number of nodal diameters and n the number of nodal 

circles. Values of k,,, are tabulated in various sources. 9'•ø 
Ira radial tension Tis applied to the plate, an additional 

term -- T V2w appears in Eq. {1). The modal frequency in- 
creases when the plate is under tension {positive T) and de- 
creases when a radial compression is applied {negative T }. • • 
Relative frequencies for the first three modes arc plotted in 
Fig. 1 based on data on Ref. 11. In a real plate the frequency 
will not fall to zero as shown in Fig. 1, because the plate 
buckles under compression and the linear theory fails as the 
critical load for buckling is approached. 

B. Shallow spherical shells 

In addition to the flexural modes of vibration of a fiat 

plate, discussed in the previous section, a curved shell has 
many longitudinal, torsional, and thickness-shear modes. 
Fortunately, the lowest modes are mainly flexural, and the 
other modes couple only weakly to them under the condi- 
tions of interest to us. Thus a simple theory of transverse 
vibrations is quite accurate for treating the lowest few modes 
of the thin shells of slight curvature of interest in this 
study. •2.•3 

Equation I1) may be used to describe transverse vibra- 
tions of a shallow spherical shell by adding a term V•F/R, 
where R is the radius of curvature of the shell, and Fis Airy's 
stress function. A second equation VnF -- hEV2w/R • 0 
completes the problem. •'•3 For a clamped-edge shell whose 
apex height H {above the edge plane) is equal to the shell 
thickness, the fundamental mode {at small amplitude) is 
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FIG. 1. Theoretical effect of radial tension and compression on the lowest 
vibrational frequencies of a fiat circular plate (from data in Ref. 11}. • is 2•r 
times frequency, a is the radius, p is density, h is thickness, D is stiffness, and 
T is tension. 

found to have a frequency about 40% above that of a flat 
plate with the same thickness and radius. 14 Other modal fre- 
quencies for a shell with a free edge are given in Ref. 13 and 
for a clamped edge in Ref. 14. 

A spherical shell also differs from a flat plate in that 
there are five possible edge conditions to be considered (free, 
fixed, clamped, hinged, and simply supported), whereas in a 
flat plate there are only three (free, clamped, and simply sup- 
ported). The clamped and simply supported conditions al- 
low the edge of a shell to move tangentially, so that inexten- 
sional modes can occur? 

II. NONLINEAR VIBRATIONS OF PLATES 

As the amplitude of vibration increases, the linear the- 
ory used to describe small-amplitude vibrations becomes in- 
accurate. Most nonlinear equations used to describe large- 
amplitude vibrations cannot be integrated explicitly, and 
various methods are used to obtain approximate solutions. 

A. Flat circular plates 

The term which must be added to Eq. (l) to extend to 
large-amplitude vibrations has the form -- NV2w, where N 
is the sum of the radial and transverse stress resultants. Phy- 
sically, this represents an amplitude-dependent membrane- 
type restoring force due to stretching the plate on the outside 
of the bulge, compressing it on the inside. When the ampli- 
tude equals the plate thickness the frequency increases by 
about 16%, increasing to 35% at twice the thickness? 

B. Shallow spherical shell 

In a shallow spherical shell the nonlinearity can be ei- 
ther of the hardening or softening type, depending upon the 
curvature. In a shell with a fixed edge, softening occurs when 
the apex height H exceeds the thickness. When H equals 
twice the thickness and the amplitude equals the thickness, 
for example, the frequency of vibration is 10% less than its 
small-amplitude value? 

The softening effect at moderately large amplitude off- 
sets some of the increase in vibrational frequency with curva- 
ture which was discussed in Sec. I B. Again using as an ex- 
ample a shell with fixed edge having H equal to twice the 
thickness, at small amplitude the fundamental frequency is 
approximately twice that of a flat plate, but the ratio dimin- 
ishes to 1.6 when the amplitude is equal to the thickness? 

