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The phase of the transfer function between two points in an extended system can be easily measured
if it is taken to be the accumulated phase obtained by smoothly raising the measurement frequency
from zero to the reference frequency. Lyonet al., in an extended series of papers@most recently J.
Acoust. Soc. Am.95, 286–296~1994!#, have examined the behavior of this accumulated phase in
systems of two and three dimensions and have elucidated the concept of a reverberant phase which
is independent of the separation between the two measurement points, provided they are far enough
apart, but which rises sharply with increasing frequency. In some applications, for example, in
nondestructive testing of extended structures, it is important to be able to observe simple
wave-propagation behavior and in particular to measure the propagant phase as a function of
frequency and position. The conditions under which this is possible are investigated, and are shown
to impose constraints on the ratio between the propagation distance and the size of the structure
under test, and either the material damping coefficient or the reflection coefficient at the domain
boundaries. These results, which represent an extension of those of Lyonet al., are discussed in
terms of the distribution of zeros of the transfer function in the complex frequency plane. Many
platelike structures of practical interest are found to satisfy these conditions, so that measurement of
propagant phase behavior can provide the basis for a useful technique of nondestructive
examination. ©1996 Acoustical Society of America.

PACS numbers: 43.40.At

INTRODUCTION

In a significant series of papers over the past decade,1–7

Lyon et al. have explored the behavior of the phase of the
transfer function in extended systems of one, two, and three
dimensions. This phase is normally evaluated by effectively
sweeping the measuring frequency from zero up to the fre-
quency of interest, and ‘‘unwrapping’’ the jumps 2p in the
measured phase to give an ‘‘accumulated’’ phase. This phase
is not necessarily equal to the phase difference to be ex-
pected from consideration of the number of wavelengths of
the propagating wave at the frequency of interest that could
be accommodated between the two points, which we might
term the propagant phase.

Lyon1 showed that, while in a one-dimensional system
such as acoustic waves in a pipe the accumulated phase of
the transfer function between the generator and an arbitrary
measuring point is always approximately equal~within p/2!
to the propagant phase between the two points, the accumu-
lated phase difference in a two-dimensional system is usually
many times the magnitude of the propagant phase difference.
The difference in behavior is bound up with the behavior of
waves reflected from the boundaries of the system, thus
forming a pattern of standing waves, and was analyzed by
Lyon2 in terms of the system’s normal modes. He was able to
identify the behavior of the accumulated phase as it rose
from zero~to within 6p! for very small separations between
excitation and measurement points, to a steady value very
much larger than the expected propagant phase at larger

separations. He termed this plateau value the reverberant
phase.

Much of the motivation behind this investigation was
related to the possibility of recovering clean signals in a re-
verberant environment by means of inverse filtering. Our
present interest is rather different, and concerns the use of
propagant phase as a diagnostic tool in nondestructive
testing.8,9 In either case, however, it is important to be able to
distinguish the influence of the reverberant environment on
the measured signal. More specifically we explore here the
conditions under which it is possible to recover the propa-
gant phase of a signal from measurements made in an ex-
tended reverberant environment. It is clear from general con-
siderations that such propagant phase is certainly observed
close to the source in systems that are sufficiently large and
have sufficient material damping. We shall be concerned
therefore with the transition from reverberant to propagant
behavior as system size and damping are varied.

I. POLES AND ZEROS

The original analysis of Lyon is based upon the analytic
form of the transfer function expressed in terms of the nor-
mal modescn of the system, where the indexn has the
dimensionality of the system itself, being (n,m), for ex-
ample, for the vibration of a planar object. If the time varia-
tion is represented by exp(jvt), the moden has a resonance
at angular frequencyvn , at which the damping coefficient is
a. For simplicity we initially takea to be the same for all
modes, corresponding to resonances of constant width. The
transfer function between pointsr1 andr2 at frequencyv can
then be written

a!Present address: Research School of Physical Sciences and Engineering,
Australian National University, Canberra 0200, Australia.
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Z12~v!5const3(
n

cn~r1!cn~r2!

vn
22v212 jva

. ~1!

We note that the mode functionscn are real, and that the
constant depends upon the physical quantities being mea-
sured.

It is straightforward to convert the expression~1! to a
form that exhibits explicitly the poles of the transfer function
in the complex frequency plane. If we write the denomina-
tors of the expansion~1! in the form

vn
22v212 jva5Vn

22~v2 ja!2, ~2!

where

Vn5~vn
22a2!1/2, ~3!

then we can rewrite~1! as

Z12~v!5(
n

F an~r1 ,r2!

v2Vn2 ja
2

an~r1 ,r2!

v1Vn2 jaG , ~4!

where the residuesan~r1,r2! are given by

an~r1 ,r2!5const3
cn~r1!cn~r2!

2Vn
. ~5!

The poles are seen to lie at the points6Vn1 ja and thus
along a line in the upper half-plane, as shown by the3
symbols in Fig. 1.

Location of the zeros of the transfer function is more
difficult, and it was not until the third paper of the series3 that
this was addressed properly by Tohyama and Lyon. The
original analysis of Lyon1,2 considered only zeros lying on
the linev5V1 ja in complex frequency space, and noted
that, since in the region between two poles the function is
dominated by the contributions of those poles, we expect to
find a zero if the residues are both of the same sign and no
zero if they are of opposite sign. Since the residues are es-
sentially random in sign for a system of two or more dimen-
sions provided that the separationur22r1u is large, the aver-
age number of zeros is about half the number of poles on any
reasonably long segment of this line.

