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Abstract. Calculations of the pressure in the liquid core of a freezing water droplet 
and stresses in the surrounding ice shell are made. The theory is developed in terms of 
two mechanical models for the ice. The first model assumes it is elastic and the second 
that it is linearly viscoelastic. The calculated pressure development is compared with 
that measured in drops one centimetre in diameter. It is concluded that the visco- 
elastic theory is sufficient for describing the pressure growth, but overestimates the 
magnitudes of the stresses in the shell. It is suggested that a treatment using a non- 
linear dependence of strain rate on stress would yield a more realistic stress distribution. 

1. Introduction 

It has been known for some time that in strongly convective clouds the number of ice 
crystals can exceed the number of ice nuclei by several orders of magnitude (Mossop 
1970). One of the earliest mechanisms proposed to explain the anomaly was the shatter- 
ing of freezing water droplets. It was envisaged that, as the droplet froze inwards, the 
expansion of water would cause sufficient pressure to fragment the shell. Subsequent 
experimental investigations have shown that this is unlikely to be of importance in 
clouds (Hobbs and Alkezweeny 1968, Brownscombe and Thorndike 1968), but there is 
no theory available with which the experiments can be compared; 

In this paper we compute the pressures in the liquid core and stresses in the shell 
of a freezing droplet. The first approach assumes that the ice shell is elastic, and the 
second that it is viscoelastic. The effects of droplet size, freezing time, and the rheological 
properties of ice on the calculations are discussed. Finally, we present the results of 
experiments in which pressures were measured and discuss these in terms of the theory. 

Although the discussion is given in terms of the freezing of water droplets, the theory 
also applies to the freezing of droplets of any liquid which expands on solidfying. Addi- 
tional examples of such materials are germanium, silicon, and certain organic substances. 

2. Elastic shell theory 

Water droplets which are cooled slowly normally supercool to a temperature character- 
ized by the size and nature of insoluble particles present. When the ice phase is nucleated 
by these particles, dendrites of ice grow very rapidly through the drop and continue to 
do so until the latent heat evolved warms the droplet to 0 "C. This dendritic growth 
stage lasts for a time of the order of milliseconds and results in a fraction hTi80 of the 
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droplet being frozen, where AT is the supercooling. Further growth of ice is then deter- 
mined by heat transfer to the environment. 

In the following treatment we have assumed that the heat transfer is spherically 
symmetric, so that a uniform shell forms and grows inward. We have not considered the 
asymmetry introduced by the dendrites, and have assumed the ice is homogeneous and 
isotropic and used the corresponding elastic theory. 

It is worth noting that the standard Lam6 treatment of a spherical shell subjected to 
an internal pressure (Sokolnikoff 1956, pp 343-4) cannot be used. In the present problem 
the pressure build-up and shell growth are inter-related, whereas in the Lam6 treatment 
these are quite independent. In the droplet problem, the innermost layer of the shell is 
in equilibrium with the pressure, and the stresses in this layer are then modified by the 
effects of subsequent growth. In form, it is similar to adding prestressed layers to the 
inside of the shell. Consequently, the main distinction between the Lam6 and droplet 
problems is that a release of pressure in the latter does not reduce the shell to a state 
of zero stress. 

The model used to compute the pressure is as follows. Consider a partially frozen 
droplet with the interface at the radial position 5. In time S t ,  suppose the shell grows 
inward by an amount Sc determined by the heat transfer, and suppose the inside of the 
shell already formed moves out by an amount Su under the influence of the increased 
pressure. The net result is that the interface has moved by an amount 

sg= sg + su (1) 
where all three coordinates are measured in the positive radial direction. 

The change in volume of the liquid core is given by 

8 V = 4 ~ ( 1  -AT/80) 52(01Sc+Su) (2) 
where a= 1 - Pice/Pwater. Because water is more compressible than ice, 01 increases with 
pressure, but since fracture normally occurs at less than 100 bar, the variation in 01 is 
less than 4 % in this range, and we have treated it as a constant. The increase in internal 
pressure P is then given by 

- 3B 
5 

SP=-- (asg+Su) (3) 

where B=p(l- AT/80) and ,6 is the bulk modulus of water. We may rewrite this in 
terms of the interfacial position using equation (l), giving 

The determination of the pressure thus requires that the elastic displacement field 
u(r, f) 'be known. The symmetry is such that for the stress components raB 

and similarly for the strain components ea8. 

