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The didjeridu �didgeridoo� or yidaki of the Australian Aboriginal people consists of the narrow trunk
of a small Eucalypt tree that has been hollowed out by the action of termites, cut to a length of about
1.5 m, smoothed, and decorated. It is lip-blown like a trumpet and produces a simple drone in the
frequency range 55 to 80 Hz. Interest arises from the fact that a skilled player can make a very wide
variety of sounds with formants rather like those of human vowels, and can also produce additional
complex sounds by adding vocalization. An outline is given of the way in which the whole system
can be analyzed using the harmonic-balance technique, but a simpler approach with lip motion
assumed shows easily that upper harmonics of the drone with frequencies lying close to impedance
maxima of the vocal tract are suppressed, so that formant bands appear near impedance minima of
the vocal tract. This agrees with experimental findings. Simultaneous vibration of the player’s lips
and vocal folds is shown to generate multiple sum and difference tones, and can be used to produce
subharmonics of the drone. A brief discussion is given of player preference of particular bore
profiles. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2146090�

PACS number�s�: 43.75.Fg, 43.70.Aj, 43.75.Rs, 43.72.Ct �DD� Pages: 1205–1213
I. INTRODUCTION

The Aboriginal peoples of Australia have lived in com-
parative isolation in this continent for something in excess of
40 000 years. They are divided into many nomadic tribes,
each living in traditional lands and each speaking a different
language but with many common customs. These people
have developed several devices that have attracted wide at-
tention, the best known being the boomerang, which returns
to the hands of the thrower after quite a long circular flight,
and the didjeridu, usually spelled “didgeridoo” in nonaca-
demic literature. They have also developed a version of the
“bullroarer” that is similar to that found in many other an-
cient cultures, and discovered how to imitate bird songs and
other sounds using a “gum-leaf” from a Eucalypt tree
pressed against the lips.1

Lip-blown wind instruments are common in many an-
cient cultures, their form depending upon availability of
simple tube-like or conical structures to define the air col-
umn. Conch shells, for example, have been popular, as also
have been tubes derived from the hollow stems of bamboo.
The didjeridu was developed by the Yolngu tribes whose
traditional lands are in what is now known as Arnhem Land,
to the east of the modern city of Darwin on the central north-
ern coastline of Australia. In the tribal language the instru-
ment is called a yidaki or yiraki. In comparatively recent
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times its manufacture has spread to most Aboriginal craft
communities and thence to many modern makers in other
countries. Quite apart from its traditional use for the accom-
paniment of songs and ceremonies,2,3 the didjeridu has also
become widely used in “contemporary” music bands.4

The didjeridu is a simple wooden tube, typically about
1.5 m in length but sometimes made shorter, particularly in
Central Australia. The tube is derived from the action of
termites, which are common in Arnhem Land and which eat
out the dry wood at the core of living Eucalypts, which is the
major tree genus in Australia. Some species have quite nar-
row trunks, and the extent of termite damage can be assessed
by knocking on the trunk with a heavy stick. When an ad-
equately eaten trunk is found, the tree is cut down, tradition-
ally using a sharpened stone, and a suitable section is cut
from near its base. The termites leave a honeycomb-like gal-
leried structure that can be cleaned out with a long stick and
the inside of the tube rubbed to moderate smoothness, a pro-
cess that is possible because of the growth rings in the wood.
Some work with a sharp stone may be necessary at the two
ends to give a smooth termination. The bark is stripped from
the outside of the tube and it is then smoothed and usually
painted with traditional tribal or family totem designs, using
brown, black, and white pigments made from soil, charcoal,
and minerals held together with plant gums. Finally, the
smaller blowing end of the tube is smoothed for the player’s
lips by application of a ring of beeswax.

The sound of the didjeridu is a low-pitched drone with

frequency usually about 70 Hz, maintained for minutes at a
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time by the technique of “circular breathing” in which the
cheeks are blown out to hold enough air to maintain sound
production, the soft palate is momentarily closed, and there
is a quick intake of breath through the nose. This technique is
not unique to the didjeridu but has been used by traditional
Indonesian flute players, and is now common among profes-
sional orchestral players of some woodwind instruments. The
drone sound is normally modified by introducing emphasized
frequency bands, known as formants by analogy with human
vowel sound spectra, through change in the configuration of
the upper vocal tract. These formants are usually introduced
in a rhythmic manner to produce a musical pattern. Occa-
sional accents are also introduced by momentary leaps to the
second mode of the air column, at a frequency between about
2.5 and 3 times the drone frequency, depending upon the
shape of the instrument bore. Finally, while maintaining the
lip vibration, the player may also occasionally vibrate his
vocal folds as in singing to produce additional sounds or
even subharmonics of the drone. These techniques are often
used to imitate the sounds made by native animals or to
illustrate the text of a song or story.