Following the original development of Lyon, the process
of measuring the accumulated phase of the transfer function
is as shown in Fig. 1. The representative pointP moves
along the real axis from zero to the measurement frequency

v, and the evolution of the phase is computed by adding the
contribution of each pole and zero. If the damping is very
small, the polesvn of the transfer function lie close to the
real axis and, if the system is not large, are well separated.
The phasef12 of the transfer function then decreases byp
wheneverP passes a pole ofZ12, and conversely increases
by p wheneverP passes a zero. To within an additive con-
stant6p, the phase of the transfer function is thus given by

f12~v!'2p~NP2NZ!, ~6!

whereNP is the number of poles andNZ the number of zeros
of Z12 below the frequencyv.

For a given upper frequencyv, there is a separation
ur22r1u, equal to about half a wavelength at this frequency,
below which all the residuesan~r1,r2! are of the same sign,
so thatf12~v! is zero to within an additive6p. In a system
of two or more dimensions, however, the signs of the resi-
dues become random with increasing distance, so that
NZ'NP/2. The accumulated phase then takes on the large
and nearly steady valuefR'2pNP/2 that is called the re-
verberant phase. Experiment1 shows that this is what hap-
pens in practice for reasonably small systems with low
damping.

This simple analysis, however, conceals a dilemma.
Clearly the phase ofZ12(v) should really be evaluated by
adding the phase change contributed by each pole and each
zero rather than by simply counting their number between
zero and the measurement frequencyv. We examine this in
terms of the distributionsgP(V) and gZ(V), of poles and
zeros, respectively, along the pole lineV1 ja. Each pole or
zero contributes a phase change that depends upon its fre-
quencyV and dampinga in the form of the difference be-
tween two inverse tangent functions evaluated at the ends of
the integration interval~0,v! along the real frequency axis.
Because tan21 x is defined to have a value between2p/2
andp/2, the discontinuity whenV5v and x goes through
infinity provides the simple count2p(NP2NZ) of ~6!, and
there is a remainderD(v) of the form

D5F~v,a,g!2E
2`

`

@gP~V!2gZ~V!#F tan21S a

V2v D
2tan21S a

V D GdV

'22E
v

`

@gP~V!2gZ~V!#
av

V2 dV, ~7!

whereF(v,a,g) is a finite constant, the value of which de-
pends upon its arguments. Under the reverberant-phase ap-
proximation,gZ'gP/2 and the integral in~7! diverges, ex-
cept in the case of ideally thin rods (gP;V21/2), ideally
flexible strings ~gP;constant!, or ideally thin plates
~gP;constant!. For all three-dimensional systems, and thus
for all real physical systems, the integral diverges. If the
integral diverges, then the remainderD is infinite, and so
also is the correction to the expression~6!.

FIG. 1. Poles3 and zerosV of the transfer function in the complex fre-
quency plane according to the simple model of Lyon1 for a system with
frequency-independent dampinga. The accumulated phase up to real fre-
quencyV is evaluated by counting the number of poles and zeros passed or,
more properly, by summing the changes in phase angles shown.
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Although this dilemma escaped attention, its solution
appears naturally from later work by Tohyama and Lyon, as
we now outline. Clearly, the transfer function given in~4!
can be rewritten as

Z12~v!5
f ~v2 ja!

Pn~v6Vn2 ja!
~8!

and, if we truncate the sum in~7! and thus the product in~8!
at some arbitrarily large valueN of n, then the numeratorf is
a polynomial of degree 2N21 in v while the denominator is
a polynomial of degree 2N. This conclusion remains valid as
N→`. Thus, although the number of zeros on the line
v5 ja is only half the number of poles once the separation
and frequency are large enough for the field to be reverber-
ant, the remainingN zeros occur as pairs that are symmetri-
cally placed above and below that line as shown in Fig. 2.
Zeros that are above the real axis cancel the phase contribu-
tion of an equal number of poles, and it is only the
nonminimum-phase zeros~NMP zeros for short! lying below
the real axis with which we must be concerned. Convergence
of the remainder expression~7! requires that the density of
these zeros along the frequency axis must increase less rap-
idly thanV12e wheree is a small positive quantity.

We note that the 2N21 zeros do not necessarily all lie
within the frequency range (2VN ,VN) on the real fre-
quency axis, though most of them do. In fact we shall see
later that, in general, the distribution of zeros is slightly
stretched along the frequency axis, relative to the distribution
of poles. An examination of the case of two isolated poles
with real residues of opposite sign shows that the zero lies
outside the frequency interval spanned by the poles. This
does not, of course, prove the more general assertion, but
suggests its plausibility. We shall see the importance of this
point presently. It was mentioned in passing by Tohyama and
Lyon,3 but its consequences were not investigated.