C. Shells of other shapes 

Most of the theoretical and experimental investigations 
of shallow shell vibrations have dealt with spherical, cylin- 
drical, or conical shells, all of which show a softening type of 
nonlinearity at moderately large amplitude. 

A shell with two independent radii of curvature R x and 
Ry can show either hardening or softening behavior, how- 
ever. For most ratios of Rx/R •, shells with a rectangular 
edge, for example, show an initial softening followed by a 
hardening at very large amplitude. The hyperbolic parabo- 
1oid (Rx/R• = - 1 }, however, shows the same type of hard- 
ening behavior as a flat plate. 3 

III. EXPERIMENTAL STUDIES 

A. Mechanical admittance and modal analysis 

A Bruel and Kjaer type 8001 impedance head and type 
4810 vibration exciter were used to measure the mechanical 

admittance of various plates and gongs as a function of driv- 
ing frequency. The driving point force was kept constant by 
use of a GenRad 1569 level controller, and the accelerometer 
output was amplified and integrated with a Bruel and Kjaer 
type 2651 charge amplifier connected through the tracking 
filter of a GenRad 1900A analyzer to a GenRad 1521B chart 
recorder. Several driving points were used for each plate, 
including the center. 

We attempted to determine the modal configuration for 
as many plate resonances as possible. Normally this was ac- 
complished by moving a small microphone in the nearfield 
of the radiated sound. The plate-to-microphone spacing was 
kept as small as possible, and the nodal lines were mapped by 
noting the change in phase when a node was passed. The 
principal modes thus determined were in good agreement 
with the holographic interferograms and Chladni patterns of 
vibrations in Chinese gongs previously reported. 6 At the 
higher frequencies many resonances are combinations of 
two or more normal plate modes (i.e., there is approximate 
degeneracy). 

B. Sound spectra 

The plates were given hard and soft blows from a soft 
mallet at several selected points, and the resulting model 
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FIG. 2. {a) Photograph of Chinese opera gongs used in this study. {b) Dimen- 
sions of the gongs shown in {a}. 

frequencies were determined by means of a Hewlett-Pack- 
ard 3582A spectrum analyzer. The frequencies at large and 
small amplitude of each principal mode of vibration were 
compared in order to determine the character of nonlinear 
behavior. 

C. Results for Chinese opera gongs 

Six different gongs of the type used in the "military" 
section of Chinese opera orchestras were studied. Although 
these gongs were fabricated by different gong makers in Chi- 
na, their behavior was fairly similar. The three larger gongs 
{300 to 332 mm in diameter) glide downward in pitch as 
much as three semitones after striking; the three smaller 
gongs {213 to 225 mm in diameter} glide upward in pitch as 
much as two semitones. 

Two of the gongs are shown in Fig. 2 along with their 
dimensions. The central part of each large gong is essentially 
a flat circular plate with an average thickness of about 0.8 
min. The nearly conical shoulders have an average thickness 
about twice this value. 

551 871 ....... 1536 Hz 

FIG. 3. Lowest modes of vibration of a Chinese opera gong. 

FIG. 4. Time-average holegram interferegrams of the lowest three vibra- 
tional modes of a Chinese opera gong. 6 

The central part of each small gong, on the other hand, 
approximates a shallow spherical shell with an average 
thickness of about 0.7 mm. The shoulders are also roughly 
conical {with an average thickness of about 1.1 mm I but with 
more curvature than those of the large gongs. 

The variation of thickness in some of the gongs was 
rather substantial; others were more nearly uniform. Thus 
the role of the thickness variation in determining the nonlin- 
earity appears to be less important than suggested earlier. 6 

I. Modal frequencies 

The modes of vibration of one of the larger gongs are 
shown in Fig. 3. The principal resonances are modes in 
which the bulk of the motion takes place in the central flat 
portion of the gong; the shoulders vibrate only a small 
amount in these modes. Note the large difference in frequen- 
cy between the second and third modes, both of which have a 
single nodal diameter. This frequency difference is due to 
azimuthal variation in thickness. Time-average holegram 
interferegrams of the first three modes in a small gong are 
shown in Fig. 4. Vibrations of small amplitude are mainly 
confined to the central part of the gong. 6 

Frequencies of the lowest mode of vibration excited by 
hard and soft blows are compared in Table I. [Recall that a 
frequency ratio of 1.06 (or 0.94) normally produces a pitch 
change of one semitone.] Gongs 1, 4, and 5 from Wuhan, 
China are examples of gongs widely used in the "military" 
sections of Chinese opera orchestras. 

