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A hyperhelix of order N is de ned to be a self-similar object consisting of a thin elastic
rod wound into a helix, which is itself wound into a larger helix, until this process has
been repeated N times. Wave propagation on such a structure can be discussed in a
hierarchical manner, ultimately in terms of the wavenumber k de ning propagation
on the elementary rod. It is found that the dispersion curve expressing the wave
frequency ! as a function of the elementary wavenumber k on the rod making up
the initial helix is also a fractal object, with all the macroscopically observable wave
phenomena for a hyperhelix of arbitrarily large order being compressed into a small
wavenumber range of width about 2R¡1

2 ¬ centred on the value k = R¡1
1 , where R1

is the radius, ¬ is the helical pitch angle of the smallest helix in the progression, and
R2 is the radius of the next-larger helix.
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1. Introduction

This paper presents a description of wave propagation on rods, helices and hyper-
helices|a term by which we mean helices coiled up into helices, coiled up into helices,
etc.|in a self-similar regression that makes the hyperhelix a fractal object. Moti-
vation for the study was initially a quite practical concern, with the behaviour of
®exed elastic rods and foils (Tarnopolskaya et al . 1996), but the present extension to
these complex geometrical objects derives from analogy with the string theory of ele-
mentary particles, in which hidden dimensions are coiled up invisibly within simple
structures resembling strings or springs. It is, however, not claimed that the present
discussion has any relevance to that abstract theoretical  eld. On a more practical
scale, the vibrations of helices and hyperhelices are important at the molecular level
in biological structures (Furois-Corbin et al . 1995), though again it is not clear that
our present discussion has any direct relevance.

2. Helices

Wave propagation on a long thin rod is a classical subject, to which approximate
solutions have been known for a long time (Love 1927). There are three di¬erent
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34 N. H. Fletcher, T. Tarnopolskaya and F. R. de Hoog

types of waves possible: longitudinal compressive waves, L
0, with wave speed cL

0
;

torsional waves, ª 0, with speed c ª 0
, and transverse waves, T

0, with speed cT
0
. (The

signi cance of the subscript 0 will become apparent later.) There are two possible
polarizations T

0 and T 0
0 of the transverse waves, but their behaviour is identical. If »

is the density, E the Young’s modulus and G the shear modulus of the rod material,
and if its cross-section is a solid circle of radius r, then these wave speeds are given,
to a good approximation, by

cL
0

=
E

»

1=2

; c ª 0
=

G

»

1=2

; cT
0

= !1=2 Er2

4 »

1=4

; (2.1)

where ! is the angular frequency of the vibration. The expression for cT
0

applies only
if the wavelength ¶ is very much greater than the rod radius r; in the contrary limit
when ¶ ½ r, the bending waves become shear waves and cT

0
! (G=» )1=2. If we de ne

the wavenumber k to be k = 2 º =¶ as usual, then the third of equations (2.1) applies
only if kr ½ 1. More complicated and exact versions of each of these equations are
known, but it would complicate the discussion unnecessarily to use these here.

(a) Wave modes at low wavenumber

The mechanics of a simple helical spring, made by uniform bending of such a rod,
is of immense practical importance and has been the subject of considerable study.
The static elastic properties of such springs, in the limit of in nitesimal distortions,
have long been understood (Love 1927; Timoshenko & Goodier 1951). The basic
restoring force for all ordinary displacements is derived from torsion of the elemen-
tary rod, with shear stresses playing a much smaller role. This simple situation is,
however, greatly complicated when the distortions of the helix become appreciable
compared with its diameter. Because our present discussion is restricted to the lin-
ear domain, it is not necessary to examine these complex and interesting problems
here.

