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Summary

The acoustical behaviour of s1mp1e horns of parabolic, conical and exponennal profile is analyzed
* and explicit expressions are given for the impedance coefficients Z, ;. Wavefront curvature effects are
included and the discussion is extended to investigate the effect of obligue truncation, which gives
the horn a shape closely similar to that of a typical vertebrate pinna. The effects of higher modes- . .. -
are discussed qualitatively and the conditions under which these can be neglected are outlined. All
horns are shown to act as efficient pressure transformers over only a restricted bandwidth, the limits
of which are determined by flare rate and mouth diameter. For a horn with throat area S, and
mouth area §, the maximum blocked-throat pressure gain is 10log,, (4 S,/S;) decibels; the gain
reduces to 0dB at low frequenmes and may become negative at very high frequen01es Oblique
truncation raises the maximum gain above that of a horn truncated normally with the same
minimum throat-to-mouth distance. It also moves the axis of maximum acoustic response away
from the geometric axis of the horn towards the normal to the oblique mouth. This shift is large at
low frequencies, becomes slightly negatjve at mid frequencies, and approaches zero at high frequen-
cies. Use of these results in the analysis of model auditory systems is outlined.

" Schrig abgeschnittene, einfache Trichter: Idealisiertes Modell fiir die Pinnae von Wirbeltieren
Zusammenfassung '

Es wird das akustische Verhalten von einfachen Trichtern mit parabolischem, konischem und
Exponentialprofil untersucht, und es werden explizite Ausdriicke fiir die Impedanzkoeffizienten Z;;
angegeben. Dabei wird die Wirkung der Wellenfrontkriimmung eingeschlossen, und die Behandlung
wird ausgedehnt auf die Untersuchung der Wirkung schriigen Abschneidens, was dem Trichter eine
Form gibt, die der einer typischen Wirbeltier-Pinnae nahekommt. Die Effekte von h6heren Wellen-
moden werden qualitativ diskutiert und es werden die Bedingungen angegeben, unter denen sie
vernachlass1gt werden konnen. Es wird gezeigt, daB alle Trichter eine Drucktransformation nur iiber
eine beschrinkte Bandbreite bewirken, wobei die Bandgrenzen von der Offnungsrate und dem
Ausgangsdurchmesser bestimmt werden. Fiir einen Trichter mit dem Eingangsquerschnitt S,
und dem Ausgangsquerschnitt S, ist der maximale Druckgewinn bei verschlossenem Eingang
101g (4 S,/S;) Dezibel; der Gewinn verschwindet bei tiefen Frequenzen und kann bei sehr hohen
Frequenzen negativ werden. Ein schriges Abschneiden erh6ht den maximalen Gewinn iiber den
eiries gerade abgeschnittenen Trichters mit demselben Minimalabstand zwischen beiden Offnungen.
Es verschiebt auBerdem die Achse maximaler akustischer Ubertragung von der geometrischen
Trichterachse auf die Normale der schrigen Ausgangséffnung hin. Diese Verschiebung ist groB bei
niederen Frequenzen, wird leicht negativ bei mittleren Frequenzen und verschwindet allmahlich bei
hohen Frequenzen. Es wird der Nutzen dieser Resultate bei der Analyse von Gehdrmodellen
dargelegt.

Les cornels simples a troncature obligue: des modéles idéaux pour les pavillons d’oreille des vertébrés

Sommaire

On rappelle le comportement acoustique des cornets aux profils les pius simples: parabolique,
conique et exponentiel; on fournit aussi des expressions explicites pour leurs coefficients d’impédance
Z,;. On étend Iétude aux effets dus 2 la courbure des fronts d’onde dans le cornet. Puis on aborde
l’etude des effets d’une troncature oblique, qui peut donner au cornet tronqué une forme approchant
assez bien celle d’un pavillon d’oreille typique de vertébré. On examine qualitativement les effets des
modes supérieurs en soulignant les conditions sous lesquelles ils peuvent &tre négligés. On observe
que tous les cornets agissent bien comme des transformateurs de pression acoustique, mais seule-
ment sur une bande de fréquences restreinte, dont les bornes sont déterminées par le diamétre de
I’embouchure et le taux d’évasement du cornet. Pour un cornet dont la section droite est S, 4 la gorge
et S, 4 Pembouchure, le gain maximal de pression (3 entrée bloquée) est de 10log,, (4 S,/S;) dB; mais
ce gain tombe 4 zéro dB aux basses fréquences et peut devenir négatif aux trés hautes fréquences.
Une froncature oblique éléve le gain maximal au-dessus de celui d’un cornet semblable mais a
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troncature normale, pourvu que soit respectée la distance gorge-embouchure. Elle décale aussi ’axe
de la réponse acoustique maximale en I'écartant de Paxe géométrique du cornet pour le rapprocher
de la normale 4 la troncature oblique. Ce décalage est important aux basses fréquences, puis il
diminue pour devenir faible et négatif aux fréquences moyennes et retourne a zéro aux fréquences
hautes. On insiste pour finir sur les applications de ces résultats pour analyser les modéles de

systémes auditifs.

