
Nonlinear generation of missing modes on a vibrating string 
K.A. Legge and N. H. Fletcher ') 
Department of Physics, University of New England, •4rmidale 2351, •4ustralia 

(Received 22 March 1983; accepted for publication 4 February 1984) 

The nonlinear transfer of energy among modes of different frequencies on a vibrating string is 
investigated both theoretically and experimentally. The nonlinearity is associated with the well- 
known variation of string tension caused by the vibration modes, but it is essential that at least one 
of the end supports has finite mechanical admittance if there is to be any mode coupling. If the 
nonrigid bridge support has zero admittance in a direction parallel to the string, the coupling is of 
third order in the mode amplitudes. For a more realistic model in which the string changes 
direction as it passes over a bridge of finite admittance there are additional coupling terms of 
second order. The first mechanism gives driving terms of frequency 2(.o, ___ ro,• where to, and 
are, respectively, the angular frequencies of the nth and ruth modes present on the string, while the 
second mechanism gives driving terms of angular frequencies 2w, and 2to,,. Analysis shows that 
modes absent from the initial excitation of the string can be driven to appreciable amplitude by 
these mechanisms, reaching their maximum amplitude after a time typically of order 0.1 s. Modes 
that are in nearly harmonic frequency relationship behave simply but coupling of modes that are 
appreciably inharmonic may give rise to rapid amplitude fluctuations. A simple experiment with 
a wire deflected by a bridge of elastic cord and plucked so as to eliminate a particular mode from 
the initial excitation provided general semiquantitative confirmation of the theoretical 
predictions. 

PACS numbers: 43.75.Mn, 43.40.Cw, 43.40.Ga 

INTRODUCTION 

It is well known from the standard analysis of the mo- 
tion of stretched strings • that they can be excited in such a 
way that particular modes have zero amplitude. Thus, for 
example, for the case of an ideal string stretched between 
rigid supports, in which situation all the modes are harmon- 
ics of the fundamental, the nth harmonic and all its multiples 
mn (rn = 1,2,3,..) are absent if the string is excited by pluck- 
ing or striking it at a point 1/n of its length from one end. 

These conclusions are modified only in detail if the the- 
ory is extended to include the stiffness of a real string or the 
incomplete rigidity of real end supports, both of which make 
the modes of a real string slightly inharmonic. 2'3 It is always 
possible, according to the standard linear theory, to elimi- 
nate a particular mode from the motion by applying the exci- 
tation at one of the nodes of that mode or, more generally, in 
such a distribution that the excitation function is orthogonal 
to the mode shape function. 

It comes as something of a surprise, therefore, to find 
that in practical cases, for example in musical instruments 
with plucked or hammered strings, these modes are not actu- 
ally absent from the motion. Rather, they typically begin 
with near-zero amplitude, rise to a peak after a time of the 
order of 0.1 s, and then decay. 

It is the purpose of the present paper to investigate this 
phenomenon, in an appropriately idealized situation, both 
theoretically and experimentally. We shall find that the ex- 
planation and its quantitative treatment are both relatively 
straightforward and give insight into a variety of more com- 
plex vibration processes. 
'• Present address: Institute of Physical Sciences, CSIRO, Limestone Ave- 

nue. Canberra, Australia. 

I. THEORY FOR AN IDEALIZED BRIDGE 

It is clear from quite general considerations that the 
phenomena described can result only from the operation of 
nonlinear mechanisms. In a linear system the normal modes 
are uncoupled and, in the presence of viscous damping 
forces, each mode will simply decay with its own character- 
istic lifetime. 

The stretched string, like most other physical systems, 
is linear to only a first approximation; the major cause of 
nonlinearity is the fact that any small transverse displace- 
ment of the string makes a second-order change in its length, 
and therefore in its tension. This has long been recognized, 
and Cartier 4 has given a detailed solution for the steady mo- 
tion of a string with rigid supports. A more recent discussion 
from a different viewpoin t has been given by Murthy and 
Ramakrishnafi These treatments, however, do not give any 
immediate help in solving the present problem. Instead it 
rufus out to be more appropriate to start again from first 
principles and to construct the solution to the rather more 
general nonlinear problem in which the supports are not 
completely rigid, maintaining only the amount of rigor that 
is essential. 