Wave propagation on helices has also received attention. Love, for example, cites
works as early as those of Saint-Venant in 1843. An excellent treatment appropriate
to our present purpose has been given by Wittrick (1966), who derives expressions
for the propagation velocities V 0 and V of torsional and bending waves, respectively,
along the rod from which the helix is made. These expressions, which are valid only
when the wavelength is long compared with the helical radius, can be written as

V 0 = c ª 0

rp
2R1

; V = cL
0

r

2R1
; (2.2)

where r is the rod radius and R1 is the radius of the helix. While these velocities are
independent of the helical pitch angle ¬ 1 = tan¡1(h1=2 º R1), where h1 is the pitch of
the helix, the exact speci cation of the direction of vibration of the two waves does
depend upon this angle. If ¬ 1 ! 0, then the description becomes very simple. This is
not a physically attainable con guration, but for most practical helices ¬ 1 is small.
Note that, unlike the case of bending-wave propagation along a straight rod, there is
here no dispersion of bending waves, but this conclusion applies only if ¶ ¾ 2 º R1,
or equivalently if k ½ R¡1

1 .
It is useful to have a mental image of these two types of waves on the helix, and

this is provided in  gure 1a. A wave of type ª 0 that is torsional when viewed at the
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Figure 1. (a) A simple helix. The torsional, ª 0 , longitudinal,
L

0 , and transverse,
T

0 and
T 0

0 ,
motions at the level of the elementary curved rod are identi¯ed, as are their alternative descrip-
tions as torsional, ª 1 , longitudinal,

L
1 , and transverse,

T
1 and

T 0
1 , modes of the ¯rst-order

helix. (b) A hyperhelix of order 2, which might also be described as a superhelix. There is a
similar hierarchy of macroscopic modes ª 2 ,

L
2 ,

T
2 and

T 0
2 on this structure, as well as hidden

microscopic modes of orders 1 and 0 on the elementary helix and the elementary rod.

level of the curved rod of the helix is actually an axially extensional mode, which is
longitudinal for the helix as a whole and can thus be denoted by L

1. As is known
from the theory of static strain in helical springs, longitudinal extension L

1 of zero
wavenumber is in fact produced by torsional strain ª 0, so that the amplitudes are
related by

T 0
0 = 4R1 ª 0: (2.3)

Similarly, a long-wavelength transverse T
0 mode, which is ®exural on the level of the

rod and polarized in its plane of curvature, causes expansion or contraction of the
turns of the helix in a varicose manner, and is torsional about the axis of the helix,
so that it can be denoted by ª 1. Both these mode types are axially symmetric at the
level of the helix.

Viewed at the level of the helix, the two wave propagation velocities in this limit
k ½ R¡1

1 are

cL
1

º c ª 0

r

2R1
sin ¬ 1; c ª 1

º cL
0

r

R1

p
2

sin ¬ 1: (2.4)

The macroscopic wavenumber ki1
on the helix is given in each case by ki1

= !i=ci1
,

where i denotes the wave type. There must clearly also be modes that describe the
transverse oscillation of the helix as a whole, which would be designated T

1, but the
origin of these modes is not apparent from the analysis so far; they will form a major
part of the discussion in x 2 c below.
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(b) Wave coupling

A detailed study of the coupling between torsional and transverse modes on a
helix has been published by Jiang et al . (1991). It is appropriate to present here
a comparable analysis of the coupling between longitudinal and transverse modes,
since it is these that will be our primary concern.

For a thin rod or radius r, material density » , Young’s modulus E and uniform
curvature µ, the wave equations developed by Love (1927) for displacements in the
plane of curvature can be written in the form (Tarnopolskaya et al . 1999a)

@2u

@t2
=

E

»

@2u

@s2
¡ µ

@v

@s
; (2.5)

@2v

@t2
= ¡ Er2

4 »

@4v

@s4
+ 2µ2 @2v

@s2
+ µ4v +

Eµ

»

@u

@s
¡ µv ; (2.6)

where the tangential displacement has been written as u(s) and the radial displace-
ment as v(s), and s measures tangential distance along the elementary rod. Clearly
these reduce to the familiar equations for longitudinal and transverse waves on a
straight rod when µ = 0. These equations apply to a good approximation to waves
on a helix, provided the helical pitch angle ¬ is small.