Consider now the case of a system with constant damp-
ing a as the size of the system is increased. Suppose we
concentrate attention on a frequency range from zero to some
valueVmax, within which range the numbers of poles and
zeros are necessarily finite. As discussed above, the zeros of
the transfer function~4! are either on the linev5V1 ja or
distributed in pairs at points (VZ,n1 ja)6 jdn , where the
quantitiesdn are finite and positive. As the size of the system
is increased, keeping its shape constant, modes in the fre-
quency range~0,Vmax! will be compressed into the range
~0,Vmax/m

M!, wherem is the linear magnification factor of
system size andM is the dimensionality of the system. At the
same time, the relative positions of all the poles and zeros
about the linev5 ja will remain geometrically similar to
those of the original range, so that the distancesjdn in the
complex plane will becomejdn/m

M. The cloud of zeros thus
tends to condense toward the pole line as the size of the
system is increased. We are concerned, however, not with the
general distribution of these zeros, but rather with the abso-
lute number of zeros lying in the lower half-plane.

Tohyama and Lyon3,5 gave attention to the distribution
of the zeros ofZ12 and showed that, in the complex plane
v5V1 jy , the probability distribution of these zeros be-
haves asymptotically like 1/b2, whereb5gP(y2a) is the
normalized distance away from the pole linev5 ja. Be-
cause this distribution diverges asy→0, they assumed an
integrable probability distribution function of the form

p~b!5
Ae/p

11eb2 , ~9!

wheree is an arbitrary shape constant.@There is a difference
of a factor 2 between~9! and the original because we have
used signedb rather thanubu.# Since, by their arguments, the
density of zeros on the pole line isgP/2, this leaves a density
gP/2 of zeros to be described by the probability distribution
~9!, and the density of NMP zeros becomes

gNMP5
NP

2 E
2`

2ga

p~b!db. ~10!

If the modal density is sufficiently large thateb2@1 below
the real axis, then we can use the asymptotic form of~9! in
~10! and we find thatgNMP 5 1/(2paAe).

If the dampinga is constant, then the density of NMP
zeros is constant in frequency, while ifa increases with in-
creasing frequency, thengNMP~V! decreases with increasing
V. It is this densitygNMP that we must use, rather than
gZ2gP , in the remainder termD of ~7!. Its form guarantees
convergence of this remainder except for the physically un-
realistic cases in which the damping is zero or in which the
damping actually decreases with increasing frequency at a
rate more rapid thanV21.

The distribution of poles and zeros, for the case of con-
stant damping, is thus qualitatively of the form shown in Fig.
2~a!. As discussed by Tohyamaet al.,5–7 the essentially con-
stant distribution in frequency of NMP zeros below the real
axis leads to a steady increase in the phase of the transfer
function with frequency, and the derivative of this increase

FIG. 2. More realistic distribution of the poles3 and zerosV for systems
with ~a! constant damping and~b! damping increasing with increasing fre-
quency. Zeros are either on the pole line or else distributed in pairs above
and below it. Zeros marked with filled circles that lie below the real axis are
nonminimum-phase~NMP! zeros and contribute to the reverberant phase.
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can be interpreted as a ‘‘group delay’’tG . Since each NMP
zero, along with its noncancelled pole, contributes 2p to the
phase, we can write

tG52pgNMP5
1

aAe
. ~11!

If the mode dampinga is independent of frequency, thentG
is also independent of frequency, and we must choosee54 to
give agreement with other studies.5 In the more general case
in which a increases with increasing frequency,tG de-
creases. When the total modal density, and thus the density
of NMP zeros, is small, the increase of phase with frequency
may exhibit fluctuations because of the statistical distribution
of these zeros.6,7

Notice that the group delaytG does not depend upon the
distance between the excitation and measurement points, a
characteristic of reverberant behavior that was commented
upon by Lyon in the original paper of the series.1 We will see
later that we need to amend this assertion, and with it the
form of the distribution~9!, in order to account for propagant
behavior.

II. PROPAGANT PHASE IN AN EXTENDED SYSTEM

Lyon’s demonstration1 that one-dimensional systems al-
ways exhibit simple propagant-phase behavior rested upon
the possibility of expressing the transfer function~1! in
simple closed form for the particular case of acoustic waves
in a pipe. If the pipe length isL with a source atx1 and a
detector atx2 , then

Z125const3
coskx1 cosk~L2x2!

sin kL
, ~12!

wherek5v/c and we can writev5V1 ja to allow for the
effects of damping. Lyon showed that this case exhibits
simple propagant-phase behavior. Since from~12! all zeros
lie on the pole line, there are no NMP zeros to be considered,
and it is then necessary to ask, in terms of the distribution of
poles and zeros, whence the phase shift associated with
propagation arises.

The existence of simple propagant phase behavior in this
case implies that the number of zeros in any finite frequency
range is systematically less than the number of poles by an
amount just sufficient to generate the propagant phase. This
can be readily established from the form of~12!. The number
of zeros of the denominator below a particular value of fre-
quency, and thus ofk, large enough to encompass many reso-
nances isnP'kL/p, while the number of zeros of the nu-
meratornZ'k(L1x12x2)/p, both approximations holding
to within an additive61. The deficit of zeros in the range is
thus nP2nZ5k(x12x2)/p which provides the propagant
phase. We must presume that this stretching of the distribu-
tion of zeros along the frequency axis is a common feature of
all systems, even when we are unable to write down an ex-
plicit closed form for the transfer function. This deficit of
zeros causes no analytical difficulties because, for any real
three-dimensional system, the density of both poles and ze-
ros tends to infinity as the frequency increases.