Consider the string shown in Fig. l{a). It is stretched 
with tension T between two supports, one at x = 0 which is 
rigid and one at x = L which is rigid in the x direction but 
which has a mechanical admittan ,ce {velocity/force} equal to 
Ys{to) in the y direction at angular frequency to. Such an 
arrangement is somewhat analogous to that of a string on a 
piano, harpsichord, or guitar, the compliant support being 
the bridge that is attached to the soundboard. There are, 
however, important differences between this idealized situa- 
tion and a more realistic model of a musical instrument 
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FIG. 1. The system to be analy zeal. A flexible string under tension T is at- 
tached to a rigid support at x = 0, and its other end is attached to a bridge 
with lateral mechanical admittance Ys. (a) shows a highly idealized system 
while (b) is a closer approximation to reality. 

bridge such as shown in Fig. 1 (b). We will return to this point 
later. 

If we assume, as is usually true in practice, that the 
tension is low enough such that the velocity of transverse 
waves on the string is very much less than that of longitudi- 
nal waves, •'6 then the tension T can be taken as uniform 
along the string, and the displacement y, assumed to lie in a 
single plane as is appropriate for our experiment to be'de- 
scribed later, obeys the equation • 

a = r - o (1) 
where p i s the mass of the string per unit length, and the 
coefficient D is a measure of the viscous losses to the sur- 

rounding air and 'internal to the string itself. 
The elementary solution for this problem is well 

known • when both supports are rigid, so that Ye (co) = 0. 
The eigenfunctions have the form 

y.(x,t)=a. sin(n--?)sin(co.t +,.)exp(-•.t), (2) 
where 

r. = c = (T/p) '/2. (3) 
Finite stiffness of the string raises all angular frequen- 

cies co.o n and introduces further inharmonicity. 2 But since this 
effect is both small and nearly independent of amplitude, in 
the interest of algebraic simplicity we ignore it in our discus- 
sion. 

The fundamental nonlinearity arises because of the sec- 
ond-order change in the length of the string with vibration 
amplitude. This length increase is given by 

a = 1 + / J - L (4) 

so that the tension becomes 

T = T O + ESA/L, (5) 

where E is the Young's modulus of the string material and $ 
is the string's cross-sectional area. Inserting a sumy = • y. 
of the form (2) into (4) and neglecting terms of fourth. or 
higher order in a./L gives 

ß taES Vnaa • r=ro+ s-Z- q 
X [ 1 -- cos 2(co. t + •b.)] exp (- 2t/r. ). 16 I 

The first part of the sum in this expression gives a quasi- 
static increase in the tension, varying as 
• 2 2 exp( -- 2t/r.). This causes, from (3), a proportional I'I a n 

increase in the frequencies of all the modes, the increase dy- 
ing away with time, and is responsible for the characteristic 
twang of vigorously plucked strings, particularly ff they are 
0fmetal rather than gut or nylon, so that the Young's modu- 
lus E is high. 

The remaining terms in the summation contribute os- 
ciliatory components of the tension, the frequency 2co. being 
associated with mode n. Suppose the string also carries mode 
m, then, since the transverse driving force associated with 
tension is T •y/c•x 2, the driving force exerted by mode n on 
mode m has a time variation at frequency 2co, ñ •o,, Fol- 
lowing this through, we find that this can influence mode m 
only if n = m. Even the driving force at frequency 
2co, -J-co,, cannot, however, influence the mode near that 
frequency because the spatial distribution along the string is 
orthogonal to it. Thus the various modes can act back only 
upon themselves by this mechanism. 

We conclude that the mode conversion effects that we 

wish to understand should be absent from a string supported 
between two rigid bridges. We therefore turn to the case in 
which the admittance Ye (co) ofthe support at x = L is finite. 