Longitudinal and transverse waves on the rod can be written in the form

u(s) = u cos(k1x ¡ !t + ¿ ); v(s) = v cos(k2x ¡ !t); (2.7)

and it is clear from the form of (2.5) and (2.6) that wave coupling occurs only if
k1 = k2 = k and ¿ = º =2. Substitution of (2.7) into (2.5) and (2.6) gives two
solutions for the frequency !. The solution of higher frequency gives, for k ½ µ,

! º E

»
k2 +

r2µ4

4

1=2

;
u

v
º 4k

r2µ3
: (2.8)

The wave is essentially longitudinal, though with a transverse wave admixture, the
magnitude of which depends upon the rod radius and thus its bending sti¬ness. The
frequency for a given wavenumber k rises gradually from the normal longitudinal-
wave frequency as the curvature is increased. This wave will not be considered further
here.

The solution of lower frequency gives, for k ½ µ,

! º E

»

1=2
rµk

2
;

u

v
º µ

k
(2.9)

and is of particular interest here. Although the wave is nominally transverse in terms
of origin and frequency, for k ½ µ the motion is predominantly longitudinal, and
the relative magnitude of the longitudinal and transverse components is very nearly
that required to eliminate the cross-term in equation (2.6). Precise cancellation does
not, however, occur, and for increasing curvature the mode frequency rises approxi-
mately linearly with µ. This result has been veri ed in detail, both theoretically and
experimentally, for the case of  nite helices (Tarnopolskaya et al . 1999b). For k ½ µ
the mode shape is axially symmetric on the helix and can be termed `varicose’.

The relation (2.9) suggests, and more detailed investigation con rms, that ! º 0
and u º v when k º µ. This surprising result will be seen later to correspond to
simple sinuous motion of the helix as a whole.
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Figure 2. Qualitative dispersion curves for waves on a helical spring. The full curves refer to
modes of type

L
0 or ª 1 as k ! 0 but type

T
0 or

T
1 near k = R ¡ 1

1 ; the broken curves refer to
modes of type ª 0 or

L
1 near k = 0 but of diametral shear type

S
1 near k = R ¡ 1

1 . In each case
the bold curve relates to the practical case ¬ 6= 0 and the light curve to the idealized case where
¬ = 0. Sketches show a cross-section of the helix for various values of k. Standing-wave modes of
types I and II, as identi¯ed by Tarnopolskaya et al . (1999b), are also labelled. Dispersion curves
are from the analysis of della Pietra & della Valle (1982).

(c) Higher wavenumbers

An extension to the theory of Wittrick was made by Kagawa (1968), who showed
that when the calculations are extended to higher frequencies, the input impedance
of a  nite helix exhibits much more complex behaviour, with a generally low-pass fre-
quency characteristic, followed at higher frequencies by a stop-band. His calculations
of mechanical input impedance for longitudinal, L

1, and torsional, ª 1, vibrations of
a  nite spring led him to suggest that an in nite helix should also exhibit successive
pass-bands and stop-bands for both these wave types. Our discussion below does not
extend to frequencies where this phenomenon might appear, but is restricted to the
band of lowest frequency.

Della Pietra & della Valle (1982) examined the axially symmetric vibrations of
helical springs and showed that, for the longitudinal L

1 mode of a helix, the dispersion
curve !L(k) rises from zero to a maximum near k = 0:5R¡1

1 and then falls to a

minimum at k = R¡1
1 , as shown by the broken curves of  gure 2. The exact shape

of the dispersion curve near k = R¡1
1 depends upon the value of the helical pitch

angle ¬ 1, the minimum being a sharp cusp at zero frequency if ¬ 1 = 0. For k > R¡1
1

the dispersion curve rises again without limit. The behaviour of ! ª (k) for the ª 1

torsional mode is similar, except that the frequency falls to zero at k = R¡1
1 for

all values of ¬ 1, as shown by the two full curves of  gure 2. For simplicity in what
follows, we shall restrict discussion to cases in which the helical pitch angle ¬ is small
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enough that sin ¬ º tan ¬ º ¬ and write ¬ indi¬erently (without concern for minor
di¬erences) for either of these quantities.