1956, pp 71-2). First there is the condition for equilibrium 
The equations describing the elastic behaviour of the shell are as follows (Sokolnikoff 
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and then the stress-strain relations. It is convenient to write these in the form 

err (7) 

where k and p are the moduli of compression and rigidity respectively. For small strains 
we can write 

e8e = .--r- J (9) 

and these sets of equations, (6)-(9), can be combined to give Navier’s equation for 
spherical symmetry : 

for which the solution is (Sokolnikoff 1956, pp 343-5) 

where the explicit dependence of the functions f and g has been indicated, and a is the 
drop radius. 

The stress components can be obtained from the displacement field by equations 
(7), (8) and (9) and are 

(12) g(E, 4 Trr(r, E )  = f  ( E ,  a)  - 75 - 

Simple manipulation of equations (12) and (13) shows that f is a measure of the hydro- 
static pressure at any point, and g/r3  a measure of the shearing stresses. 

Equations (ll),  (12) and (13) have been obtained by neglecting the stress history of 
the shell, and the treatment is formally the same as that for the Lam6 situation. The 
present problem is concerned with the increments in the stresses and displacement as 
the shell grows inward, however, and it is the form of the functions f ( t ,  a)  and g( t ,  a) 
and the way in which these incremental stresses are superposed which lend this problem 
its distinctiveness. 

The increments in stresses and displacements can be obtained by differentiating 
equations (ll),  (12) and (13) with respect to t :  

(14) 
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and 

where we have neglected such terms as (af/au) (da/dE) because da/df< I ,  the movement 
of the outer boundary being very small compared with that of the inner. 

At the outer boundary, the pressure can be taken to be zero, while at the inner 
boundary the newly frozen layer is in equilibrium with the pressure, so that 

Trr(a)=O; T&)= -P(t) .  (17) 

Further, the increase in pressure due to subsequent growth acts on the completed shell, 
the changes in stresses being determined by the form of the functions f ( f ,  U) and g(E, a). 
Therefore 

and similarly for 7 0 0 .  

In fact, the right-hand expressions ought to be evaluated at a point we shall call r', 
where r'  is the initial point which is subsequently displaced out to r .  The replacement 
of r' by r is equivalent to interchanging the geometrical coordinates with the ice coordin- 
ates-that is, the position of a given element of ice. The differences so caused are negli- 
gible because the elastic strains remain small. Even on the outer boundary, where the 
approximation is worst, the error is less than 1 %. 

The functions a f/aE and ag/at can be determined from the boundary conditions 

and 

Although intuitively obvious, equation (20) can be obtained rigorously by substituting 
the integral forms for T,-? and Tee  (equation (18 ) )  into the equilibrium equation (6) .  
These last two equations can be rewritten, using equations (4), (14) and (15), as 

and 

for which the solutions are 

-a)} k{4p+3B(1 -a)} -1 1 - 
E3 

and 
af 12pBak 4p{k-B( l -a) )  - k{4p+3B(I-a)} 
a(- a35 [ a 3  f 3  

- 

Using these expressions, we can evaluate aTrr/a[,  aree/at and aP/ag. Integration over 
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the appropriate limits then yields the quantities 

B y 1  -a)  4p[k-B(1 . .- -a ) ]  [ 1  - t3/a3] P ( Q =  -3Ba lg - ( 5 )  [k-B(1 -a)] 

4 p  [k -B( l  -a)]  [(r/a]3- 
lg (' +k[4p+ 3B(1 - a ) ]  -4p [k -B( l  -a)]  

4p [k  - ~ ( 1 -  41 ~ 4 3  - ( 4 i 4 3 1  xlg  1 + -  - - ~  ( k[4p + 3B( 1 - a)]  - 4p [k - B( 1 - a)]  (r/a)3 

These expressions, which are shown by the curves labelled n=O in figures 1-5, 
present the solution for the stresses in the frozen shell on the assumption of ideal elastic 
behaviour. The values used for the elastic constants are those found by Gold (1958)  
for polycrystalline ice at - 5 'C. Several points are worthy of special comment. 