While this approach can be extended to other one-
dimensional systems such as thin rods, it is not generally
possible to find a closed analytic form for the transfer func-
tion for systems of higher dimensionality unless the symme-
try of the boundary is high and eitherr1 or r2 is a point of
special symmetry. Nevertheless we know from experiment
that it is possible to observe simple wave propagation behav-
ior in two- and three-dimensional domains provided that ei-
ther the walls or the propagating medium itself are suffi-
ciently absorbent. Observation of such propagant behavior is
most clear when the domain is very large compared with the
wavelength involved.

We also know, however, that particular wall geometries
and positions of the source and measurement points may lead
to focused echos that complicate the behavior. This observa-
tion suggests that it may not be possible to derive completely
general conditions under which propagant behavior can al-
ways be observed. The generality of the phenomenon in
large enclosures indicates, however, that we should be able
to adduce a moderately well founded argument that will ap-
ply provided the reverberant field is sufficiently diffuse, and
thus for all except such singular cases. We proceed in this
spirit.

A. Amplitude conditions

As a first approach, we note that the measured accumu-
lated phase will be equal to the propagant phase if we can
show that the amplitude of the directly propagated wave at
the measurement pointr2 is always much greater than the
amplitude of the reverberant field at that point. Suppose that
the source is located atr1 for all our subsequent discussion.
Then the pointr1 is always a singularity in the wave field,
though the nature of the singularity depends upon both the
dimensionality of the system and the nature of the differen-
tial operator~whether¹2 or ¹4! in the wave equation. At a
distance from the singularity that is greater than about half a
wavelength, the propagating wave amplitude decreases as

cP~r2!5
Ae2gur22r1u

ur22r1u~M21!/2 , ~13!

whereM is the dimensionality of the domain andg is the
spatial attenuation rate for plane-wave propagation. If the
boundaries are perfectly reflecting theng5a/c wherec is
the wave speed anda is the mode damping coefficient intro-
duced in Sec. I. If the energy reflection coefficientd is not
unity, then this influences the relation betweena andg, as
we show below.

The average amplitude of the reverberant field can be
estimated from considerations of energy conservation. Sup-
pose that the mean radius of the domain inM dimensions is
R so that its enclosed ‘‘volume’’ is aboutV5BRM and its
surface ‘‘area’’ isS5BMRM21 whereB is a number about
equal to 3. The rate at which energy is being supplied to the
reverberant field is proportional to

@cP~R!#2cSd'A2cMBe22gRd, ~14!

whered is the energy reflection coefficient of the boundary.
The rate at which energy is being lost from the reverberant
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field, taking account of both volume and surface losses, is
similarly proportional to

2gcR
2Vc1cR

2~12d!Sc'BcR
2RM21c@2gR

1~12d!M #, ~15!

where cR is the peak amplitude of the reverberant field.
Equating the two quantities~14! and ~15!, we find

cR
2'F dMe22gR

RM21@2gR1~12d!M #GA2. ~16!

The condition that the propagating wave dominate com-
pletely over the reverberant field at distanceur22r1u5r from
the source is therefore that

e22gr

r M21 @
de22gR

RM21@2gR1~12d!M #
. ~17!

The condition~17! can be satisfied ifr!R, and is facili-
tated ifd!1 so that the boundaries are highly absorbent, or if
gR@1 and r!R, so that the propagating wave is largely
absorbed before reaching the boundaries but not before it
reaches the observation point.

From ~15!, which can also be written 2aBcR
2, we can

express the modal decay constanta in terms ofg andd by
the relation

a5~c/2R!@2gR1~12d!M # ~18!

using which,~17! can be written

a@de22g~R2r !S rRDM21 c

2R
. ~19!

If we wish to observe propagant behavior over essentially all
of the domain, then we letr→R and assume thatd'1, which
leads to the condition

a@c/2R. ~20!

We should again make the point that this condition is
valid only if the reverberant field is truly diffuse, with no
‘‘catastrophe’’ surfaces or points caused by boundary reflec-
tion. In this context, a catastrophe point is one at which the
energy density is particularly high for purely geometrical
reasons. Such catastrophes are common in both acoustic and
optic domains and are described as focused echos or, more
generally, as caustic surfaces. Elliptical or ellipsoidal bound-
aries to the domain can lead to ideal focusing and a maximal
divergence from the simple behavior leading to the condition
~19!, while circular or spherical surfaces lead to somewhat
more complex catastrophe surfaces. Our generalized argu-
ments do not refer to the neighborhood of such special points
or surfaces.

B. Phase conditions

Another approach to the problem is by way of our ear-
lier discussion of nonminimum-phase zeros. From that dis-
cussion it is clear that the accumulated phase measured at a
point at some distance from the source can be considered to
have two components. The first is the reverberant component
contributed by the NMP zeros and expressed in terms of the
group delaytG of ~11! by fR5VtG5V/2a. The second is

the normal propagant phasefP5Vr /c, wherer5ur22r1u is
the distance between source and detector. Since these contri-
butions are additive, the condition that propagant phase be-
havior be observed would appear to be thatfR!fP or

a@c/2r . ~21!

We see in the next section, however, that Eq.~21! presents
problems.