The reasons for this behaviour can be seen when the displacement structure of
the waves near this minimum is examined. Consider  rst the upper curve. Although
there is strong coupling between transverse displacements, T 0

0, parallel to the helical
axis and torsional displacements, ª 0, on the elementary rod, it is su¯ cient, from
the viewpoint of geometry, to consider only the former. If r̂ is a unit vector in the
radial direction on the helix and ŝ and ẑ similar unit vectors in the tangential and
axial directions, then, for a wavenumber k, the displacement associated with T 0

0 is
Aẑ sin ks. If k ½ R¡1

1 , then this displacement is nearly constant over any helical turn,
and the result is a simple longitudinal wave L

1 on the helix, with zero frequency at
k = 0. The dispersion curve then rises with increasing k. For k = R¡1

1 , however,
there is a whole wavelength around each helical turn, and the displacement has the
form of a shear of the helix about a diameter, as shown for the wave labelled S

1 in
 gure 2. If the helical pitch angle ¬ 1 is zero, then there is no elastic strain associated
with this simple rotation of the whole compressed helix, so the frequency becomes
zero. For any non-zero helical angle, however, there is signi cant elastic strain, and
the dispersion curve simply has a local minimum. This broadly explains the shape
of the broken curves in  gure 2.

The helix mode de ned as ª 1 for small k, and derived from the elementary modes
T

0 and L
0, has already been discussed. As shown in x 2 b, this mode, though nominally

transverse, has a large longitudinal component, the magnitude of which is almost
su¯ cient to cancel the e¬ects of curvature. If k ½ µ, the result is an axially symmetric
varicose mode on the helix.

In the case when k = R¡1
1 , there is again just one wavelength of the disturbance

around each helical turn, and energy is minimized if u = v and, once again, ¿ = º =2.
For this choice of parameters, the motion de ned by (2.7) is a simple bodily displace-
ment of the whole helix parallel to the direction of the radius vector to the point
s = 0. Because there is no associated elastic strain in the helix, the frequency is zero,
whatever the value of the helical pitch angle ¬ 1.

If k = R¡1
1 (1 ¡ ¯ ) with 0 < j ¯ j ½ 1, then the direction of displacement of each

helical turn di¬ers by an angle ¯ from that of its nearest neighbour. The displacement
itself therefore de nes a helical wave with wavelength 2 º =¯ turns of the physical
helix and with the chirality determined by the sign of ¯ . This wave, labelled as T

1, is
sketched near the point k = R¡1

1 on the full curve in  gure 2. If two such circularly

polarized co-propagating waves with elementary wavenumbers R¡1
1 (1 § ¯ ), and thus

opposite chirality, are added, then the result is a plane polarized transverse wave
with macroscopic wavelength 4 º 2R1 ¬ 1=̄ . We might call this a sinuous mode. The
macroscopic wavenumber kT

1
when this sinuous wave is viewed at the level of the

helix is

kT
1

=
k ¡ R¡1

1

2º ¬ 1
; (2.10)

so that the zero for kT
1

is shifted to the frequency zero at k = R¡1
1 and its scale is

changed by a factor 2 º ¬ 1.
If ¬ 1 is non-zero, as it must be in physical reality, then the two modes T

1 and S
1

must be coupled to some extent, as in the bending of a thin solid rod. This does not
destroy the precise frequency minimum in T

1 at k = R¡1
1 , but makes the curve rise
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parabolically rather than linearly away from this minimum, again as in the case of
transverse wave dispersion on a thin rod.

We note also that at the maximum of the dispersion curve near k = 0:5R¡1
1 there

is about one half wavelength of the fundamental disturbance on each turn of the
helix. This means that the helical turns will be alternately expanded and contracted
radially, as well as being displaced sideways, under the in®uence of the fundamental
wave T

0, as shown in  gure 2. Such a situation clearly leads to a large contribution to
the strain energy, so that it is not surprising that the frequency reaches a maximum
value.