2. Effect of a static force 

In order to investigate the effect of internal stress in the 
gongs it is necessary to vary this stress. We attempted to do 
this by changing the air pressure on one side of the gong 
while observing the change in modal frequencies. Fortunate- 
ly, this was not too difficult to do, since the rim has negligible 
motion in the principal modes of vibration. Thus the gongs 

TABLE I. Frequencies of the fundamental mode of vibration of Chinese 
opera gongs excited by hard and soft blows. 

Gong f (soft) f (hard) Ratio 

I 180Hz 212Hz 1.18 

2 176 212 1.20 

3 376 404 1.07 

4 472 430 0.83 

5 472 390 0.91 

6 700 640 0.91 
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were placed on a greased rubber gasket on a pump plate, and 
a vacuum pump was used to reduce the air pressure on the 
underside of the gong. The pressure difference p was mea- 
sured with a mercury manometer. Furthermore, by spacing 
four to eight damps {depending on the size of the gong) 
around the rim, it was possible to apply an overpressure of up 
to about 15 kPa without undue air leakage. With no pressure 
differential, the model frequencies of the clamped gongs 
were never more than 1% or 2% different from those mea- 

sured with no damps. 
Results for several modes in a large gong are shown in 

Fig. 5. In this gong, both upward and downward forces were 
found to raise the modal frequencies. This is quite different 
from the behavior of the small gong shown in Fig. 6. In the 
small gong the frequencies rise under an upward force {posi- 
tive pressure), but fall under a downward force {negative 
pressure) until a certain minimum frequency is reached. 

In addition to providing an upward force on the central 
part of the gong a positive pressure also applies a radial ten- 
sion due to the outward force on the shoulders. By the same 
token a negative pressure applies both a downward force and 
a radial compression due to inward force on the shoulders. It 
is difficult to determine the relative magnitudes of these 
forces in a gong and their individual effects on modal fre- 
quencies, however. 

1000 
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FIG. 6. Frequencies of three vibrational modes of a small Chinese opera 
gong under a static force. 

D. Flat plate under compression and tension 

In order to try to distinguish between the effects of stat- 
ic force and radial tension (or compression), the modes of a 
flat circular plate under tension and compression were stu- 
died. The apparatus used consisted of a flat circular plate 18 
cm in diameter clamped near its circumference by 18 steel 
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FIG. 5. Frequencies of five vibrational modes of a large Chinese opera gong 
under a static force. p is the air pressure inside the gong above and below 
atmospheric pressure. 

blocks; these blocks could be moved radially outward by 
means of bolts anchored to the heavy circular rim in order to 
apply radial tension or compression to the plate. Plates of 
two different thicknesses were studied. 

The results obtained with a 0.5-ram-thick steel plate are 
shown in Fig. 7. The frequencies increase under tension and 
decrease initially under compression, in agreement with the 
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FIG. 7. Frequencies of three vibrational modes of a fiat steel plate with 
radial compression or tension. 
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theoretical curves in Fig. 1. However, as the compression 
increases, the plate takes on curvature and the frequencies 
increase, as in the case of a shallow spherical shell. Unfortun- 
ately, we were not able to measure the actual tension and 
compression. 

The nonlinear behavior of the pl•te was observed by 
striking it with blows of varying force. A slight softening 
(frequency change up to 5%) could be observed when the 
plate was under compression, and a smaller hardening effect 
(frequency change up to 2%) when under tension. 

, E. Gold pan 

It was considered desirable to compare the behavior of 
the geometrically complex Chinese gongs with a similar 
plate of uniform thickness having a fairly simple geometry. 
A gold-washing pan was found to fulfill these requirements. 