An interpretation of~21! in the time domain is particu-
larly instructive. For a measurement of this type, as used for
example by Tohyamaet al.,7 the source emits a delta-
function impulse and the response measured at a distant mi-
crophone is subject to Fourier analysis to recover the phase
behavior. Figure 3~a! shows the sort of time record expected
in this case. This record can be interpreted in terms of two
delays, as we have indicated above. The delay to the first
impulse received at the microphone is the phase delaytP ,
while the weighted average of the subsequent reverberant
signal provides the group delaytG which, for an exponen-
tially decaying reverberation, is just 1/2a. The total weighted
delay is effectivelytP1tG , and the condition that propagant
behavior be observed is then, as discussed above, simply that
tP@tG which leads to the condition~21!.

C. Discussion

It is immediately clear that the conditions~20! and~21!
appear to be essentially identical if we letr→R in ~21!. This
apparent agreement is, however, spurious. We can see this by
comparing the more detailed expressions~19! and ~21! for
the physically realistic case in whichr,R so that measure-
ments are being made relatively close to the source, rather
than near the boundaries of the domain. Condition~19! im-
plies that, as is to be expected physically, propagant behavior
is most easily observed if the detector is close to the source

FIG. 3. ~a! Schematic version of the signal measured in the time domain
following an impulsive excitation att50. The signal consists of a directly
propagated pulse, followed by a diffuse and exponentially decaying rever-
berant signal. The total time delay is the sum oftP andtG . ~b! When the
excitation and measurement points are both well distant from the boundary
of the domain, the detected signal consists of a directly propagated impulse
followed, after a significant time interval, by an attenuated reverberant sig-
nal.
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so that the propagant wave amplitude is much greater than
that of the reverberant field. The condition~21!, however,
implies just the opposite behavior—that it becomes increas-
ingly difficult to observe propagant behavior in the close
vicinity of the source, in contradiction to physical expecta-
tions.

It is possible to modify the time-domain argument ad-
duced to clarify~21! so as to bring these two results into
agreement. Suppose that the measurement is being made
near the center of a large domain of dimensionalityM and
that the measurement separationr is very much less than the
lengthR characterizing the size of the domain. The signal
received at the detector then has the form shown in Fig. 3~b!.
There are two significant differences from Fig. 3~a!. The first
is that there is a time interval between detection of the pro-
pagant impulse and the beginning of the reverberant signal.
The second is that the amplitude of the reverberant signal is
now small relative to that of the propagant signal. If we
suppose that reflection from the boundaries of the domain is
specular, then the beginning of the reverberant signal con-
sists of a pulse received from an image of the original source
that is at a distance of orderR. The power in this reverberant
signal is therefore attenuated by a factor (r /R)M21 relative
to the propagant signal. If the absorption coefficientg of the
medium is appreciable, then there is a further attenuation by
a relative amounte22g(R2r ). This argument can be extended
to include the effects of diffuse reflection at the boundaries
and boundary absorption without significant change.

When now we come to determine the energy-weighted
average delay time, it is no longertP1tG but rather

t̄'tP1~r /R!M21e2g~R2r !tG . ~22!

If we require thatt̄ 'tP so that propagant behavior is ob-
served, the result is essentially identical to~19!, so that the
anomaly is removed.

One might ask why this problem did not appear in the
careful experiments of Tohyamaet al.7 The reason appears to
be that the experiments were designed to investigate some-
thing rather different. Their signal-processing approach
therefore involved, as a first step, ‘‘eliminating the pure de-
lay part’’ from the beginning of the data record. Since this
step involved removal of the directly propagated impulse as
well as the leading zeros,10 we should expect to see only the
reverberant signal and thus the group delaytG .

This argument, however, does not explain why the initial
approach involving zero counting gives the result~21! rather
than ~20!, and resolution of this discrepancy is vital to the
whole fabric of the theory. We recall that the result~21!,
when derived in terms of poles and zeros of the transfer
function, depends crucially upon the distribution of zeros in
the complex plane, and particularly upon the distribution of
NMP zeros as given by~9!. It is this aspect of the theory that
we should therefore reexamine.

The eigenfunctionscn~r ! that describe the problem, as
in ~1!, are determined in form by the shape of the domain
and cannot generally be written down analytically. We can,
however, always reexpress the transfer functionZ12(v) of
~1!, which in other contexts is referred to as a Green’s func-
tion, in the form of a spherically symmetrical function

P~ur22r1u,v! with a spatial singularity at the pointr15r2,
together with a spatially smooth functionQ~r1,r2,v! contrib-
uted by the boundaries.11 For simple geometries,Q can be
expressed in terms of image sources located outside the
problem domain. We then have

Z12~r1 ,r2 ,v!5P~r ,v!1Q~r1 ,r2 ,v!, ~23!

where r5ur22r1u. All the poles ofZ12(v) in the complex
planev5V1 jy are contained inQ, and both the positions
of the poles and the residues at them are unaltered. A little
consideration shows thatP is just the infinite-domain propa-
gant functioncP of ~13! and the smooth partQ the rever-
berant functioncR of ~16!.

If we takek5V/c to be the real propagation number for
the wave, thenP(r ,v) has an implied factore2 jkr which
means that the phase ofP depends upon the real partV of
v5V1 jy , but P is independent of the imaginary party in
both phase and amplitude. The magnitude ofQ, on the other
hand, derives entirely from the poles ofZ12 and so decreases
steadily with distance away from the linev5 ja. This means
that, if uPu.uQu on the real axis below the measurement
frequencyV, then uPu.uQu everywhere in the lower half-
plane and there can be no zeros ofZ125P1Q below the real
axis. What has happened in this circumstance is that the
background contributed by the propagant wave has shifted
all the NMP zeros ofZ12 into the upper half-plane, so that no
NMP zeros remain.