Globally considered, the macroscopic behaviour near the minima of the dispersion
curve is just what is to be expected from our qualitative practical experience of the
small-amplitude vibration of long thin helical springs, such as those encountered in
hardware shops. At a macroscopic level, the helical structure is irrelevant, and the
helix behaves like a simple straight rod of very small sti¬ness, provided all distortions
are kept small. Longitudinal and transverse standing waves constructed from L

1 and
T

1 behave like simple vibrations with small values of the macroscopic wavenumber
kT

1
, though at a deeper level they are derived from L

0, T
0 and ª 0 waves centred

around the wavenumber k = R¡1
1 . These statements apply, however, only for waves

with amplitudes that are small compared with their macroscopic wavelength. Helices
may well exhibit peculiar static and dynamic properties under conditions of larger
elastic strain.

In a sequence of previous papers (Tarnopolskaya et al . 1996, 1999a; b), we treated
this whole problem in a rather di¬erent way, which is, however, complementary to
the present discussion. (Note that, in those papers, the symbol ¬ had a meaning
di¬erent from that assigned here.) The approach was to begin from the equations
for a slightly curved rod of  nite length, clamped at both ends, and then follow
the development of the modes as the curvature was increased to convert the rod
into a helix. Only the case in which the helical pitch angle ¬ 1 = 0 was consid-
ered explicitly. The mode transitions and couplings between the various zeroth-order
modes can be appreciated in detail, and the conclusions are compatible with those
of the present propagation approach in the limit in which the number of turns on
the helix becomes very large. Two di¬erent mode types were identi ed in this limit.
One, termed type I, is equivalent to a standing wave formed from superposition of
two counter-propagating ª 1 modes with k ½ R¡1

1 , and has a varicose shape. The
other, termed type II, is a superposition of two counter-propagating T

1 modes with
k º R¡1

1 , and has a sinuous superhelical shape. The precise boundary and excitation
conditions for a  nite helix may cause a coupling between T

1 and T 0
1 modes to give

plane polarized vibrations. Two orthogonal polarizations of each type II mode are
then possible.

In this standing-wave model, the modes are ordered in frequency according to a
simple algebraic rule,

!I
n º n1=2!0; !II

n º (2n)1=2!0; (2.11)

the type II mode frequencies being essentially twofold degenerate for a su¯ ciently
long helix. The physical origin of this result was initially obscure. It can now be seen
to arise from interleaving of ª 1 and pairs of T

1 modes from the vicinity of the two
zeros of the dispersion curve; a horizontal line drawn in  gure 2 would intersect the
dispersion curve, shown as a full line, in three places.
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3. Hyperhelices

We can now extend this analysis to a yet more complex structure that we shall term
a hyperhelix. A hyperhelix of order n is constructed by curving to helical form a
hyperhelix of order n ¡ 1. A simple rod can be de ned to be a hyperhelix of order 0,
so that an ordinary helix is a hyperhelix of order 1. This convention explains the use
of numbers in the description of modes in the previous sections. With this de nition,
a hyperhelix is essentially a fractal object, with similar structure at all scales, though
in practice this regression terminates when order 0 is reached. If the pitch angles ¬ n

and size ratios Rn=Rn + 1 are taken to be constant throughout the regression, then the
Hausdor¬ (or capacity) dimension D for such a structure can be readily calculated
(see, for example, Baker & Gollub 1996) and has the value

D =
log( ¬ Rn=Rn+ 1)

log(Rn=Rn+ 1)
: (3.1)

Since geometrical considerations forbidding overlap require that Rn=º Rn + 1 < ¬ < 1,
and since Rn ½ Rn + 1, the dimension D lies in the range 1 < D < 2 and is typically
towards the lower end of this range.