The gold pan we studied has a fiat steel bottom 245 mm 
in diameter and 0.56 mm thick attached to nearly conical 
sides 105 mm long and 0.41 mm thick terminated in a rim 
with inner and outer diameters of 390 and 400 ram. About 

two-thirds of the way up the conical sidtes is a small groove, 
which does not appear to have any great effect on the vibra- 
tional behavior of the pan. 

The principal vibrational modes of the gold pan were 
found to be of two types: (1) the "bell modes," which consist 
of flexural waves propagating around the conical portion of 
the pan; (2) the "dish modes" in which •the bottom plate has 
motion similar to that of a vibrating fiat circular plate. The 
modes of lowest frequency are shown in Fig. 8. 

Striking the gold pan with a soft mallet however, pro- 
duced a surprising result. When struck a sharp blow, the 
initial pitch of the gold pan appeared to be slightly below its 
small-amplitude value rather than above, as in the cases of a 
fiat circular plate and the large Chinese gong (whose central 
portion is also flat). Study of the sound spectra revealed that 
the fundamental dish mode (which dominates the sound) 
was indeed about 5% lower in frequency when excited by a 
hard blow. It was further observed that pressing outward on 
the bottom (with one's fingers near the edge) raised the fre- 
quency by a considerable amount, whereas pressing inward 
lowered the frequency. In order to study this effect in more 
detail, the modes of vibration were studied with increased 
and decreased air pressure, as already described. Again the 
modal frequencies were virtually unaffected by clamping the 
inert rim against the gasket and pump plate. 

Figure 9 shows the frequencies of the main dish modes 
under static pressure. Under reduced air pressure (inward 
force), the frequency of all the modes falls to a minimum and 

355 860 

FIG. 8. Frequencies of five vibrational modes of a gold pan: (a) bell modes; 
•bl dish modes. The dashed eixcles outline the flat bottom. 
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FIG. 9. Vibrational modes of a gold pan under static pressure. p is the air 
pressure inside the gold pan above and below atmospheric as in Figs. 5 and 
6. 

then rises. Outward force causes a frequency rise. Thus the 
circular bottom behaves as though it were under an outward 
tension, as will be discussed in a later section. 

IV. DISCUSSION OF RESULTS 

A, The gold pan 

Reducing the air pressure inside the gold pan does two 
things: it causes the bottom to curve inward; and it pulls the 
conical shoulders inward. Pulling the shoulders inward ap- 
parently relaxes the outward tension on the bottom, and may 
even cause a radial compression. Thus the modal frequencies 
pass through minima as the air pressure inside the pan is 
reduced. At p = --9 kPa the bottom has curved inward 
about 1 ram, and this increases to about 4 mm at - 25 kPa, 
the largest pressure difference applied. 

Raising the air pressure inside the gold pan causes an 
outward curvature in the normally fiat bottom, and it also 
increases tke radial tension due to increasing force on the 
conical portion. An outward curvature of about 1.4 mm is 
observed at p = 13 kPa, which is slightly less than the in- 
ward curvature at the corresponding negative pressure, 
probably because of the outward tension. 

The modal vibration frequencies of a fiat steel plate hav- 
ing a clamped edge were calculated. The frequencies for a 
plate with the same thickness and diameter as the gold pan 
bottom are shown in Table II along with the frequencies 
observed for the dish modes of the gold pan which most 
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TABLE II. Comparison of the Vibrational frequencies of a gold pan to those 
calculated for a flat circular plate with a clamped edge. 

Mode f (calculated) f( p = 0) f {min} 

{01} 91 Hz 180 Hz 116 Hz 
•i 1) 189 252 190 
121} 310 356 284 
102} 354 428 358 

nearly resemble them. Also shown are the minimum fre- 
quencies of these modes from Fig. 9. Note that the observed 
frequencies at atmospheric pressure are substantially greater 
than the calculated frequencies for the clamped plate, but the 
minimum frequencies show much closer agreement. It ap- 
pears that the minimum frequencies, obtained by reducing 
the air pressure inside the gold pan, are nearly those of the 
flat circular bottom relieved of the radial tension it normally 
experiences (probably as a result of the manufacturing 
stamping process). 