The acoustics of the didjeridu tube is essentially trivial,
since it consists of a tube of defined though irregular geom-
etry with enhanced wall losses because of roughness and
porosity. Details of these parameters determine the distinc-
tion between an instrument considered “good” by the player
and one regarded as “poor,”5–7 as will be discussed later.
Interest however centers upon the coupling of the vocal tract
to the instrument and on the vibration of the player’s lips.
There has been rather little investigation of these problems,
except for work by Fletcher,8,9 Wiggins,10 Hollenberg,11 and
members of the present project team.12

The purpose of the present paper is to give a formal
analysis of the acoustics of the played didjeridu, including
the important contributions of the player’s lungs and vocal
tract. Some consideration will also be given to the effect of
vocalizing while playing. Only brief mention will be given
here of experimental studies by our project team in order to
provide a comparison with calculated results. Detailed dis-
cussion of the measurements and experiments conducted is
given in a companion paper,13 and a brief discussion of re-
lated experimental results has recently been published.14

II. ANALOG NETWORK MODEL

Analysis of the acoustic behavior of the entire system
consisting of lungs, glottis, vocal tract, lips, and didjeridu
tube is most conveniently carried out using an electrical net-
work analog,15–17 in which voltage represents acoustic pres-
sure and current represents acoustic volume flow. Since the
whole system is very complicated, it is helpful to treat it in
sections, beginning with the lungs.

A. Lung impedance

The lung is a complex quasifractal structure of branch-
ing tubules.18–20 In a simplified version, starting just below
the vocal folds the main tube branches into two bronchi
which continue to branch into pairs of tubules through 16

orders. After 16 orders of branching the tubules are termi-
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nated by about 65 000 small alveolar sacs which contribute
most of the stored air volume. There are, of course, several
spatial constraints to be obeyed by this structure so that the
tubules and finally the alveolar sacs can fit within the overall
volume occupied by the lungs in the body. The whole struc-
ture is somewhat elastic, and the pressure inside it is main-
tained by muscle tension on walls of quite large total mass.

As a simple model for the lungs that is a good approxi-
mation to reality, we take the tubule diameter ratio after
branching to be 0.8, rather than the idealized value of 2−1/2,
and take the tubule length ratio also to be 0.8. This allows the
geometrical packing constraints to be satisfied and gives a
total tubule volume of about 1 liter, leaving the remaining
3 liters of lung capacity to be provided by the alveolar sacs.
It is straightforward to calculate the acoustic input imped-
ance for this idealized model, and the results are shown in
Fig. 1. Over the range of interest for the vibration of the lips,
near 70 Hz, the impedance is almost purely resistive and
about equal to the characteristic impedance of the bronchus,
2�106 Pa s m−3, and the same is true in the range from
about 0.5 to 3 kHz that is of interest for the vocal-tract reso-
nances leading to sound formants.

As a consequence of this analysis, it is a good approxi-
mation to represent the lungs in the network model as shown
in Fig. 2�a�. Muscular pressure on the lungs is represented by
a dc voltage source in series with a very large inductance
representing the mass load �inertance� of the associated mus-
cular tissue. The acoustic compliance of the air volume in the
alveolar sacs is represented by a simple capacitance, while
the impedance of the network of tubules contributes a simple
resistance with magnitude about equal to the characteristic
impedance of an infinite tube of diameter equal to that of the
subglottal bronchus. Such a model reproduces the behavior

FIG. 1. Calculated input impedance just below the vocal folds for the ide-
alized lung model �a� over an extended frequency range, and �b� over the
range of interest for the lip vibrations. The characteristic impedance of the
bronchus is about 2 MPa s m−3.
shown in Fig. 1.
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Above the junction of the two bronchi, we find the con-
striction of the vocal folds. Since these folds are inactive
during normal playing, the larynx constriction can be repre-
sented in the model by a simple series inductance, as shown.
It appears that skilled players on most wind instruments
partly close �adduct� their vocal folds so that the area of the
remaining aperture is small, a feature first noted and exam-
ined in detail by Mukai.21,22 This provides a significant series
inertance between the upper vocal tract and the lungs and
serves to isolate the upper-tract resonances to a large extent
from the damping influence of the resistive lung impedance.
For typically adducted vocal folds, the opening is about 2
�10 mm and the effective fold thickness, including end cor-
rections, perhaps 5 mm, giving an acoustic inertance at fre-
quency � of about 300� Pa s m−3, which is about
2–6 MPa s m−3 in the frequency range 1–3 kHz that is of
interest for formants. This must be compared with character-
istic impedance �c /S�1 MPa s m−3 of the trachea and the
estimated subglottal lung impedance, illustrated in Fig. 1,
which is nearly purely resistive and about 2 MPa s m−3 in
magnitude. It is therefore evident that the vocal folds can
have a significant effect on the resonances of the vocal tract
provided they are well adducted.