Consider a hyperhelix of order 2, consisting of a helix of radius R1 wrapped into a
superhelix of radius R2, where R2 ¾ R1 ¾ r, as shown in  gure 1b. In the limit as
k ! 0, the only available  rst-order modes are the longitudinal and torsional modes
L

1 and ª 1. These modes are, however, internal to the  rst-order hyperhelix, and do
not have any macroscopic manifestation at the second-order level.

For detectable macroscopic modes, the region near k = R¡1
1 must be invoked.

Exactly at k = R¡1
1 there are two possibilities. Either the displacement of the  rst-

order helix is parallel to the axis of the second-order hyperhelix, giving a simple
axial displacement, denoted by L

2, or else it is normal to this axis, giving a radial
dilatation ª 2 of the hyperhelix, as shown in  gure 1b. In either case the frequency is
zero, for the reasons discussed in relation to the simple helix.

If we now consider a neighbouring point in wavenumber space for which k =
(1 + ¯ )R¡1

1 , then the situation becomes much more complex. The reason for this
is that the displacement of the  rst-order helix is superhelical, as discussed in x 2 c
above, so that the resulting displacement of the turns of the second-order hyperhelix
varies between radial and axial around a single hyperhelical turn. If we denote the
radial direction in the hyperhelix by r̂1, the tangential direction by ŝ1, and the axial
direction by ẑ1, then, by analogy with (2.7), the displacement at tangential position
s is

Ar̂1 cos ks + Aẑ1 sin ks ¡ Aŝ1 sin ks: (3.2)

This is a complex distortion|essentially equivalent to a superposition of a sinuous
wave and an equal shear wave of type S

1|with a considerable amount of elastic
strain energy. As with the case of superhelical waves on a simple helix, however, the
situation simpli es itself by the coupling of a co-propagating wave of equal amplitude
and with wavenumber (1 ¡ ¯ )R¡1

1 , corresponding to the same macroscopic wavenum-
ber k1 but opposite chirality. This superposition cancels the axial term Aẑ1 sin ks
and leaves a simple circularly polarized wave on the hyperhelix.

When considered in terms of the visible macroscopic waves involved, the behaviour
of a hyperhelix of order 2 is therefore very similar to that of a simple helix of order 1.
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If we denote the macroscopic wavenumber on the simple helix by k1, then the wave
frequency ! is zero when k1 = 0, which itself corresponds to the value k = R¡1

1 .
The macroscopic motion under these conditions consists simply of torsional and
longitudinal waves ª 2 and L

2 of in nite wavelength on the hyperhelix.
If the elementary wavenumber k is increased slightly above the value R¡1

1 , then the
geometry of the hyperhelix imposes a coupling to another elementary wave with k
just less than R¡1

1 . When k = R¡1
1 § R¡1

2 , the frequency of this pair of coupled waves
again falls to zero, corresponding to a simple transverse displacement of the hyper-
helix with zero macroscopic wavenumber. If we denote the macroscopic wavenumber
of transverse waves on the hyperhelix by kT

2
, then, by analogy with (2.10),

kT
2

=
kT

1
¡ R¡1

2

2 º ¬ 2

=
k ¡ R¡1

1

2 º ¬ 1 ¬ 2
¡ R¡1

2

2º ¬ 2
; (3.3)

where ¬ 2 is the macroscopic pitch angle of the hyperhelix and ¬ 1 that of the  rst-
order helix. Since, under our assumptions, ¬ 1 and ¬ 2 are both very small angles,
it follows that all the macroscopic behaviour of the hyperhelix is compressed into a
very small range of order R¡1

2 ¬ 1 of the elementary wavenumber k centred around

k = R¡1
1 .