In the linear approximation, the termination condition 
at the nonrigid support is just 

-•t •=L = --YeTo•xx •= •. (7) 
It would be possible to apply this condition without restric- 
tion to the lossy string described by Eq. (1), but it helps the 
clarity of the argument and is also adequate for our practical 
purposes to make some simplifying assumptions. The first of 
these is that the bridge admittance Ys (co) is always small 
compared with the characteristic admittance l/pc of the 
string, so that the bridge is nearly a node for the string mo- 
tion. The second is that the energy losses in the system can be 
partitioned between those at the bridge, giving decay time 
constants r•, and those associated with viscous or internal 
losses along the string, giving decay time constants r•', so 
that 

1 1 1 
-- = + , (s) 

where it is now •'•' rather than r. that is related to D (co.) by 
(3). The third is to assume that the bridge itself behaves as a 
simple linear system so that Ys (co) canbe written as an am- 
plitude-independent complex function of co when the time- 
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variation of the eigenfunctions (2} is written as exp(j•ot ). 
With these assumptions we can adapt the linear analy- 

sis given, for example, by Morse 3 to derive the results 

o•, •(mrc/L ) -- (TO/L )Im(Ys ), (9) 

r•, =(TO/L )Re(Ys ), (10) 

where Re (Y s) and Im (Y s) are, respectively, the real and 
im_•ginary parts of the bridge admittance 

The eigenfunctions, for the linear approximation, still 
have the form (2), with (9) and (10) inserted and with L re- 
placed by L + 8, where 

B, =(To/w, )Im(rs ). (1 

The string thus behaves, for each mode, very much like a 
normal 1ossy string supported rigidly at x =0 and 
x=L+B,. 

For the more general nonlinear problem to which we 
now turn, the force on the compliant bridge is, to sufficient 
accuracy from (2} and {6), 

Ox 

21-• T,A,, sin(0• + 20,), (12) 
where 

T, .• (•aES/SL 2)n2a•, exp( - 2t/r, ), (13) 
.4, =( - 1) "+ •(•r/L )ha. exp( -- t/•',), (14) 
o,=o.t + (15) 

the approximations arising from neglecting B, in compari- 
son with L in appropriate places. 

The force F acts upon the compliant bridge and its at- 
tached string, which are mechanically in.series since they 
have the same displacement velocity. To the approximation 
to which we are working, the problem is thus equivalent to 
that of a rigidly supported string of length L + B, acted upon 
by the force Fat the point x = L, which is of distance B from 
one end. The resistive part Re (Ya) of the bridge admittance 
may also be localized at this point. 

The equation of motion for the String is now formally, 
comparing with (1), 

f re 

- R ' ?•t (x - L ) + F(t )•(x - L ), (16) 
where y = 0 at x = 0 and x = L + B•, for the pth mode, the 
form of which is given by (2) with L replaced by L + B e and 
with B e given by (11). The form of R ', which is clearly related 
to r e by (10), need not concern us for the moment. 

Multiplying (16) by the spatial part of Ye, namely 
sin [p•rx/(L + B)], and integrating over x = 0 to L + B gives 

when F = 0. This serves, if we wish, to relate R to tp. Using 
(3), assuming B •0L/p, and then using (11), we can rewrite (17} 

d2z 2 dz 2perTo 
•-• +a•p•Z- (- If __•Im(Ys)F(t). (19) r• dt 
There is an equation of this form for each of the modesp. In 
cases of practical interest, the damping is small so that 
•'e ß 1/w• and the resonances are so narrow that only those 
terms in F(t ) with frequencies very close to Wp need to be 
considered. We note, incidentally, that the forcing term in- 
volvingF(t )is proportional to the bridge admittance Ys, and 
so vanishes for a string supported on rigid bridges, in agree- 
ment with our earlier discussion. 