(i) P(t)-+co as 4-0. This is expected since the inner radius of curvature of the shell 
then approaches zero. 

O 
Froct ion o f  freezinq t i m e  (t / t ,)  

Figure 1. Calculated pressures as a function of time and interfacial position for various 
values of the viscoelastic parameter n. The curve (---) is calculated for a rigid 
shell, and the elastic shell is described by n=O. 
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Figure 2. Variation of rrr with radial position in a frozen droplet. The elastic curve is 
given by N = 0. 
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Figure 3. Variation of roe with radial position in a frozen droplet. The elastic curve is 
given by N = 0. 
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3.0 '1 n.0 
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S h e l l  t h i c k n e s s  ( I - < / u )  

Figure 4. 766 on the surface as a function of shell thickness, for the elastic case. 

In t e r f ac i a l  p o s i t i o n  (</a)  
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F r a c t i o n  o f  f r e e z i n g  t i m e  ( I / $ )  

Figure 5. 788 on the surface as a function of time and interfacial position. 

(ii) By taking limits as either k or p tends to zero in equation (25) for the pressure, 
we can associate each term with a particular mechanical property of the ice. In this 
way, the first term corresponds to the pressure build-up if the shell were rigid. The 
second and third terms correspond to elastic movement of the shell in response to the 
pressure rise, the second being associated with compression, and the third with shearing 
of the ice. 

(iii) On the inner boundary both lrir and 7 0 0  are compressive and equal to the pres- 
sure. This is expected since the innermost layer has just grown in equilibrium with that 
pressure. Both become less compressive towards the outer surface, 'Trr decreasing to 
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zero and 706 becoming tensile. Consequently the shearing stress is zero on the inner 
boundary and a maximum on the outer. This is in direct contrast to the Lam6 treatment, 
where both 7 8 8  and the shearing stresses are a maximum on the inner boundary. Conse- 
quently, we would expect cracks to nucleate on the outer boundary, but not necessarily 
to propagate right through to the inner boundary, since roo is compressive there. 

(iv) Figure 4 shows 788 on the surface as the interface moves in. It rises fairly rapidly, 
and then levels out as the shell becomes thicker, the compressional stresses on the inside 
having little effect near the surface. 

3. Viscoelastic shell 

There is ample experimental evidence that ice creeps appreciably, especially above 
-20 "C (Jones and Glen 1969, Mellor and Testa 1969, Barnes et a1 1971), so that any 
realistic treatment ought to incorporate the effects of this creep. In very broad terms, 
incorporating creep into an elastic problem effectively makes the shear modulus p 
smaller, and we have seen that this could affect the pressure build-up considerably. 

For polycrystalline ice under a wide range of stresses, the general behaviour is 
described by the relation (Barnes et al 1971) 

<cc [sinh (/3u)]~ exp (- H/kT)  

where C is the secondary creep rate in shear, U the shearing stress, H the activation energy 
for the process, and /3 a constant. For stresses below 30 bar, this expression reduces to 

2cc u' exp (- H/kT) .  

The exponent v has been found by various workers to take values lying between 1 and 4 
(Jeilinek and Brill 1956, Glen 1955). If, as a first approximation, v is taken as 1, then 
the deformation corresponds to newtonian viscous flow, with the exponential describing 
a temperature-dependent viscosity. If the elastic strains are included as well, then the 
material is known as viscoelastic and the theory developed for the behaviour of such 
materials can be used. It is only for the case v =  1 that the theory is linear and relatively 
simple. A solution of the nonlinear problem represented by cases with v >  1 is beyond 
the scope of our present study. 

The differential equations describing the behaviour of a spherical shell of viscoelastic 
material are as follows. The condition for stress equilibrium remains unchanged as 

as do the defining equations for the strains 

Equations (29) are limited to strains of up to a few per cent, so that useful application 
can only be made under these limitations. 