The behavior of the large-amplitude vibrations in the 
gold pan, particularly the slight nonlinearity of a softening 
type, can be partly understood by noting that in the funda- 
mental mode the conical sides move in and out (in opposite 
phase to the flat bottom). If the bottom is under a radial 
tension, inward motion of the conical sides will lower the 
frequency in the same way as did reducing the air pressure 
under the pan (see Fig. 9), whereas outward motion will raise 
the frequency as did increasing the air pressure under the 
pan. The change of frequency with amplitude has the same 
sign as the second derivative of the curve of (frequency) 2 
versus pressure {see Appendix}. Because the slope of the low- 
est curve in Fig. 9 is greater to the left ofp = 0, the net result 
is a slight frequency shift downward at large amplitude {a 
nonlinearity of the softening type). If the bottom were not 
under a radial tension, an upward shift (nonlinearity of the 
hardening type} would have been expected, as in the larger 
Chinese gong shown in Fig. 5. 

B. The Chinese opera gongs 

The larger gong has a flat central portion which appears 
to be under little or no radial tension, since the minimum 
frequency in Fig. 5 occurs at atmospheric pressure (compare 
with the gold pan shown in Fig. 9, which also has a flat 
central portion). Thus the nonlinearity caused by striking is 
of the hardening type as in a flat plate. 

The amplitude of vibration was measured by means of a 
pin adjusted in height so that it would just touch the plate 
during its greatest deflection. Amplitudes thus measured 
ranged from 0.6 to 0.9 mm in the large gongs and 0.6 to 0.8 
mm in the small gongs, depending upon the manner of strik- 
ing. These amplitudes are roughly 0.8 to 1.0 times the thick- 
ness of the central portion of the gong. From Fig. 1 of Ref. 
11, the frequency shift in a circular plate with a clamped edge 
would be 12% to 17% for these amplitude/thickness ratios, 
ß and the corresponding shifts in a plate with a simply sup- 
ported edge are 30% to 37%. Frequency increases of 18% 
and 20% were observed in the two large gongs (see Table I), 
which is considered satisfactory agreement, given the vari- 

ation in thickness, uncertainty in internal stress, and the fact 
that the edge is neither clamped nor simply supported but 
rather something in between. 

The smaller gong has a curved central portion which 
may be under an initial radial compression. From Fig. 4 of 
Ref. 5, in a shallow spherical shell with apex height H equal 
to the thickness, a vibration amplitude equal to the thickness 
will lower the frequency by about 5%. The observed de- 
crease in frequency (Table I) ranges from 7% to 9% in the 
small gongs. Considering that the thickness varies consider- 
ably, and the central part of the gong only roughly approxi- 
mates a spherical shell, the agreement between theory and 
experiment is again quite satisfactory. 

As the air pressure inside the gong decreases, the curva- 
ture decreases, until it becomes nearly flat and eventually 
curves inward. This transition occurred at about p = 9 kPa 
in the gong shown in Fig. 6. At a pressure slightly below that, 
the frequencies of the lowest two modes appear to have 
reached minima in frequency. 

V. CONCLUSIONS 

The nonlinear behavior of plate vibrations appears to 
depend upon the curvature of the plate and the internal 
stress. A flat plate under no radial stress shows a nonlinear- 
ity of the hardening type at large amplitude (the frequency 
increases with amplitude). Most curved plates show nonlin- 
earity of the softening type at large amplitude (the frequency 
decreases with increasing amplitude). Applying a radial ten- 
sion to a flat plate increases the hardening behavior, whereas 
a radial compression can change the nonlinearity from a 
hardening type to a softening type. 