II. FIRST-ORDER SOLUTION 

The differential equation (19) for thepth mode has the 
general form 

dt 2 + ø•p zz = g(t ), (20) 
where the function g contains both damping and forcing 
terms and depends upon the amplitudes of all the other mode 
vibrations. This equation is in the standard form for treat- 
ment by the method of slowly varying parameters 7's in which 
each of the modes z is assumed to have the form 

2 = ae(t } sin [t%t + •e(t }], (21) 
where a e and •bp are slowly varying functions of t. The 
further assumption that 

dz = ae(t ko e cos[w•,t + •be(t )1 (22) dt 

establishes a limitation on the allowed forms of a•, and •. 
Finally, with (21) and (22) substituted in (20), the resulting 
equation is multiplied by cos 0•, or sin 0•,, with 0•, given by 
(15), and averaged over one period 2rr/•o•, all terms being 
neglected except those that change slowly over this time. 
The resulting equations are 

2•rro-'•'. g(t ) cos 0 e dO e 

(•e) = 1 2rrrøea• g(t )sin O e dO•, 

(23) 

2) 
+ (6., -1- 2•. _+ •e.)], (24) 

where only the terms m _ 2n ___ p = 0 are retained. In these 
expressions the + before a• is independent of that before 
2•o• but tied to the leading + in (24). The signs of the 
follow those of their related coj. The mode coupling 
cients/•,,v follow directly from (12)-(14), and (19). 

A solution to the general problem requires considera- 
tion of the pairs of coupled equations (23) and (24) for all 
modes of the string. For our present problem, however, a 
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much simpler procedure suffices. Suppose the string is excit- 
ed so that only two modes n and m have appreciable ampli- 
tude, and a third mode of interest, p, has zero initial ampli- 
tude. We further suppose that modes n and m are either not 
coupled, in the sense that m + 2n • m, 3n • m, and similarly 
with m and n interchanged, or that any such coupling is 
small enough to be neglected. Then the forcing term Fwill be 
zero at mode frequencies O•n and o,•, except for some small 
self-interactions, and each of these modes will simply decay 
exponentially 

o exp( - t/•'n ), a n • a n 

o exp{ -- t/'F m ). (26) a m = a m 

If n and m are chosen so that one or more of the combina- 
tions I m -t- 2hi, In _ 2ml (including 3n or 3m) is equal top, 
however, then the forcing termF for modep will not vanish. 

In the simple case in which o.• and o•. are harmonical- 
ly related, the frequencies of these driving terms near co r will 
be the same, although not necessarily exactly equal to or 
unless it too is part of the same harmonic relationship. Pro- 
vided the discrepancy between •o• and the driving frequency 
is not too large, the phase •p of mode p (which is initially 
undetermined) can adopt a value such that the actual oscilla- 
tion frequency o•, given by (21) as 

•o/o = %, + (•) (27) 
is equal to the driving frequency. This is simply the pheno- 
menon of'off-resonance driving as expressed in this formal- 
ism. Once the initial phase •p has been determined in this 
way, {•p ) remains nearly constant, only tracking the quasi- 
static tension change, and the value of (,•p) can be deter- 
mined. There is an inverse relationship between the magni- 
tudes of these two quantities, given explicitly by (23) and (24), 
as is always the case for systems slightly away from reso- 

The general problem requires numerical methods at 
this stage unless the relevant frequencies •o, and •o, are 
harmonically related, for the general solution will involve 
beats and similar fluctuation phenomena. Suppose, how- 
ever, that we can neglect all driving modes except rn and n, 
driving mode p through the coefficient//,,,p, and let 

= = - op. (281 
Then from {24), in abbreviated notation, 

cos[ ]= +A•Opap///,,,pa,•a•, {29) 
and this can be substituted back into (23} to give 

(dp)=fim,pa,•a, 1- . 2 ' --' 

It is clear from the general form of{30) that, if a,, and a, 
are both initially proportional to some pluck amplitude A 
while ap is zero, then ap will rise at a rate proportional toA 3, 
go through a maximum as a,• and a, decay, and then decay 
itseffwith a time constant tending towards rp. It is also dear 
that the excitation of mode œ will be most efficient when all 
modes are nearly harmonically related, so that A•Op is small, 
and when the decay times r are long. 