In ice, as in most materials, the permanent changes in volume are negligible in 
comparison with the elastic ones, so that an incompressibility condition can be imposed 
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on the viscous strains, and therefore 

where k is the elastic modulus of compression. Finally we have the flow law 

where 7 is the effective viscosity. 

strain for a viscoelastic material which can be written as 
This equation is a particular form of the generalized relationship between stress and 

Pe(t)= Qu( t )  

where P and Q are differential operators in time, and E and U are the shearing strains 
and stresses respectively. The particular equation above refers to a maxwellian material 
where the total strain is the sum of elastic and viscous components. A higher-order 
model using Maxwell and Voigt units in combination may be necessary properly to 
represent ice at very high strain rates, but in the present situation a simple Maxwell 
unit is adequate. Equations (28)-(3 1) along with the boundary conditions generalized 
from (1 7) as 

T r y  (a, t )  =o  
T r r  ( E ( t ) >  = -P(iXt)) 

form a set of partial differential equations for the stress and strain fields. Comparison 
with equations (6)-(9) for the elastic case shows they are identical, except for equation 
(31) which is a generalized form of equation (8). 

This similarity in the differential equations is normally utilized to obtain a corres- 
pondence solution to the viscoelastic problem from the previously solved elastic one. 
Equations (8) and (31) are of the same form if p is treated as a differential operator in 
time-ie 

Since there then exists a correspondence between the differential equations, and the 
boundary and initial conditions are the same, there must be a correspondence between 
the solutions. Accordingly, the viscoelastic solution is ordinarily obtained by replacing 
p-1 in the elastic solution with 

and integrating with respect to time from the initial conditions. Provided manipulations 
of the elastic constants have corresponding permitted manipulations of the operators, 
the solution so obtained is a valid one. 

This method cannot be used in the present problem however. In obtaining the elastic 
solution, the integration with respect to 6 (effectively one in time) was carried out treating 
p as a constant. This integration consequently has an illegal counterpart in the visco- 
elastic case when p is a differential operator in  time, and the correspondence between the 
solutions is lost. 
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Since spatial integrations can be carried out independently of time ones, the corres- 
pondence principle can still be used to obtain solutions to the modified Navier equation. 
In fact, correspondence results could be obtained from any step prior to the first inte- 
gration in 5. From the elastic solution (11) we had 

so that the corresponding viscoelastic result is 

where the functions f and g depend on t because of the moving boundary. Again, it is 
the derivatives which are required, and we obtain 

The treatment runs parallel to that of the elastic problem. Using the boundary condi- 
tions 

and 

we obtain the differential equation for g( t ) :  

d t  
dg + 3K [ (1 + :;) - (1 - ") "1 -' g (t) = - 3Ba E2 
dt  477 k a3 

whereK=B(l-a). 
At this point, it should be noted that [ ( t )  is an unknown function of time-a diffi- 

culty that was avoided in the elastic problem by making 5 the independent variable. 
From equation (l), 5 is given by 

where t(t) is the solution to the uncoupled thermal problem-ie the position of the inter- 
face as determined by heat transfer and ignoring the effects of the pressure build-up. 
Although there is no closed-form solution to this problem (Langford 1967), useful 
approximations can be made when ice is the shell material because of its relatively high 
ratio of latent to  specific heats (Plooster 1971) and the solution normally used (Johnson 
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and Hallett 1968) is 

where tf is the freezing time of the droplet and is given by 

pLa'(1- ATc/L) tf = 
3mKAT 

where p is the density of water, L the latent heat of fusion, AT the supercooling, c the 
specific heat of water, K the thermal conductivity of the environment, and m an enhance- 
ment factor which incorporates the heat transferred due to convection. 

If we use this expression, equations (39) and (40) form a dual set of nonlinear integro- 
differential equations for f ( t )  and g(t) .  Rather than attempt to solve this complex prob- 
lem, we have assumed that, in any time interval, the shell displacements are much less 
than the inward growth, so that to a sufficient approximation we can write 

f ( t )  =a (1 - t / t p .  (43) 
The appropriate solution to equation (39) is then given by 

and 
3 ~ k t r  n=- 

4 d k  - 4 
and is thus the ratio of freezing to viscous relaxation times for the shell, 

Using this expression for g ( t )  gives 

where + = t/tp. If n is an integer, the integral in (47) can be evaluated in an analytic 
form, but it must be evaluated numerically for non-integral n. In the limit as n tends to 
zero, the elastic solution is obtained, and as n tends to infinity, ie the material has zero 
viscosity, there is no pressure increase. 