B. Vocal-tract impedance

Above the vocal folds, which have already been dis-
cussed, the trachea is a nearly uniform tube of diameter
about 20 mm until it reaches the glottis, above which the
geometry is complicated by the movable lower jaw and
tongue. Magnetic resonance imaging �MRI� studies12 of one

FIG. 2. �a� Electrical network representing the lungs, glottis, and vocal tract
of the didjeridu player. �b� Simplified network representing the entire
didjeridu+player system. �c� Further simplified network used for calcula-
tion. �d� Simple model used for the vocal tract impedance ZV.
of us �LH� while playing on a modified didjeridu provide
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some numerical values for the geometrical parameters for
both the “uninflected drone” �low tongue� and “high for-
mant” �high tongue� configurations. As will be seen from the
analysis to follow, the acoustical quantity of importance in
determining the spectral envelope of the didjeridu sound is
the frequency dependence of the input impedance ZV of the
vocal tract at the lips, as shown in Fig. 2�b�. This quantity,
measured by a modification of an impedance head developed
by our group,23,24 is discussed in detail in the companion
experimental paper.13 In the low-tongue position, the mouth
simply extends the trachea into a uniform tube up to the lips,
giving a rather low value for ZV. In the high-tongue configu-
ration, normally used to produce sounds with pronounced
formants, the tongue is raised along its whole length and
brought close to the teeth, so that it forms a narrow passage
of effective diameter about 10 mm from the root of the
tongue up to the lips. By changing the position of the lower
jaw and tongue, it is also possible to convert this passage
from almost cylindrical to nearly conical, with obvious influ-
ence upon the tract resonances, while the narrow duct diam-
eter near the lips greatly increases the value of ZV. This effect
has been briefly described, both for the didjeridu and for
other wind instruments, in a recent conference publication.25

A detailed model for the impedance ZV of the whole
vocal tract at the lips can be built up using the analog net-
work shown in Fig. 2�a�, the variations in the geometry of
the upper vocal tract being detailed through the coefficients
Zij

V���. In the analysis to follow, however, a very simplified
model will be used for the vocal-tract impedance, as shown
in Fig. 2�d�. This consists of two series-resonant LRC cir-
cuits in parallel, representing the resonances of the upper
vocal tract, the characteristic impedance �L /C�1/2 of these
circuits being chosen to match the expected impedance of the
vocal tract for the high-tongue configuration, and with a fur-
ther parallel LR branch representing the impedance of the
glottal constriction and the lungs.

C. Didjeridu impedance

The acoustic properties of the didjeridu can be described
by four impedance coefficients Zij

D���, the values of which
can be calculated from the measured dimensions of the tube
and the estimated roughness of the walls. Most genuine did-
jeridu tubes flare progressively along their length so that
their shape is roughly that of a truncated cone. For such a
tube, ideally open at end 2, the impedance maxima at the
mouth occur at frequencies �n such that

knL� = n� − arctan� knd1L�

d2 − d1
� , �1�

where kn=�n /c, c is the speed of sound in air, d1 is the tube
diameter at the blowing end, d2 is the larger diameter at the
open end, L is the tube length, and L��L+0.3d2 is the ef-
fective tube length including the open-end correction.9 For
a cylindrical tube with d2=d1, the mode frequencies �n

given by �1� follow a sequence 1,3,5,… times �c /2L�,
while for a complete cone of the same length the sequence
is 2,4,6,… times �c /2L�. For an intermediate geometry of

small flare, the mode frequencies are given by

Fletcher et al.: The didjeridu and the vocal tract 1207



�n � �n −
1

2
� �c

2L�
�1 + 	1 +

4�d2 − d1�
�2d1�n − �1/2��2
1/2� . �2�

These frequencies lie between those of the limiting se-
quences mentioned above for cylindrical and for conical
tubes of the same length, and thus might be described as a
“stretched quasiharmonic sequence.” A real didjeridu tube,
being a natural object hollowed out from a tree trunk by
termites, does not have quite this regular form, though the
behavior of its lower modes is generally well approximated
by the flared-tube relation �2�.

Experimental values for the impedance coefficients
Zij

D��� can be obtained by measuring the input impedance of
the tube from each end with the opposite end either open or
closed, in separate measurements, or can be calculated if the
geometry is assumed to be regular. If the shape of the bore of
the didjeridu is assumed to be a uniform cylinder of length L,
as it may be in some laboratory experiments using plastic
pipe, then the impedance coefficients have the simple forms

Z11
D = Z22

D = − jZ0 cot kL

�3�
Z12

D = Z21
D = − jZ0 csc kL ,

where Z0=4�c /�d2 is the characteristic impedance of the
tube, assumed to have diameter d, and k�� /c− j�. The
quantity � allows for viscous and thermal losses to the tube
walls according to the relation

� � 10−5�
�1/2

d
, �4�

in SI units. The numerical parameter � is about 2.4 for per-
fectly smooth walls, but may become much larger than this
for the rough walls characteristic of a naturally produced
didjeridu.