Another conclusion that follows from the general form 
of(30) is that not all modes can be driven by this mechanism 

but only those for which p = 12n +_ m [. In particular if the 
modes are essentially harmonic and the string is plucked 
near its center so that no even modes are excited, then the 
mechanism cannot provide subsequent excitation of any of 
these even modes. 

III. THEORY FOR A REALISTIC BRIDGE 

The idealized bridge shown in Fig. l(a) and considered 
in our theory above differs significantly from the more realis- 
tic bridge shown in Fig. l(b). For the realistic bridge struc- 
ture, it is an adequate approximation for our present purpose 
to assume that the bridge itself is quite compliant in a direc- 
tion parallel to the string, with the necessary longitudinal 
rigidity being provided by the short angled length of string 
between it and the hitch-pin. We can then assume that the 
tension T of the string is the same throughout its whole 
length. 

The analysis of the previous section still applies to this 
structure, with the admittance Y• being interpreted as ap- 
plying to the transverse behavior of the bridge and string tail 
together. However, as we shall see in a moment, there is also 
a further nonlinearity of second rather than third order 
which can dominate the behavior in certain cases. 

Suppose that the bridge is in equilibrium under tension 
T O and that this tension. is increased to the value T by the 
mechanism leading to Eq. (7). Then, because of the inclina- 
tion •p of the tail of the string, this increase leads to an addi- 
tional downwards force F on the bridge structure of magni- 
tude 

F(t ) = (T-- To)sin •p. (31) 

If the string carries modes rn and n, then, from {6}, F{t} has 
components of frequencies 2o., and 2o.with amplitudes 
proportional to a• and a}, respectively. There is no frequen- 
cy mixing below fourth-order terms. 

The effect of this force can be treated in exactly the same 
way as before, and the governing equation is formally identi- 
cal with {16} or {19}. The solution is given by equations simi- 
lar to {23} and {24} or, quite generally since there is only one 
driving term for each mode, by an equation like {30). The 
only difference is the replacement 

2 , 2 

//.,•pa.,a.--•8 .a.sin •/,, (32) 

where the detailed form of//;•, is given by the algebra, and 
the only slowly varying terms are those for which p = 2n. 

In summary we note that this nonlinearity can drive 
only even modes, that it behaves as the square rather than 
the cube of the initial excitation amplitude, and that its cou- 
pling magnitude is proportional to sin •p, where •p is the 
bending angle of the string as it passes over the bridge. 

IV. EXPERIMENT 

The experimental arrangement consisted of a tensioned 
nichrome wire, 0.3 mm in diameter, passing over two rigid 
bridges about 67 cm apart. The fundamental frequency was 
about 200 Hz. A horseshoe permanent magnet produced a 
strong magnetic field normal to the wire over a short part of 
its length, and the emf induced by motion gave a signal pro- 
portional to appropriately weighted amplitudes of the string 
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FIG. 2. The compliant bridge used in the experiment. Deflection angles are 
exaggerated for clarity. 

vibration modes. The modes were isolated by feeding the 
signal through a digital filter (Bruel and Kjaer type 1623} 
with a bandwidth of 12% or 24%, thus giving an adequately 
short rise time, and were displayed on a storage oscilloscope. 
The relative response of the system to different modes was 
easily calculated and this calibration was checked and made 
absolute by plucking the string through a well-defined dis- 
placement. 

The first check of theory for rigid bridges was per- 
formed by plucking the string to a displacement of about 3 
mm at one-third of its length, giving large amplitudes to 
modes I and 2 and a carefully defined near-zero amplitude to 
mode 3. No subsequent increase in the amplitude of mode 3 
was observed, in agreement with theoretical prediction. A 
similar confirmatory null result was found for mode 2 when 
the string was plucked at its center. 