. Introduction

It is common knowledge that the external pinnae of
animals such as cats, dogs and bats behave as acoustic
horns to amplify the incident sound pressure and
confer additional directional discrimination upon the
auditory system. It is also generally well known that
simple horns exhibit some sort of cut-off frequency
above which they are efficient but below which their
performance deteriorates. It is much less widely
known that there is an upper cut-off frequency for
horns of finite length above which their efficiency as
acoustic receivers also falls to a low value.

Unfortunately the standard texts such as Morse [1],

" Beranek [2] and Olson [3] discuss horns only in a
rather different context, and the same is true of the
more specialist literature [4, 5]. Even publications
dealing with auditory systems either deal with very
limited aspects of the problem or else give insufficient
detail about the general case [6].

Our purpose in the present paper, therefore, is to
present an extended treatment of the behaviour of
simple finite horns, particularly when the mouth
opening is oblique to the horn axis, in such a form as
to be useful in the analysis and understanding of audi-
tory systems. The results are, however, of more gener-
al interest in acoustics, since they do not seem to have
been given explicitly before.

We recognise from the outset that while an oblique-
ly truncated horn of approximately conical profile
is a good model for the pinna of an animal like the
kangaroo, the cat and perhaps the bat, the same can-
not be said of the pinnae of primates such as man.
While there are traces of horn-like behaviour in such
primafe ears, the anatomy of the pinna is sufficiently
convoluted and asymmetrical that its acoustical
behaviour is better arfalyzed by using an entirely dif-
ferent idealized model [7, 8]. B

1. Response of a normally truncated horn

In most first-order treatments of acoustical systems
it is adequate to use a one-dimensional formalism. For
a horn this implies the neglect of duct modes other
than those corresponding to plane-wave propagation,
or perhaps spherical-wave propagation, in the horn,
so that conditions at the mouth or throat are ade-

quately specified by given the acoustic pressure p and
volume flow U into the horn. Higher modes can in fact
propagate from the mouth into the horn until the
horn diameter becomes comparable with the sound
wavelength, beyond which point such modes are at-
tenuated. We will see later that such higher modes
begin to have an effect at very high frequeticies, even
for symmetrical horns with symmetrically located
pressure transducers. When symmetry is absent,
higher modes may become important at lower fre-
quencies [7]. It is, however, a good first approximation
to consider only the lowest-order mode and initially
to assume exact axial symmetry. We stress that here
we are investigating the model system — real auditory
systems will not satisfy our assumptions exactly [9].

If we adopt the definitions and sign conventions
given in Fig. 1, then the acoustic behaviour of the horn
is completely specified by the acoustic impedance co-
efficients Z;; defined by

pi=2Z,U +2,,U,, 1)
P2=Z2 U +Z,,U,, )

where Z,, = Z,, and we assume a time variation
exp (j w ). Solutions of the equation for wave propa-

-gation in a horn generally give the input impedance

p1/U; at the throat )‘Vﬁen the mouth is loaded with an
external impedance Z; [3, 10]. It is a matter of simple
algebra to derive the coefficients Z; ; from these results.
In the sections below we give explicit results for para-
bolic, conical and exponential horns, not because
these are necessarily particularly good approxima-
tions to real auditory system components, but rather
because they are analytically simple and comprise,
between them, horn profiles with decreasing, constant,
and increasing flare rates, as shown in Fig. 2. Indeed
we shall find that, for typical rather short auditory
horns, the acoustic behaviour is not very sensitive to

Area §,

Area §,

Fig. 1. Definition of acoustic quantities for a horn.
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Fig. 2. Horn profiles: a) parabolic, b) conical, and c) expo-
nential. :

the horn profile, for a reasonable range of variation,
once mouth and throat diameters and horn length
have been specified. /

1.1. Parabolic horn

The parabolic horn belongs to the family of Bessel
horns [5] for which the cross-sectional area S(x) at
position x along the horn axis has the form

S(x) = Sy x™, : (3)

where m is a constant. For the parabolic horn m = 1.
In this and other cases, S (x) should strictly be the area
of an appropriately curved wavefront, but it is usually
adequate to set it equal to the normal horn cross-
section.