If, as is typical of genuine instruments, the bore has
nearly the shape of a flaring truncated cone with diameter d1

at the blowing end and diameter d2 at the open end, then the
impedance coefficients have the more complicated forms26,27

Z11
D = −

4j�c

�d1
2 	 sin�kL + �2�sin �1

sin�kL + �2 − �1� 

Z22

D = +
4j�c

�d2
2 	 sin�kL − �1�sin �2

sin�kL + �2 − �1� 
 �5�

Z12
D = Z21

D = −
4j�c

�d1d2
	 sin �1 sin �2

sin�kL + �2 − �1�
 ,

where �1=arctan kx1 and �2=arctan kx2, with x1 and x2 being
the axial distances of the ends 1 and 2 from the apex of the
cone. Related expressions can also be derived for the input
impedance ZD when the bore is terminated by a given
impedance,27 in the present case the radiation impedance ZR.
These coefficients Zij

D must of course include the real parts
due to viscous and thermal losses at the tube walls, as de-
tailed in �4�. If d2 is the diameter and A2 the area of the open
end, then the radiation impedance is also a complex quantity

17
which has the approximate form
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ZR � 7 � 10−4�2 + 0.5j
�

d2
if kd2 � 1

�
�c

A2
�

500

d2
2 if kd2 	 1 �6�

in SI units.

III. LIP-VALVE OPERATION

The lip valve is in reality a complex mechanism with
many degrees of freedom. The player’s lips are somewhat
soft and flexible, their geometry is complicated, and they
usually close completely for part of each vibration cycle,
thus introducing very significant nonlinearity. As has been
found with vocal-fold models, construction of any detailed
model of the vibrating lips is a very major undertaking, and
the appropriate model may well differ greatly from one
player to another, or indeed during different types of perfor-
mance by a single player. For these reasons, among others, it
is preferable to develop a model that is as simple as possible,
while still incorporating the major features of a real lip valve.

Experimental studies of players of brass-instruments
players28–31 have shown that the predominant lip motion at
low frequencies can be described as that of “outward-
swinging doors,” or the configuration �
, �� in the notation
of Fletcher,32 where the first symbol indicates the action on
the valve of a steady pressure on the upstream side and the
second symbol the corresponding action of a downstream
pressure. For fundamentals of high frequency, these studies
of trumpet and trombone players show that a better approxi-
mation is that of “sliding doors” with configuration �
, 
�.
Other studies have described the motion in terms of a com-
bination of both types of motion29 and some as surface
waves propagating on the lips. To maintain generality we
shall initially make no assumption about which of these con-
figurations is a more appropriate approximation for the did-
jeridu and write the configuration symbol as ��1 ,�2� where,
in the present case, �1= +1 and �2 may be either +1 or −1
depending upon the lip model adopted.

Our own experimental studies of didjeridu players, de-
scribed in detail in the companion paper,13 show that the lips
are open for only about half of an oscillation cycle, that the
lip opening is typically nearly elliptical, and that both elliptic
diameters expand and contract to some extent together. The
area S of the lip opening thus has approximately the form

S�t� = A�cos �t − cos �, �7�

where A is a constant, 1���2, and the notation �… is
intended to imply that the enclosed expression is set to zero
if it is negative. Here,  /� is the fraction of the period for
which the lip valve is open, and since this is typically about
half of the period for didjeridu players, �� /2, though this
may vary somewhat with playing style. The expression �7� is
usually referred to as a “transparent closure” model of the lip
vibration, for obvious reasons.

While the opening and closing of the lips may not be
exactly symmetrical in practice because of hysteresis effects

in lip contact, we neglect this complication and write
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S�t� = �
0

�

sn cos n�t . �8�

Consideration of �7� for the transparent closure model indi-
cates that we should expect that sn�n−1, but this needs to be
checked by experiment. Stroboscopic measurements on the
lips of a didjeridu player, as shown in Fig. 8 of our experi-
ment paper,13 allow the opening area to be plotted as a func-
tion of time, and from this the coefficients sn can be deter-
mined. To a reasonable approximation, as shown in Fig. 9 of
that paper, it is found that sn=n−2s0, which differs from the
predictions of the transparent closure model. The difference
can be ascribed to a “soft” closure of the lips instead of the
“sharp” closure when they pass through each other in this
unrealistic model. The experimental result will be used in the
calculations to follow, though it is possible that the player
may be able to modify this relation to some extent by chang-
ing the tension in the lip muscles. Indeed, Fig. 9�c� of the
experiment paper shows just such an effect in the “low-
tongue” position, with the amplitude of higher harmonics sn

for n�5 falling in amplitude even more rapidly than n−2.
Since it is not the purpose of this paper to calculate lip

motion in any detail, an outline based upon a transparent
closure model referred to above in which, instead of a real-
istic nonelastic collision between the surfaces of the lips, it is
assumed that each lip executes a sinusoidal motion and ef-
fectively passes through the other lip.11 While this is clearly
unrealistic, the properties of the collision can be adequately
modeled by ascribing an appropriate damping to the motion
of each lip. The outline of this model given below expresses
it in one-dimensional form for simplicity.