A compliant bridge was constructed by looping a thin, 
cotton wrapped elastic cord over the wire and securing it to a 
lower support as shown in Fig. 2. This arrangement gave a 
bridge that was not only nearly ideally compliant but also 
very substantially anisotropic, thus effectively decoupling 
the two polarizations of wire vibrations and eliminating one 
source of possible experimental difficulty? A small pad of 
rubber damped the short end of the string and minimized 
undesired high-frequency vibrations without adding a sig- 

FIG. 3, Oscilloscope record of the growth and decay of the third vibration 
mode of the string when it is plucked at a node for that mode. The major 
graticule divisions are 0.05 s apart. 
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FIG. 4. Measured values (filled circles, broken curve) and calculated values 
(open circles, full curve) of the maximum amplitude a z achieved by the sec- 
ond mode, and of the time to reach this amplitude, as functions of the initial 
amplitude a? of the first mode. 

nificant resistive component to the bridge admittance. The 
string length L was about 55 cm, the tail length l about 12 
cm, and the angle ½ about 3 ø. 

With this arrangement and using a mechanical pluck- 
ing device, several series of plucks were recorded on magnet- 
ic tape for later analysis. In one series the string was plucked 
close to its midpoint in a position found to give nearly zero 
excitation of the second mode, while in the other series a 
plucking point near one-third of the string length was used 
so as to minimize the initial amplitude of the third mode. In 
each case a range of pluck amplitudes up to about 3 mm was 
used. 

When the records were replayed for analysis, the modes 
initially excited were found to decay more or less exponen- 
tially with time, while the unexcited modes grew from near 
zero to a maximum in a time of order O. 1 s and then decayed 
slowly to zero. A typical trace is shown in Fig. 3. To analyze 
these results, the peak amplitude reached by the missing 
mode and the time delay to this peak were both plotted as 
functions of the inital fundamental mode amplitude a?, also 
derived from the recording. These measurements are shown 
in Fig. 4 for the second mode and in Fig. 5 for the third mode. 

Comparison with theory must await the discussion of 
the next section, but we see immediately that the peak ampli- 
tude of the "missing" mode, though substantially less than 
the initial amplitude of the fundamental, is of quite signifi- 
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FIG. $. Measured values (fitled circles, broken curve) and calculated values 
(open circles, full curve) of the maximum amplitude a 3 achieved by the third 
mode, and of the time to reach this amplitude, as functions of the initial 
amplitude a• of the first mode. 

cant magnitude. The amplitude of this peak does not behave 
in an entirely simple manner in its dependence upon the am- 
plitude a• of the fundamental in either case, though clearly 
the maximum values of both a2 and a 3 increase with increas- 
ing a•. The time delay to the peak amplitude decreases sig- 
nificantly with increasing • in both cases, the measured 
range of variation being as much as a factor of 3 over the 
amplitude range studied. 

either geometry or string tension, and the agreement with 
calculation was found to be good. The frequencies of the first 
three modes are harmonically related to a good approxima- 
tion. 

Experiments showed that the insertion of a small rub- 
bet pad at the remote end of the string tail made little differ- 
ence to observed decay times, while the decay time for the 
string with its compliant bridge is about half that for the 
same string supported between two rigid bridges. Since the 
end correction 6 is not very sensitive to the exact value of•',' 
it is adequate to assume r• = r•' = 2r, for all n. Use of Eq. 
(1) together with measured •' values and compliances for the 
complete bridge structure allowed two values, respectively, 
of order 10 -2 and 10 • N m- 1 s, for the effective resistance R 
in series with the bridge compliance. The smaller value is 
supported by the relatively large value of•J referred to above. 
An independent measurement of the mechanical admittance 
of a similar stretched piece of the same elastic cord using a 
Bruel and Kjaer type 8001 impedance head gave an etfective 
series resistance of a few times 10 -3 N m- ] s at 100 Hz, 
confirming the lower resistance value. This resistance was 
found to increase with increasing vibration amplitude, an 
effect which is shown also by the resistance deduced from the 
r values, as we shall discuss again below. 