Because of the statistical nature of the reverberant field,
the magnitude ofQ on the real axis fluctuates about its mean
value uQu in any small frequency range. The condition for
observing propagant behavior is therefore thatuPu @ uQu,
with the inequality interpreted as meaning about a factor 2 or
3. From~13! and ~16! this condition can be written

a.de22g~R2r !S rRDM21 c

2R
, ~24!

which is identical with~19!. If this inequality is only just
satisfied, then some of the former NMP zeros will have been
moved to only just above the real axis and a few may remain
in the lower half-plane, so that we expect the phase behavior
to be somewhat erratic. This effect will be more pronounced
if the reverberant field is not diffuse but suffers from focused
echos or other irregularities.

If we set d51 and assumegR!1, then the right-hand
side of~24! is simplified and increased in magnitude, so that
the condition so derived,

a@S rRDM21 c

2R
, ~25!

should ensure propagant behavior unless the reverberant field
is very far from being diffuse.

D. Distribution of zeros

The discussion in the previous section shows that, if the
propagation distancer is small, thenuPu.uQu except close
to the pole line, so that the cloud of zeros must collapse
toward that line. Further, since the zeros were initially dis-
tributed in pairs on either side of the pole line, andP does
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not depend upon the imaginary component of the frequency,
this collapse must be symmetrical. It is important to see how
this collapse can be incorporated into the original discussion
of the statistics of the distribution of zeros put forward by
Tohyama and Lyon.

The reason that the criterion~25! differs from that ex-
pressed in~21! is presumably that there are subtle correla-
tions between the signs and magnitudes of the residues at the
poles ofZ12 in the simple expression~1! when the ratio of
the propagation distancer to the domain radiusR is suffi-
ciently small. While it is difficult to examine this problem
from first principles, we can at least see what modification
needs to be made to the arguments adduced by Tohyama and
Lyon3,5 to derive the distribution function~9! in order to
retrieve the situation. Such anad hocmodification does not
violate any established features of the statistical theory, since
we recall that only the asymptotic form of~9! has a theoreti-
cal justification.

There are two possible consequences of the existence of
correlations between the signs and magnitudes of the resi-
dues ofZ12 for small r . The first, which derives from corre-
lations between the signs, is that the densitygZ

PL of zeros
lying on the pole line may be greater than the random value
of gP/2 for small values ofr . If this increase has the form

gZ
PL5

1

2
gPH 22tanhFmS rRDM G J , ~26!

wherem is a constant andM is the dimensionality of the
domain, then the fraction of zeros lying off the pole line
varies as tanh[m(r /R)M] and we regain very nearly the form
of ~25! from the argument leading to~21!. For a one-
dimensional systemm50, since all zeros lie on the pole line,
while for systems in two or three dimensions we expectm to
be of order unity. This suggests thatm5(M21)m8, where
m8 is another constant, which would take care of this behav-
ior automatically.

A more likely alternative, and one that accords better
with our derivation of~25!, is that the correlation between
the magnitudes of the residues ofZ12 leads to a functional
dependence of the shape parametere in ~9!, of the form

e54 coth2@m~r /R!M#. ~27!

This leads to a collapse of the cloud of zeros toward the pole
line when r!R, and to results very similar to~26! for the
density of NMP zeros. Such a functional form fore is not
ruled out by the argument leading to~9!, since only the as-
ymptotic form of this expression is determined and the intro-
duction ofe as a constant is quite arbitrary. Once again, we
expect thatm5(M21)m8.

The form of the functional dependences suggested in
~26! and~27! should not be taken too seriously. In particular,
the hyperbolic tangent function has been introduced simply
as a convenient function that tends linearly to zero for small
values of its argument and approaches unity asymptotically
for large values of the argument. The precise form of the
behavior will almost certainly depend upon the shape of the
domain and the location of the excitation and observation
points within it. There is also the possibility of introducing

other nondimensional quantities such asc/RV or a/V into
relations, but such a complication does not appear to be nec-
essary.

E. Origin of propagant phase

While the argument above establishes the conditions un-
der which the contribution of reverberation to accumulated
phase is small compared with that of propagation delay, it
does not make clear the origin of the propagant phase.
Clearly this must arise in some way from details of the dis-
tribution of the zeros of the transfer function relative to the
poles. We explore two possibilities, one of which can be
discarded.

As the size of the system or its damping is increased, the
distribution of zeros of the transfer function condenses to-
ward the pole line, this condensation being particularly
rapid if the excitation and observation points are separated
by a distance that is small compared with the system dimen-
sions, as expressed by~27!. The distribution of zeros is, how-
ever, a statistical quantity and we can envision the possibility
that there is a small density of zeros lying at points (V6 j`)
in the complex frequency plane. Despite the condensation,
one of these zeros will remain of nonminimum phase, and
together the pair and the two poles that they fail to cancel
will contribute to the accumulated phase. It is conceivable
that the propagant phase arises in this manner, the statistics
of these zeros at infinity being determined by the correlation
between residues associated with separation between excita-
tion and observation points. This is not the explanation that
we favor, if only for the reason that, as discussed in Sec. II
above, it does not apply in the case of one-dimensional sys-
tems.