Suppose that the upstream pressure is pM and the down-
stream pressure pD, as shown in Fig. 2�b�, and that both act
upon an effective lip area A. Let the lips be identical and
have combined effective mass m and damping �. If z mea-
sures the linear lip opening, then an adequate approximation
to the lip behavior on this model is

m
d2z

dt2 + �
dz

dt
+ m�0

2�z − z0� = A��1pM + �2pD� , �9�

where �0 is the natural frequency of the lip vibration as
determined by their mass and tension. In the swinging-door
case, the parameters m and � should be defined in terms of
moments of inertia and centroid of pressure, but this makes
no basic difference.

Discussion of a simplified version of this problem, in
which the equilibrium opening is great enough that the valve
does not close and the aperture width W is constant rather
than varying in synchronism with the aperture height, has
been given elsewhere.32,33 The conclusion is that the drone
frequency must be a little above the didjeridu resonance in
the case of a �
, �� lip valve and a little below the reso-
nance in the case of a �
, 
� valve. The player is presum-
ably able to adjust the lip motion between these two configu-
rations, as can trumpet players, though the total range of

variation in the case of the didjeridu is only about a semitone
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�6%�. Informal observations of competent didjeridu players
show that they typically raise the drone frequency when
wishing to emphasize formants.

A general approach that properly includes all nonlineari-
ties and treats finite vibration amplitudes is based upon the
“method of slowly varying parameters” described by Bogo-
liubov and Mitropolsky.34 In this approach it is assumed that
the lip oscillation can be described by the expression

z = z0 + a sin��0t + �� , �10�

and that both the amplitude a and the phase � are slowly
varying functions of time in the sense that they change by
only a small amount over one period 2� /�0 of the oscilla-
tion. If �9� is rewritten in the form

d2z

dt2 + �0
2�z − z0� = g�z,

dz

dt
,pM,pD� , �11�

then it can be shown34,35 that

da

dt
�

1

�0
��g cos��0t + ���� �12�

d�

dt
� −

1

a�0
��g sin��0t + ���� , �13�

where the notation ��…�� is to be taken to imply that only
terms varying slowly in time relative to sin �0t are to be
retained. When the system settles into a steady state, the
vibration amplitude a is constant and so too is d� /dt,
implying that the new steady vibration frequency is �0

+d� /dt. The qualitative results are the same as outlined
above for the simple linearized model.

While detailed consideration of lip vibration is clearly
necessary in a complete model for didjeridu sound produc-
tion, creation of such a model is not the purpose of the
present paper. Indeed, it will be sufficient to note that a
model for lip vibration is possible and to specify its predic-
tions by assuming reasonable values for the vibration ampli-
tude and frequency. The frequency, as shown by �13�, de-
pends upon lip tension through the value of �0, upon the
didjeridu and vocal-tract impedances, and upon the nature of
the lip motion as encoded in the parameters �2 and �.

IV. SYSTEM ANALYSIS

In this section two approaches will be explored. The
first, which is potentially able to predict the operation of the
whole system in detail, relies upon the “harmonic-balance”
approach to the behavior of the whole system. Unfortunately
this approach is quite complex and necessarily numerical, so
that the general trend of its conclusions is not readily appar-
ent. The second approach reduces the whole system to the
simplest possible approximation by considering only first-
order terms. While the conclusions derived are certainly not
quantitatively accurate, this approach does show clearly the
general trends and, in particular, the way in which the spec-
trum of the output sound depends upon the vocal-tract pa-
rameters, which is the main purpose of the whole analysis.

In both cases the system to be modeled is that shown in

Fig. 2. Part �a� of this figure gives a model for the player’s
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lungs and vocal tract, while part �b� compresses this into a
simpler system and includes the didjeridu as well. Finally,
part �c� compresses the didjeridu subsystem further to give
the electrical analog network that will be analyzed. The es-
sential feature of this progressive simplification is that both
the vocal tract and the didjeridu itself are ultimately repre-
sented by simple input impedances ZV and ZD, respectively,
on the two sides of the lip valve. The values of these two
quantities can be readily calculated, as has already been dis-
cussed.

A. Harmonic-balance approach

In the harmonic-balance approach36 the procedure is as
follows, after the relevant values of ZV��� and ZD��� have
been evaluated. �i� Assume reasonable values for mouth
pressure pM, lip vibration frequency �0, and lip vibration
amplitude a. Take the pressure pD at the input to the did-
jeridu tube to be zero. �ii� Calculate the volume flow through
the lips as a function of time, using the Bernoulli equation.
�iii� Take the Fourier transform of this flow and use it to
calculate the Fourier components of the pressures pM and pD

in the mouth and didjeridu input. �iv� Convert these pres-
sures back into the time domain, or perhaps simply deal with
the component at the fundamental frequency, which nearly
matches the vibration frequency of the lips. �v� Use this driv-
ing pressure difference to recalculate the frequency and am-
plitude of the lip vibration, using either the “transparent clo-
sure” model, or preferably a more realistic model, for lip
motion and the solution techniques detailed in Sec. III. �vi�
Iterate steps �ii� through �v� until convergence is achieved.
�vii� Calculate the resulting sound power radiation from the
open end of the didjeridu tube.