To calculate approximately the frequency variation of 
the bridge admittance Ys, an analog model of the form 
shown in Fig. 6 was used. The 4-pole network Z,• represents 
the tail of the string, the large resistance R ' the effect of the 
rubber pad at the rigid bridge, and the corn '.hi.nation R,C the 
behavior of the elastic'cord. Now R ' is very large compared 
with the characteristic impedance pc of the string, as is 
shown by the negligible effect of R" on the modes in which 
we are interested. We can therefore set R" = 0o to adequate 
accuracy and replace Z,j by its input impedance 

Z!l = ljpC cot(to//c), (34) 
where I is the length of the string tail. The known low-fre- 
quency limit ofIm ( Ys } given by (33) and the known value of 
r in {10) to give Re (Ys) then allow all the quantities in the 
model of Fig. 6 to be calculated. 

We must now introduce a further significant nonlinear- 
ity which has so far been neglected. This relates to the damp- 

v. ANALYSIS 

In the experimental arrangement, the bridge consists 
effectively of the elastic cord together with the oblique end of 

the string. The static compliance of this combined bridge was found by careful measurement of geometry, followed by 
a measurement of the amount by which the string deflection 
at the bridge chang•l when the string ton•ion was lowered or 

raised. The behavior was linear within the accuracy of mea- surement, and the resulting numerical value was 

lim to-] Im(Ys )•0.6 mm N-L (33) 

If the real part of Ys is small, as we will see in a moment that 
it is, then this implies from (11) a 6 value of about 2 em which 
does not change very much with frequency. This was 
checked by noting the change in frequency when the compli- 
ant bridge was replaced by a rigid bridge without disturbing 

I ziJ I l•--• R' 
FIG. 6. Electrical analog circuit for the mechanical properties of the bridge 
used in our experimental arrangement. R and C represent the behavior of 
the elastic cord, Z• is the impedance of the tail of the string, and R" the 
large resistance with which it terminates. The input admittance of this 
network is 
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ing term -- a n/•'n in (23) and (30) which accounts for the free 
decay of mode p. This linear approximation may indeed be 
adequate in some practical situations, but measurements of 
the free decay of modes excited singly in our experimental 
arrangement showed that the time constant q'n depended sig- 
nitieantly upon mode amplitude at, with •'n decreasing con- 
siderably for large a r. Such an effect is indeed expected for 
the viscous drag exerted on the string by the surrounding air, 
since the Reynolds number for our vibrating string lay typi- 
cally in the range 10 to 100, which is just the range over 
which the drag for steady flow past a cylinder changes from 
linear to quadratic. 9 In our ease,. however, much of the 
damping is caused by the bridge structure, for which quite 
different considerations apply. Nevertheless, the form of 
equation suggested by the air-damping analogy, namely 

r•- ' = a n + yea n (35) 
was found to fit the data quite adequately, with a n and Yn as 
experimentally determined constants. 

Clearly withseveral modes present on the string simul- 
taneously, as in the experimental plucked situation, we 
would expect interaction terms in the damping. This was 
confirmed by examining the decay of a particular mode 
when the string was plucked rather tha•n excited only in that 
mode. The experimental results are adequately approximat- 
ed by the obvious generalization 

•'•-•.•ap + ypa n + rp.a., (36) 
n•p 

where only the one or two most important terms are includ- 
ed in the summation. Experimental values for the relevant a 
and y parameters for our particular experimental arrange- 
ment are given in Table I. 

For the purpose of our numerical solutions, the form 
(36) was simply inserted into (9) and (10), using the analog 
circuit of Fig. 6, to determine the to, and hence Atop at each 
instant, and then into (30) or (32) for numerical integration to 
plot the behavior of the missing mode amplitude a n . The 
averaged nature of the expression (36) does not justify any 
more detailed treatment. 

In Fig. 7 we show the calculated behavior of the third 
mode amplitude, when the string is plucked so as to make its 
initial value zero, for the particular string and bridge config- 
uration used in our experiments. The calculated behavior of 
the second mode when it is initially unexcited is very similar. 
Clearly the general predictions of the theory are qualitative- 
ly similar to the experimental behavior shown in Fig. 3. 