These results are shown in figure 1. All curves for which the viscous flow is signi- 
ficant ( n 2 4 )  have certain features in common: they rise slowly to a value determined 
by n, maintain this value until freezing is complete, and then rise very sharply. This 
general behaviour can be divided into three stages: a primary stage in which the shell is 
thin and essentially still elastic; a secondary stage during which the shell is thicker yet 
flowing quite easily under the shearing stresses-this is the rCgime in which the pressure 
remains fairly constant; and a tertiary stage towards the end of freezing when the inter- 
face moves very rapidly and the thick shell is incapable of appreciable distortion. 

The stresses in the shell are given by 

{[l + y  (1 -r3/a3>]-"- [l +rt/tf]-"} kBa 1 1 1 
k--K (a3-.5) n w ( r ,  t )  = -P(r )  + ___ 

ro0(r, t ) = - P ( r ) +  ( [ 1 + y ( 1 - r 3 / a 3 ) ] - f i - [ l + : ~ t / t f ] - ~ } .  (49) 
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These expressions take the form shown in figures 2 and 3 for different values of 11. 

roo has its maximum tensile value on the outer surface, where it is given by 

1 *5 Bolk 
(k - K ) n  

roda, t ) =  [ I  -(1 +yt/t f)-"].  

As can be seen from figure 5, it is characterized by a fairly sharp rise at the elastic rate, 
then a levelling out to a value determined by ri. 

4. Experiments 

The measurements of Visagie (1969) on pressures inside freezing 7 mm drops showed that 
pressures in excess of 70 bar could be expected. His measurements entailed observing, 
under a microscope, the deflections of a fine silica U-tube. 

For the present set of experiments, a Kulite pressure transducer type YQCS-250-1000 
was chosen as the sensor, since it was capable of yielding a continuous record of the 
pressure curves. This subminiature device consists of a Wheatstone bridge bonded on 
to a silicon diaphragm, and has an output of 1 mV V-l bar-1 in the range 0-140 bar. 
The sensor was filled with paraffin oil and had a volume of 33 mm3. The presence of 
the measuring instrument can obviously have a large effect on the measured pressure, 
especially towards the completion of freezing when the instrument dead-space volume 
is approximately equal to that of the unfrozen liquid. Fortunately, the theory can be 
modified quite simply to incorporate these effects, and is given in the appendix. 

Initially a fine silica tube was cemented to the end of the stainless steel sensor to 
minimize the asymmetry in heat transfer. This was later replaced by a thin-walled stain- 
less steel tube as the silica tended to  be broken quite easily. The tube was 0.7 mm in 
outside diameter with a wall thickness of 0.1 mm. Calculations show that less than 
0.1 % of the droplet heat is lost through the tube, so the asymmetry introduced should 
be negligible. In addition, there was no observable difference in general behaviour 
for the two types of probes. The bond between the ice and stainless steel was sufficiently 
good to make it quite difficult to separate the frozen droplet and the probe. 

Large drops, usually 1 cm in diameter, were placed at the interface between large 
volumes of carbon tetrachloride and paraffin oil inside a temperature-controlled chamber. 
The drop was located using a fine wire ring supported on a silica rod and the sensor 
was lowered until it was central to the drop. The chamber temperature was lowered 
to the desired level, and the assumbly left until the drop self-nucleated, the event being 
marked by a rise in temperature as recorded by a thermocouple placed near the drop. 
The water used was distilled, de-ionized (resistivity greater than 5 x lo4 C2 m) and vacuum 
degassed, although the purity and gas content were essentially determined by those of 
the supporting liquids. 

5. Results 

A typical curve for a 1 cm diameter drop freezing at -5  "C is shown in figure 6. It 
shows a calm period after nucleation during which a solid shell forms, followed by a 
slow build-up of pressure normally associated with the growth of a spike or bulge. 
These protuberances did not appear to influence subsequent pressure development, 
since the highest pressure recorded (89 bar) occurred in a droplet with a spike two 
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Figure 6. A typical pressure-time record for a drop in diameter 1.1 cm in 
temperature - 5 "C. 
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Figure 7. Plot of pressure against Ig (1 + V'/a3- t / t f )  for 3 drops: 
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0 5.0 5.9 2250 
+ 6.2 8.3 1560 
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diameters long. This period is followed by one of generally rising pressure broken by 
up to 50 discontinuities, of which only a small fraction actually decreased to zero, so 
that not all cracks actually penetrate the shell completely. 