This situation is illustrated in  gure 3, which shows qualitatively the progression of
the dispersion curve through three orders of helix. Near each minimum in the curve
for order n, the curve for order n + 1 splits, corresponding to circularly polarized
(hyperhelical) waves of opposite chiralities, and these two waves then combine to
produce a simple plane-polarized wave on the hyperhelix. These wave couplings are
indicated by bracketing lines. Clearly the  gure, which is only qualitative, cannot
indicate all this detail, but it does summarize the essence of our conclusions. There
is, indeed, no single-valued dispersion curve for elementary waves on a hyperhelix.
Instead, coupling between waves of opposite chirality gives the e¬ective dispersion
curve a fractal structure. The capacity dimension d of the set of points for which the
frequency is zero can be readily calculated, the result being

d = ¡ log 2

log(Rn ¬ =Rn + 1)
: (3.4)

Since, as noted previously, Rn=º Rn+ 1 < ¬ ½ 1, this dimension is con ned within
the approximate limits log 2= log M < d < log 2=2 log M , where M is the scaling
ratio Rn + 1=Rn and is a large number.

4. Conclusions

The class of hyperhelices presents many interesting features when their vibrational
behaviour is examined. The hyperhelices themselves have a fractal structure, and this
is re®ected in the dispersion curves for waves travelling along them, which similarly
have fractal attributes. It is interesting, however, that none of these subtle features
are observed when the vibrational properties of a macroscopic hyperhelix are studied.
Instead, it behaves as a simple elastic object very similar to a structureless ®exible
rod. It is only when means are found to examine vibrational motions at a  ner level
that interesting and unusual properties emerge.
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Figure 3. Simpli¯ed qualitative dispersion curves for hyperhelices of order (a) 1, (b) 2 and (c) 3.
Only the lower branch of the curve is shown. For clarity, the relative magnitudes of successive
steps R ¡ 1

n have been made much more nearly equal than they would be in practice, so that the
fractal region around k = R ¡ 1

1 is greatly expanded in size. Heavy arrows indicate wavenumbers
that are coupled to produce sinuous behaviour, and dark circles those that lead to varicose
behaviour.

The discussion shows that the entire macroscopic transverse vibrational behaviour
of a hyperhelix of order N is contained within the elementary wavenumber region

R¡1
1 §

N

n= 2

R¡1
n

N¡1

m = 1

¬ m: (4.1)

For values of the elementary wavenumber k lying outside this domain, the wave
behaviour is contained invisibly within hyperhelices of lower order. Thus, not only is
the real-space geometry of a hyperhelix fractal, but so also are both the dispersion
curves and the sub-universes of microscopic behaviour.

In this development we have begun from a small but not in nitesimal rod radius
r, and each stage of helix construction has increased the helical radius Rn by at
least a factor of 10, since we required that Rn ¾ Rn¡1. The  nal hyperhelix of large
order N will, therefore, be an object of truly cosmic proportions. It is perhaps more
useful to consider the  nal hyperhelical RN to be of a comfortably  nite size, so that
the hyperhelical radii for smaller values of n rapidly become in nitesimal. Under
this assumption, the wavenumber region de ned by (4.1) encompasses a range of
wavelengths for transverse, longitudinal and torsional vibrations of the hyperhelix
that extends from the length of the hyperhelix down to a length comparable with the
hyperhelical diameter. All other modes for smaller and larger values of k are hidden
within the structure of the hyperhelix and are not visible on a macroscopic scale. If
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the initial rod radius r is in nitesimal and the value of N approaches in nity, then
the overall behaviour of the hyperhelix is truly fractal.

Finally, a comment should be made about the `reality’ of the fractal dispersion
curves sketched in  gure 3. While it is true that a macroscopic transverse wave
on a hyperhelix is made up from a combination of co-propagating waves of di¬erent
wavenumber, in much the same way as an ordinary square wave is made up of a super-
position of co-propagating harmonic waves, the analogy is not precise. In ordinary
wave propagation the component waves are truly independent and can propagate
individually or in combination. In the helical and hyperhelical cases, the di¬erential
equations describing the waves are all strongly coupled, and the propagation of indi-
vidual waves is not possible; only those combinations we have identi ed that lead to
macroscopically simple waveforms are allowed. The only exception to this statement
occurs for very large wavenumbers, k ¾ R¡1

1 , when the coupling tends to zero and
waves of very short wavelength can propagate on the elementary rod from which the
whole hyperhelix is constructed.
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