For quantitative assessment of the theory, its predic- 
tions of maximum amplitude and time to reach that ampli- 
tude are shown by open circles plotted alongside the experi- 

TABLE I. Damping parameter a in (s)- • and parameter y in (s mm)- ' for 
the experimental system. 

Mode I Mode 2 Mode 3 

a I = 0.4 a2 = 0.7 a 3 = 0.08 
y• = 0.6 Y2 = 2.5 y3 -- 9 
Y2! =2.5 
y• =6 y•2= 12 

EoO 02 i• 
0.5 1.0 

time (s) 

FIG. 7. Calculated growth and decay of the third mode of the string, 
plucked at a node for that mode, for first mode amplitudes ranging from 0.5 
to 3.5 mm (shown as a parameter}. 

mental data (filled circles). in .Figs. 4 and 5. The absolute 
values of the predicted amplitudes are of the right order in 
each case, and these amplitudes increase with the amplitude 
of the exciting fundamental with something close to the ob- 
served slope. More specifically, the calculated slope for 
log a2 against log a? is about 1.6 and for log a3 against log a• ø 
is about 2.2. The general slope 'of the experimental curves is 
in each case rather less than this. The calculated times to 

reach maximum amplitude are similarly of the observed or- 
der of magnitude but are significantly too small at small 
pluck amplitudes and show much too little variation with 
amplitude. 

It is thus apparent that, while the theory can account 
for the observed phenomena in a general way, it is only in 
semi-quantitative agreement with experiment. The most 
likely explanation for the residual disagreements is the fail- 
ure of our experimental setup to provide an adequate ap- 
proximation to the idealized situation assumed for the theo- 
retical analysis. This applies in particular to the behavior of 
the bridge admittance. It seems unlikely that the higher or- 
der nonlinear terms omitted from the analysis could be large 
enough to influence the calculated results significantly, al- 
though a more careful treatment of mode serf-interaction 
and its associated frequency shifts s may be necessary. 

As a final observation we remark that, when there is 

appreciable inharmonicity in the string mode frequencies, 
whether from string stiffness or the complexity of the bridge 
admittance or other causes, it is possible to have much more 
complex behavior than we have studied here. This can be 
seen explicitly in the case of mode 3 which, from (12) or (23), 
can be driven by mode 1 at a frequency 3•o• or by modes 1 
and 2 in combination at a frequency 2to2-to v If these frequen- 
cies are not the same, then beatlike behavior ensues. This was 
easily observed in our mode 3 experiment by fixing a mass of 
a few tenths of a gram to the midpoint of the string so as to 
lower the frequency of mode 1 while leaving the mode 2 
frequency unchanged. 

The nonlinearities we have discussed also serve to cou- 

ple in the same ways the modes that are actually excited on 
the string, so that they exchange energy and, if they are not 
ideally harmonic, fluctuate in amplitude. 
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VI. CONCLUSIONS 

We have examined theoretically the nonlinear genera- 
tion of missing modes on vibrating strings and have con- 
firreed the predictions of the theory at least semi-quantita- 
tively by experiment. The phenomenon has been shown to be 
confined to situations in which at least one of the bridges 
supporting the string has a nonzero mechanical admittance. 
This is, of course, the situation of practical importance in 
musical instruments. 

Two different situations emerge from the analysis. If 
the nonrigid bridge has zero admittance parallel to the string 
length and if the string is fixed simply to it, then the only 
nonlinear processes tending to mix modes or to generate 
missing modes are of third order. On the other hand, if the 
bridge is a nonrigid support over which the string passes at 
an angle, as in many musical instruments, then there is an 
additional second-order nonlinearity which provides driving 
forces at frequencies that are twice those of any modes pres- 
ent on the string. 

These nonlinearities, as well as generating appreciable 
amplitudes for modes initially not excited on the string, also 
serve to couple modes that are excited. In the practically 
important case in which mode frequencies are not in exact 
harmonic relationship, these couplings contribute fiuctu- 

ations in the amplitudes of all the modes which undoubtedly 
influence to some extent the auditory perception of the 
sound produced. 
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