After a crack occurs, the record shows that the pressure rises very rapidly back to 
the value it had previously attained, a feature that analysis shows would be expected 
for a maxwellian viscoelastic material. Such a material behaves elastically when stresses 
are applied suddenly, and only exhibits appreciable viscous flow after the stresses have 
been acting for some time. Consequently, if the stresses in the shell are relieved or 
partly relieved by a crack, then the pressure will increase at a rate appropriate to an 
elastic material, and does so until the stresses once again reach the same values they were 
before the crack occurred. 

If one assumes that the envelope represents the pressure development in the absence 
of cracks, then it should follow the result derived in the appendix, which incorporates 
the effect of the instrument. Accordingly a plot of P against Ig (1 + V'/a3- t/tf) should 
be a straight line with a slope of 4pkBa [K  (4p-k 3k) (1 +y)"+l]-l, particularly near the 
completion at freezing. 

The results for three droplets freezing in different conditions are shown in figure 7 
yielding values for n of 5-9, 5.3, and 3.6. Using these values of n and equation (46), 
we obtain values for the effective viscosity 7 of 5.3 x 1011, 7.8 x 1011, and 6.6 x 1011 
N m-2 s. 

These values can be compared with the creep measurements of Barnes et aZ(1971). 
If we define the effective viscosity in this case by 7 =applied stress/creep rate, then their 
measurements yield an effective viscosity of 2.8 x 1010 N m-2 s at  an applied stress of 
10 bar, and 1.4 x 1014 N m-2 s at 1 bar. The stress in our experiment is of the order of 
10 bar, so the effective viscosity is within an order of magnitude of the macroscopic 
value, which is all that can be expected in view of the linear approximation made in the 
theory. 

The assumption of a linear dependence of strain rate on stress is also responsible for 
the high predicted values of surface stress. Figure 4 shows that, for values of n between 
3 and 5, the theory predicts 708 (a) to have the value of 600 bar. In view of the fact that 
the ultimate tensile strength of ice is approximately 20 bar over a wide range of strain 
rates (Hawkes and Mellor 1972), the discrepancy between the actual and predicted 
stress distributions is considerable. If the strain rate depended on a higher power of 
the stress, however, much lower stresses would be sufficient to give appreciable strain 
rates. 

Droplets that froze when the chamber temperature was warmer than - 2.8 "C exhib- 
ited no appreciable pressure increase. Under these conditions, equation (38) shows 
that the strain rate is approximately given by 

--LY d( 
(1 -a) U dt' 

E =  

For the droplets considered, this corresponds to a strain rate of approximately 10-5 s-1. 
Using the experimental creep data of Barnes et a1 (1971) we find that this strain rate 
requires an applied stress of 20 bar. Since it is difficult to reconcile a stress of 20 bar 
in the shell with zero pressure in the core, it appears that even nonlinear secondary 
creep rates cannot be used to explain this aspect. It would appear then that transient 
creep processes are also important, and should be incorporated in any treatment which 
attempts to  predict realistic stress distributions. 

About 20% of the droplets measured contained a residual pressure of typically 
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10-20 bar at the completion of freezing. This pressure decayed with a time constant 
of about 200 s, and it is tempting to ascribe this decay to viscous relaxation of the frozen 
droplet; but a simple analysis shows that the time constant for this process is too large 
by four orders of magnitude. It is also unlikely that it can be attributed to the sensor 
oil leaking out through a microcrack, since for a time constant of 200 s it has to be 
1 pm wide, and it is difficult to envisage conditions under which cracks of these dimen- 
sions could form without resealing. 

We attribute this decay to the decrease in temperature of the drop after freezing 
is complete. During the freezing process, the temperature of the liquid core remains 
close to 0 "C, decreasing to the chamber temperature only after the droplet has com- 
pletely frozen. The relative difference in thermal expansion between paraffin oil and ice 
would then serve to reduce the pressure. Calculations show that this would lead to a 
decrease of 9 bar K-1. Comparison of the decay curves with the temperature as moni- 
tored near the surface of the drop yielded an average decay rate of 5 bar K-1. Since the 
temperature at the centre of the drop will lag behind that on the surface, the agreement 
is reasonable. 