The second possibility is that the total distribution of
zeros is slightly stretched along the real frequency axis, rela-
tive to the distribution of poles, by an amount just sufficient
to account for the propagant phase. We showed in Sec. II that
this is what happens in one dimension, where we can find an
explicit closed expression for the transfer function, and it is
natural to expect something similar in two- or three-
dimensional systems, even though we are unable to demon-
strate it in a general case for lack of a closed expression for
the transfer function. It is clear, however, that special cases
such as a circular membrane excited at its center are one
dimensional from a mathematical point of view and so
should exhibit zero stretching, and it would be surprising if
this did not occur for asymmetric excitation as well. This
explanation of the origin of the propagant contribution to the
total accumulated phase is therefore preferred, though it must
be admitted that it has not been demonstrated unequivocally.

III. EXPERIMENTAL STUDY

While it is not the purpose of this paper to report an
extended experimental investigation, it is important to verify
that our conclusions are borne out by measurements. With
this purpose in mind, we have measured the accumulated
phase of the transfer function for wave propagation on sev-
eral plate structures having different characteristics. The
measurements were carried out using a Hewlett–Packard
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model 3567A spectrum analyzer and pseudorandom excita-
tion. The reference signal was derived from a force trans-
ducer on the exciter head, which was located part way along
a diagonal of the plate, and the response signal from a min-
iature accelerometer, the distance of which from the excita-
tion point could be varied, approximately along the same
diagonal. The physical arrangement is shown in Fig. 4, the
plate to be measured being supported on blocks at its edges.
This system can only approximate the true phase behavior
because its resolution becomes less than the mode spacing at
high frequencies. It is, however, representative of practical
measurement systems.

For each structure, an estimate of the decay constanta
was made by observing the decay of an impulsive excitation.
Two different methods of giving an adequately sharp impulse
were used, and both gave essentially the same results. In the
first, the plate was tapped with a thin strip of steel, while in
the second a steel ball 8 mm in diameter was dropped onto
the plate from a height of about 15 cm and caught on the
rebound. In each case the decay of the vibration was re-
corded using a miniature accelerometer connected to a digi-
tal oscilloscope. The value ofa was taken as the reciprocal
of the time required for the amplitude to decay by a factore.
Since the shaker does not have zero mechanical impedance, a
check was made by repeating the measurement with the
shaker attached to the plate. This check confirmed that the
influence of the shaker on the decay rate was negligible.

The first structure tested was a uniform aluminum sheet
about 900 mm3700 mm and 3 mm in thickness. This sheet
had low losses, and there was no absorbing material at its
boundaries apart from simple supports. The frequency range
covered was such that waves propagated essentially as bend-
ing modes throughout, the shortest wavelength being about 6
cm at a frequency of 6 kHz. The measurements of phase
behavior at various distances from the excitation point
showed rather irregular behavior, as illustrated in Fig. 5. For
separations between excitation and measurement points less
than about 5 cm, the rate of rise of phase with frequency is
comparable with that expected for bending-wave propaga-
tion at the separation studied, except for some apparently
random jumps of 2p which may be due either to isolated

NMP zeros or perhaps to the analysis algorithm. At greater
separations the rate of increase of phase is much greater,
though this is not a monotonic function of separation for
distances in excess of 40 cm. The rate of increase of phase
decreases with increasing frequency.

The value of the damping coefficient deduced from re-
verberation measurements on the sheet isa'36 s21 when
the signal is low-pass filtered at 2 kHz, anda'56 s21 when
it is high-pass filtered at 10 kHz. SettingM52 in ~24! and
noting thatc'2.2v1/2 m s21 for this plate, which is about
300 m s21 at 3 kHz, we expect to observe propagant behav-
ior only for r less than about 5 cm. This is in good agreement
with the results displayed in Fig. 5. The phase curve forr55
cm shows very nearly propagant phase behavior, except for a
few jumps of 2p that can be attributed to residual NMP
zeros, while the curves for higher separations have high rates
of phase increase that can be attributed to reverberant behav-
ior. The difference in slope between the reverberant curves at
low and high frequencies is about a factor 2, which is what
we expect from the measured frequency variation ofa. The
rather low modal density associated with bending waves
contributes to the irregularity shown in the phase plots in the
figure.

An alternative analysis of this data is given in Fig. 6, in
which the accumulated phase at a given frequency is plotted
as a function of separation between excitation and measure-
ment points. The sharp rise and the reverberant phase pla-
teau, first discussed by Lyon,1 are both clear. The fact that
the reverberant phase plateau rises less than linearly with
frequency in this range is again an expression of the fact that
damping increases with frequency. The quantitative agree-
ment between theory and experiment for the reverberant
phase plateau values, obtained by integrating 1/2a over the
frequency range concerned, is not good, however—the calcu-
lated reverberant phase is, for each frequency, two to three
times the measured phase.

The solution to this apparent anomaly lies in the physi-
cal properties of the system. The aluminum sheet is suffi-
ciently thin that wave propagation is by bending waves over

FIG. 4. Measurement setup for the experiments.