These facts are sufficient to explain the nonlinear be- 
havior of certain Oriental gongs, such as the ones used in 
Chinese opera orchestras. They were, no doubt, discovered 
empirically by generations of gong makers who learned to 
make gongs with either rising or falling pitch as desired. 
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APPENDIX 

It is helpful to consider, in a semiquantitative way, the 
various physical situations that may occur in the nearly flat 
central section of a gong, and this is most simply done if this 
section is considered as a circular plate clamped around its 
periphery. 

In Fig. A1 we show the forms expected for the curves 
relating central displacement y to deforming pressure differ- 
encep, as discussed in the text. Curve {al shows the behavior 
of a simple, initially unstressed plate. The behavior is linear 
near the origin but, for large pressures of either sign, the 
elastic compliance of the plate, which is essentially the gradi- 
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ent of the curve, decreases because of well understood non- 
linear effects, primarily extensional tension. 

If the plate is under initial radial tension, then its behav- 
ior is represented by curve (b). This has essentially the same 
form as (a) but a lower compliance throughout. If the plate is 
subject to a small radial compression, then its behavior is of 
the form shown by curve (c), with a high compliance for 
small pressures but normal behavior for larger pressures. 

For a larger radial compresslye stress, the plate buckles 
to a dished shape and its behavior is represented by curve (d), 
which is symmetrical about the origin. The zero-stress con- 
figuration is represented by point A and, if the pressure is 
reduced below that corresponding to point B, the curvature 
of the dish reverses suddenly to point C. Similar hysteresis 
occurs in the opposite direction. 

Finally, if the plate is not ideally thin, shear stresses 
may be'incorporated into it during fabrication so that it 
maintains a dished configuration even in the absence of radi- 
al compresslye stresses. The behavior of such a plate or shell 
is exemplified by curve (e), which has no equilibrium dished 
configuration of opposite curvature no matter what the pres- 
sure. Curves between (d) and (e) are of course possible. 

Since the deformation of the plate under uniform pres- 
sure p is quite similar to the time-varying deformation pro- 
duced during vibration in the fundamental mode, the fre- 
quency of this mode, for infinitesimal vibration amplitude, is 
to an adequate approximation inversely proportional to the 
square root of the slope of the characteristic curve at the 
point corresponding to the applied pressure 

coolpl ' I^l 
Cases (a)--(c) obviously produce coo(P) curves that are sym- 
metrical about the origin, with co o increasing asp increases in 
either direction, this change being most pronounced for case 
(c). In case Id), coo(P) decreases with decreasing p and apo 
proaches zero at point B, returns to a finite value as the dish 
inverts to C, and then increases as p is further decreased. In 
case (e) the frequency falls steadily to reach a minimum at the 
inflection point D and then increases again. 

For a finite vibration amplitude Ay it is an adequate 
approximation to write for the frequency coa (P) 

coa(p)oc•,Ap ] , (A2) 
where Ap/Ap is simply the slope of a chord joining two 
points on the curve centered aboutp and a distanceAy apart. 

In our experiments we have been concerned with the 
large amplitude situation only forp = 0. From Fig. AI it is 
clear that, for cases (a)-{c), coa (0) increases with increasing 
amplitude A. For cases (d) and (e), on the contrary, it seems 
clear that coa (0) decreases with increasing A. A Taylor ex- 
pansion of (A2) readily shows us that this latter conclusion is 
justified provided d 3p/dy3 < 0 at the point A or E under con- 
sideration. Comparison with (A 1) shows further that the sign 

FIG. AI. Characteristic deformation curves under pressurep for a circular 
plate with fixed periphery: (a} unstressed; {b} with radial tension; (c} with 
radial compression; {d} with sufficient radial compression for dishing; (e} 
with inbuilt dishing stresses. 

of dcoa/dA is the same as that of d 2coo2/dp 2, which can be 
found from an appropriate replot of curves like those in Figs. 
5, 6, or 9. 

This brief analysis shows that our experimental results 
can be generally explained in this simple way, with the large 
gong corresponding to one of the cases (a)-(c) and the small 
gong to either (d) or (e), most probably the latter. 
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