It is clear that this is a rather complex though straight-
forward computational process, so that no simple general
conclusions can be drawn except by examining behavior in
many particular cases. For this reason such a detailed com-
putation will not be carried out or discussed further at this
time.

B. First-order approximation

Referring to Fig. 2�c�, and denoting the lung pressure by
pL, the mouth pressure by pM, and the input pressure to the
didjeridu by pD, the following equations can be written:

pL − pM = ZVU , �14�

pD = ZDU , �15�

U = 	2�pM − pD�
�


1/2

S�t� , �16�

where ZV is the input impedance of the vocal tract at a posi-
tion just inside the lips and ZD is the input impedance of the
didjeridu just outside the lips, S�t� is the opening area of the
lips, and U is the acoustic volume flow through the lips.

Substituting �14� and �15� in �16� then gives
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U = �2

�
�1/2

�pL − �ZV + ZD�U�1/2S�t�

= �2

�
�1/2

�pL − ZU�1/2S�t� , �17�

where we have written Z�ZV+ZD for convenience. Suppose
now that

U = �
0

�

�un cos n�t + vn sin n�t� . �18�

Recalling the Fourier expansion �8� for S�t� and writing p0

for the steady component of the mouth pressure pM as given
by �14�,

�
n=0

�

�un cos n�t + vn sin n�t�

= �2

�
�1/2	p0 − �

n=1

�

Zn�un cos n�t + vn sin n�t�
1/2

��
m=0

�

sm cos m�t , �19�

where Zn is the value of ZV+ZD at frequency n�. Note that
the introduction of p0 has removed the zeroth-order term
from the summation inside the parentheses because the did-
jeridu tube impedance ZD=0 when �=0. In �19�, since Zn

=Rn+ jXn is a complex quantity, the symbol j must be inter-
preted as an operator meaning “advance the phase by � /2.”

As a reasonable approximation in the case of the did-
jeridu, we might assume that p0	Znun ,Znvn for all n, so that
the factor �p0−��1/2 on the right in �19� can be simply ap-
proximated by p0

1/2�1− �1/2p0���, where in each case � rep-
resents the summation in this factor in �19�. Since typically
s1�s0	sn for all n�1, we can also treat s0, s1, u0, u1, and
v1 as being all of zeroth order, while v0=0 and higher terms
are all of first order or less. Even with this simplification,
however, and limiting consideration to harmonics up to N,
the result is an algebraically complicated, though sparse, N
�N matrix equation containing nonzero elements Mij for j
= i and j= i±1.

While this matrix could be solved for a specific case, for
a semiquantitative analysis it is appropriate to simplify �19�
still further by assuming that sn�s0 for all n�0, rather than
just for n�1. This carries with it the additional result that
un ,vn�u0 for all n. Physically this amounts to the assump-
tion that, instead of closing in each cycle, the lips remain
substantially open but vibrate in a nonlinear manner so as to
generate all the terms sn with magnitudes approximately pro-
portional to 1/n2. Selection of terms in cos n�t and sin n�t
in Eq. �19� then leads to the simpler results

un��2p0��1/2 + s0Rn� + s0Xnvn = 2p0sn

�20�
vn��2p0��1/2 + s0Rn� = s0Xnun,
which can be combined to give
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un =
2p0sn��2p0��1/2 + s0Rn�

��2p0��1/2 + s0Rn�2 + s0
2Xn

2 �21�

vn =
2p0s0snXn

��2p0��1/2 + s0Rn�2 + s0
2Xn

2 . �22�

These two equations can be further combined to give the
flow magnitude at frequency n� as

�un
2 + vn

2�1/2 =
2p0sn

���2p0��1/2 + s0Rn�2 + s0
2Xn

2�1/2 , �23�

which can be simply evaluated explicitly.
Since the quantity of interest is not the acoustic flow into

the didjeridu from the lips, but rather the acoustic radiation
from the open end of the tube, it is necessary to calculate the
transfer function involved. Referring to the network analog
shown in Fig. 2�b� and using a new notation with U1�n�
�un+ jvn and U2�n� being the acoustic flow from the tube
into the radiation impedance ZR, we can write

p1�n� = Z11
D U1�n� − Z12

D U2�n� �24�

p2�n� = Z21
D U1�n� − Z22

D U2�n� . �25�

The minus signs in these two equations arise from the fact
that both currents U1 and U2 have been taken to flow clock-
wise, as in Fig. 2�b�, rather than symmetrically with respect
to Zij as is sometimes the convention. At the open end of the
tube pR=ZRU2, so that �25� shows that

U2�n� �
Z21

D

Z22
D + ZR

U1�n� , �26�

and this is the transfer function that is sought. Since normally
ZR�Z22

D , with most of the resistive losses due to wall ef-
fects in the tube and the reactive term easily included as a
simple end correction, this transfer function is approxi-
mately equal to Z21

D /Z22
D , which has maxima at the same

frequencies as does the input impedance at the lip end of
the tube.