FIG. 5. Accumulated phase as a function of frequency for an aluminum
panel, measured at several different separations between source and detec-
tor. Note the rapid rise and irregular behavior.
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the whole frequency range studied and, as discussed before,
the modal densitygP(V) for this case is constant, the actual
value being (S/4p)(rh/K)1/2, whereS is the plate area,h its
thickness,r its material density, andK its bending stiffness.
The modal overlap, defined by the quantityH5agP , is
therefore only about 0.45 so that it is not legitimate to use the
asymptotic formp/Aeb2 of the probability distribution of
zeros~9!. Retaining the full form~9! then leads not to the
expression~11! for the group delaytG but rather to the
smaller quantity

tG8 5tGH@12~2/p!tan21~2H/p!#, ~28!

as has been pointed out by Tohyamaet al.5 For the particular
aluminum plate used in our experiment,gP(V)'0.01 and
a'50 over the range of measurement, so thatH'0.5 and
tG8 ' 0.4tG . This leads to a factor 0.4 in the expected rever-
berant phase plateau and adequately explains our experimen-
tal results.

It is informative to discuss the plots of Fig. 6 against the
background of our tentative resolution of the conflict be-
tween Eqs.~24! and~21! as set out in~25! and~26!. For this
aluminum sheet, the value of the equivalent radiusR on an
area basis is 45 cm and the dimensionalityM52. If we
assume thatm'1.5 in ~26!, then we expect the measured
phase to rise steadily with distancer up to aboutr'40 cm
before saturating at the reverberant phase plateau appropriate
to the measurement frequency. This is just what is observed
in Fig. 6, lending confirmation to our proposals.

The next structure investigated was a uniform plane
honeycomb panel with carbon fibre reinforced composite en-
closing sheets, actually part of an aircraft structure. The
panel thickness was about 10 mm and the piece studied was
about 1-m square. This panel was thick enough that wave
propagation was essentially in the form of shear waves above
about 5 kHz, but below this frequency the waves had some
bending component. The internal damping was very high
because of the properties of the honeycomb core. As a result,
the phase characteristic showed essentially simple propagant
behavior for source and detector located almost anywhere on

the panel. Close proximity of the measuring point to one of
the free edges did not cause any significant change in behav-
ior.

The results of two sets of measurements, for propagation
distances of 10 and 20 cm, respectively, are shown in Fig. 7.
The simple propagant phase behavior is clearly evident, the
only complication being a jump of 2p of the upper curve,
which may either be instrumental or else reflect the presence
of an isolated NMP zero. The slight curvature of the plot at
low frequencies indicates the presence of a dispersive bend-
ing component in the otherwise predominantly shear waves.
It is not clear whether or not there is some contribution from
NMP zeros at very low frequencies or whether the apparent
offset of 2p is instrumental in origin.

From the slope of the phase curves, the wave speed in
the plate is about 600 m s21 andR'0.5 m, so that from~24!
the condition that propagant behavior be observed for a
propagation distance of 20 cm is thata.300 s21. Measure-

FIG. 8. Accumulated phase as a function of frequency for a table top,
measured at two different differences between source and detector.

FIG. 6. Accumulated phase as a function of distance between source and
detector for an aluminum panel, measured at several frequencies. The pla-
teau is the reverberant phase in each case.

FIG. 7. Accumulated phase as a function of frequency for a composite
panel, measured at two different separations between source and detector.
The slope of the curve is the propagant phase delay, with the curvature at
low frequencies showing bending wave dispersion.
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ments of the value ofa were a little difficult because of the
high decay rate of the signal and some anomalies in behav-
ior. The estimated value ofa is greater than 500 s21 and
probably close to 2000 s21, which adequately satisfies this
condition and indeed allows propagant behavior to be ob-
served over essentially the whole plate.

Finally, to show the generality of the behavior, we car-
ried out a similar set of measurements on a space about 1 m
across cleared on a wooden laboratory bench of unknown
structure and overall dimensions about 2 m31.5 m. The au-
dible response of the bench to a sharp blow indicated that it
was highly damped, and the measured value ofa'1000 s21

confirms this. Typical records for this case, at propagation
distances of 10 and 20 cm, are shown in Fig. 8. The results
show simple nondispersive shear-wave propagation over a
wide frequency range, with a degree of irregularity which is
probably due to the more complicated structure and proper-
ties of the bench.

IV. CONCLUSIONS

This discussion has clarified the conditions under which
reverberant phase or propagant phase behavior may be ob-
served in extended systems. The condition for observation of
propagant phase behavior is expressed in Eq.~25!, or in
greater detail in~24!. Our conclusions are not in disagree-
ment with those of Lyonet al., but extend them. Reverberant
phase behavior is characteristic of systems with more than
one dimension that have low damping, particularly when the
measurement point is distant from the source. It is shown
particularly well in bending wave propagation on metal pan-
els. Conversely, simple propagant behavior is observed in
well-damped systems and particularly when the measure-
ment point is close to the source. These conclusions are by
no means surprising, but the detailed examination above has
shown how they are related to the modal analysis of these
structures.

In the process of reexamination of the theory underlying
the phase characteristics of the transfer function, we have

been led to extend the conclusions of Lyonet al. concerning
the distribution of zeros of the transfer function in the com-
plex frequency plane, as set out in Eq.~26! or ~27!. This
extension, although tentative in form, removes the anomalies
that we identified in the original treatment and allows its
extension to a wider range of physical situations.

The robustness of propagant phase behavior in platelike
structures such as honeycomb composite panels, and even in
thick panels of rather lower damping, confirms the basis
upon which nondestructive testing procedures involving
measurements of propagant phase have been developed.
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