6. Conclusions 

It is clear that the theory predicts experimental pressure developments reasonably well. 
The stress distribution is not so realistic, but it could be improved by taking a nonlinear 
flow law, and by incorporating the effects of transient creep. Any such treatment must 
still retain the elastic strains since these are important during the initial stages of freezing 
and in the processes following the occurrence of a crack. A treatment incorporating these 
effects is essential before one can use the theory to predict quantitatively the cracking 
behaviour of cloud-size droplets, for, without a reliable stress distribution, one has no 
effective criterion for determining the onset of cracking. Despite these difficulties, we 
can, however, make certain general statements about the likelihood of shattering under 
different conditions. 

Equations (42) and (46) show that for cloud-size droplets in the size range 50-500 pm 
and freezing between 0" and -20 "C, the parameter M can vary over three orders of 
magnitude. Within this broad range, we can say that the large drops freezing at  warmer 
temperatures will exhibit appreciable viscous flow, and the smaller ones freezing at 
cooler temperatures will exhibit more elastic behaviour and crack more often. Between 
these two extremes, there is probably a size and temperature range in which sufficient 
elastic energy is stored in the shell to shatter it violently, but the theory is unable to 
predict these important ranges. The presence of dissolved gases in the water would have 
little overall effect on this picture, as their incorporation as bubbles in the ice shell 
would tend to have a uniform weakening effect. 

The numerous discontinuities in the pressure curves indicate that large-scale move- 
ments of the ice shell occur many times during the freezing of a droplet, and these 
could be a source of ice particles even when the droplet does not shatter. Careful experi- 
ments would be needed to examine this possibility, as these particles would probably 
be micron-sized, and their detection requires special experimental techniques. 

Realistic predictions of the cracking activity of cloud-size droplets will therefore 
require a more refined theory and more detailed experimental investigations on the size 
and temperature dependence of this activity. 
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Appendix. The effect of instrument volume on measured pressures 

Suppose that the instrument is filled with oil of volume VO and bulk modulus Bo, and 
that the measurement of pressure occurs at a time when the volume of the liquid core 
is VW. If the volume of the liquid core is changed by SVW, then the increase in pressure 
S P is given by 

B6 Vw 
Vw + BVo/Bo 

SP= - 

Equation (38)  can then be modified to 

where V'=3BV0/4nBo. In proceeding along the same lines as before, we obtain the 
differential equation 

for which the solution is 

[1-(1(1-$)2+~(l-$)+q -n/z  (21(1-+)+~+A) (21+~-A) -sn/2* 
(A41 

l+s+q ) ((21(1 L$)+s-A) (21+iFA) 1 S( t )=n  

where $=t / t f ,  h = k B a 3 / ( k - ~ ) ,  I =  1 - ~ / k ,  q= V'/u3, s= V'/u3-1-3~/4p,  and 
A = (32  - 41q)1/2. 

For the droplets considered, V'/a3<0.1, so that the approximation A = s  can be 
made, and then g ( t )  reduces to 

U3 (411. + 3 K )  

kBaa3 
g(t)= - -  - [ 1 -(1 + y t / t p  (1 - (k - K)n 

Comparison with equation (44) shows that g ( t )  is only slightly reduced. This result 
could have been anticipated, since the problem is such that g( t )  is determined by the 
processes at the commencement of freezing when the effects of the measuring instrument 
are only slight. 

Using this expression for g( t )  gives 

(A71 4pkBa d+ 
K (3k+4p) ('-a3 (4p.3~) 4pv' 1: (1 +y+)"+l (1 + V'iu3-4)' 

P= 

The factor { 1 - 4pV'/[u3 (4p + 3K)]}-"/' is small, giving a correction of less than 20 % 
for n < 10. It is very sensitive to changes in n compared with the factor (1 +y$)-"-l 
and was neglected in analysing the data. 



Pressures and stresses in freezing water drops 2173 

The integral is such that the major contribution to it comes from the last stages of 
freezing as 4 -+ 1, where it can be approximated by (1 + y)-n-l lg (1 + V’/a3 - 4) and this 
is the relationship used in analysing the data. 
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