The radiated acoustic power at frequency n� is therefore

��n� = RR�n��U2�n�2 = RR�n��	 Z21
D

Z22
D + ZR

U1�n�
2

, �27�

where RR is the resistive component of the radiation imped-
ance ZR as given by �6� and U1�n��un in the previous analy-
sis.

V. PREDICTIONS OF THE MODEL

The implications of this analysis can now be examined.
The simplest case is that in which the didjeridu is a narrow
uniform cylinder, for the impedance coefficients Zij

D for the
tube are then easily expressed, as in �3�, and the radiation
resistance is simply proportional to the square of the fre-
quency, as given by the lower range of �6�. The expression
for the radiated sound power, as given by �27�, can then be
evaluated explicitly once the relation of the drone frequency

to the first resonance of the tube has been specified.
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As a first approximation, the small-signal result �27� can
be used to predict the behavior of formants for such a cylin-
drical didjeridu. The result will not be accurate at low fre-
quencies and applies to the high-tongue case in which the
upper formants are emphasized at the expense of the drone
fundamental. Because the vocal tract is a complex structure,
this will be approximated by assuming that it possesses two
resonant impedance minima above 1000 Hz, in this case at
1500 and 2500 Hz, respectively, these being separated by an
impedance maximum. The tract can therefore be simply
modeled as two series-resonant circuits in parallel, as shown
in Fig. 1�d�, with characteristic impedances appropriate to
the cross section of the constricted upper part of the vocal
tract. The third parallel inpedance represents that of the glot-
tis and lungs. The playing frequency was taken to be half a
semitone �3%� above the fundamental resonance of the tube,
this being fairly characteristic of actual playing in the case of
emphasized formants. The other relevant parameters are
given in Table I.

The results of this calculation are shown in Fig. 3 and
agree very well with high-tongue spectra measured on

TABLE I. Model parameter values �high tongue�.

Didjeridu tube length L 1.3 m
Didjeridu tube diameter d1 40 mm
Loss coeff. for tube � 12
First VT resonance f1 1.5 kHz
Second VT resonance f2 2.5 kHz
Q of VT resonances Q 10
Charact. impedance �L /C�1/2 4 MPa s m−3

Glottal open area 20 mm2

Effective glottal length 5 mm
Blowing pressure in mouth p0 1 kPa
Max. area of lip opening s0 50 mm2

Frequency rel. first resonance 1.03

FIG. 3. �a� Vocal-tract impedance at the lips in units of MPa s m−3, with two
simple resonances at 1.5 and 2.5 kHz, respectively. �b� Computed radiated
spectrum for the case of a cylindrical didjeridu tube with other parameters as
in Table I. Odd harmonics of the drone frequency are shown with solid

circles and even harmonics with open circles.
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skilled players, as shown in Fig. 6 of our experimental
paper,13 which also used a cylindrical-pipe didjeridu. It is
clear that there are two pronounced formants in the radiated
sound spectrum, and that their center frequencies coincide
with those of the two minima in the vocal-tract impedance.
There is also a pronounced minimum at the frequency of the
maximum in the tract impedance, as predicted. There are
other interesting features of the spectrum illustrated in Fig.
3�b�. Odd harmonics of the drone frequency are shown as
filled circles and even harmonics as open circles. In the low-
frequency range, odd harmonics are emphasized because of
the maxima in the transfer function Z22

D /Z12
D close to those

frequencies, but the fact that the drone frequency is a little
above the first resonance means that the odd harmonics move
progressively away from the transfer maxima, while the even
harmonics move to closer matching and are consequently
emphasized. An actual transfer of emphasis takes place at
about 1000 Hz and another one in the reverse direction at
about 3500 Hz. This effect is also clearly seen in experimen-
tal measurements on a cylindrical didjeridu.13 In particular
cases where there is very near coincidence between harmonic
frequencies and tube resonances in a particular spectral re-
gion, this effect may even lead to the production of an em-
phasized formant band of completely different origin.

In the calculation shown in Fig. 3, the playing frequency
was chosen to be 1.03 times the first tube resonance, which is
typical for high-tongue playing. There is in this case no exact
coincidence between an upper harmonic and a tube reso-
nances and therefore no single enhanced harmonic. A very
skilled player can, however, adjust the playing frequency to
produce such a coincidence and therefore a greatly enhanced
amplitude for a particular harmonic, much as is done in the
“throat singing” of Mongolia,37 though this technique is not
used in traditional playing.

A rather similar simplified analysis can be applied to the
case of a didjeridu with a flaring bore, though the algebra is
necessarily a little more complicated. The results are gener-
ally similar to those demonstrated above. Because, however,
the frequencies of the low-frequency tube modes do not have
a simple harmonic relationship, there are no clear frequency
regions in which even or odd harmonics dominates. In addi-
tion, the low harmonics above the fundamental are generally
weaker because their frequencies do not approximate those
of tube resonances.

VI. VOCALIZED SOUNDS

For some of the sounds traditionally made on the did-
jeridu, the player vibrates his vocal folds as in singing, as
well as maintaining the lip vibration. This technique is tradi-
tionally used to represent the cries of animals in a perfor-
mance that is illustrating a particular story or describing a
place. It is important to examine the nature of the resultant
sound.

In the simplest case, the performer plays the drone at
frequency �D and sings a note of rather higher frequency �V.
Each of the vibrating valves modulates the air flow at its

operating frequency, so that it has a form like
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U = A�sin �Dt − x1�sin �Vt − x2 , �28�

where x1 and x2 determine the closing fraction for each valve
and the notation �… is meant to imply, as before, that only
positive values of the quantity concerned are retained. The
result is rather complicated and depends upon relative phas-
ing of the two vibrations, but it is clear that the resulting flow
will contain terms of essentially all frequencies m�D±n�V

where m and n are integers. The dominant terms will be
those in which the values of m and n are small.

A particular example is the case in which the sung note
is a musical fifth �frequency ratio 3:2� or more usually a
musical tenth �frequency ratio 5:2� above the drone funda-
mental. The difference combination with m=n=1 in the first
case or m=2, n=1 in the second then generates an impres-
sive subharmonic drone of frequency �D /2, together with all
its harmonics.13 Most of the other sounds used in perfor-
mance are complex and transient, so that little is to be gained
by analyzing them in detail.

VII. DIDJERIDU QUALITY

Although the geometrical form of native didjeridus var-
ies widely, and good players can produce striking perfor-
mances on a simple length of cylindrical PVC pipe, these
players are able to rate didjeridus in terms of quality. There
do not appear to have been extensive studies of these ratings,
but beginning attempts have been made.5–7 Amir,6 in particu-
lar, has produced a quality criterion based upon the levels of
harmonics 2 to 5 relative to that of the fundamental, a did-
jeridu that is rated excellent by players having low levels for
these harmonics.

Examination of the didjeridu preferences of different
clans in Arnhem Land shows, however, that there are striking
differences in the preferred didjeridu shape.38 Clans from
Eastern Arnhem land, including the Yolngu, adopt a playing
style in which the use of rhythmic articulation and higher
tube modes for accents is pronounced, and their preference is
for almost cylindrical didjeridus. Clans from Western Arn-
hem Land, in contrast, make little use of these higher modes
but exploit the timbre changes possible through the use of
vocal-tract resonances, and their preference is for didjeridus
with a flaring bore profile. Nontraditional didjeridu perform-
ers use a combination of both styles, since they give did-
jeridu sound a quality that is not heard in any other musical
instrument.

It is easy to see the reasons for these preferences. A
narrow tube with a nearly cylindrical bore will have strong
lower resonances in nearly harmonic relationship and it will
be relatively easy to produce the higher modes. The drone,
too, will be strong in quality because the well-aligned reso-
nances will reinforce the first few odd harmonics, a point that
is important since the sensitivity of human hearing is reduced
at the low frequency, 60–70 Hz, of the drone fundamental.
The strong quality of the drone fundamental and its lower
harmonics then makes less obvious the subtle timbre changes
produced by formant variations in the higher harmonics.
These physical consequences appear to explain the prefer-

ences of those playing in the Eastern Arnhem Land style.
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The reverse is true for the Western Arnhem Land style
and preferences. In a widely flaring tube, overtones other
than the first are rather difficult to produce because of the
rapidly decreasing quality factor of the tube resonances,
while the misalignment of these lower resonances means that
they do not reinforce the lower harmonics of the drone, mak-
ing it much less prominent than in the Eastern style. This
then has the consequence that formant bands produced by
vocal-tract resonances, which do not rely upon reinforcement
by the resonances of the instrument bore, are prominent in
the total sound as desired.

VIII. CONCLUSIONS

The primary purpose of the present paper was to exam-
ine the relation between maxima and minima in the vocal-
tract impedance and the formant bands observed as a promi-
nent characteristic of expert didjeridu performance. While
the model still requires development if it is to give an accu-
rate quantitative description of the radiated spectrum, both
the theoretical development and the computed spectra dem-
onstrate a close relation between the emphasized formant
bands in the sound spectrum and impedance minima of the
vocal tract, as measured at the lips. Direct evidence for this
correlation is presented in the accompanying experiment pa-
per.
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