If the throat and mouth areas are S; and S, respec-
tively and the horn Jength [, then we can assign coordi-
nates x;, X, to the throat and mouth by '

x; =18/(S; = 81), x,=18,/8,—§)). 4

The impedance coefficients are then found to be

, _gg[%wmnﬂw%»—hmx»mwxa »
YOSy [Ty (kx) Ny (kxy) — Jy (kxp) Ny (kxy) |

7 _j_Q_C|:J0(kx2)N1 (kxl) —J; (kxl)No(kxz):I
2 S, Jl(kxz)N1(kx1)_J1(kx1)N1(kx2) ’
L, ___ec ) (6)
2= Sy Sz)llz T k(xy xz)l/z]

1
’ [Jl (kx,) Ny (kx,) — Jy (kx,) Ny (k xl):l’ M
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where ¢ is the density and ¢ the speed of sound in air,
k = w/c where w is the angular frequency, and J,, N,
are respectively Bessel functions and Neumann func-
tions (Bessel fﬁgqtions of the second kind) of order n.

1.2. Conical horn

For a conical horn we have #i = 2 in eq.(3) above,
and we can assign coordinates x; and x, to the throat
and mouth respectively by the relations

x; = IST2)(S3 — $17),  x, = 1S32/(SY* — Si3). (8)
If we write ’
kO, =tan"'kx;, k@, =tan"'kx, )

then we find

N .
joc|sink(l— 6,)sinkf, |
Ly == 2) : (10)
S, | sink(I+6,—8,)
joc[sink(l + 6,)sink6
Zon=—" |2 Jsin k0, (11)
S, | sink(l+6, —0,)
jec sink6,sinkf,
Z,=— ,
12.(&@”me+%—%) 12
1.3. Exponential horn
For an exponential horn we can write
S(x) = §,e*™, (13)
where
m = (1/2]) In(S,/Sy). (14)
If we define the quantities b and b’ by
b=jb = k> —m?? (15)

then b is real above a cut-off frequency, gii/e,n‘by k=m
while b’ is real below this frequency. If we further
define

6=tan"'(m/b), € = —jtanh™(m/b’) (16)
then, for k > m or w > mc,
_ jec[cos(bl+6)
Z11= S—l[ sinbl @7
joclcos(bl — 6)
Zyy= — e | — ———
22 Sz[ sinb1 a8
jec cos 6
Zip= — | ——
12 (S, S,)M? [sinbz] (#9)
while, for k <m or w < mc
oc | cosh(d'l+ 8) :
Zi= = | —— 20
1 81|: sinh b'1 20
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oc|cosh(b'l— )
Zpy= ——|
2 S, [ sinh b’ @)
oc cosh 6’ :
Zi,=— .
12 (S, 8,)1/2 [sinh b J @2)

1.4. Radiation impedance

In all the applications we shall be considering, the
horn will have its mouth open to act as a sound re-
ceiver. We shall presently invoke the principle of reci-
procity to examine this case, but first we fieed to know
the radiation impedance for outgoing waves at the
open mouth. The exact expression for a horn has not
been evaluated and even that for an unbaffled cylin-
drical pipe is extremely complicated [11]. For our
present purposes it will be adequate to use the approx-
imations

_J025(ka)®(ec/na®) ka<2

Rea) ~ {(e ¢/na?) kas2 B
>\ _ J06ka)(oc/na®) ka<16

fm ) = {(1.5/k decrad ka>16 &Y

where a is the radius of the horn mouth [12]. The
errors involved in these approximations because of
neglect of wavefront curvature do not significantly
affect our results.

1.5. Wall losses

It is possible to include the effects of viscous and
thermal losses to the walls by replacing k in the coeffi-
cients Z;; by the complex quantity :

25)

where & is an appropriate average of the attenuation

- coefficient for a section of circular pipe taken over the
length of the horn. Since this attenuation coefficient is
inversely proportional to the local horn radius a, we
can write [13] ‘ ’

R0 012 (1a)y,,

k—>w/lc+]ja,

(26)
where & and (1/a) are both in (metres)™ ! and the aver-
age of (1/a) is taken over the whole horn length. In
biological horns & may be larger than suggestéd by
(26) because of the presence of many fine hairs on the
inner surface of the horn.

Inclusion of wall losses in this way complicates the
formulae for the Z; ; and, since « does not scale directly
with ka as do the other quantities, the immediate
generality of some of the results is lost. It is simple to
see, however, that insertion of (25) into the expressions
for the Z;; degrades quantities S{ICh_\&S the blocked-
throat gain, which we discuss in the next section, by a
factor exp (— &I). For the pinnae of typical vertebrates
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Fig. 3. a) Thévenin network for a horn excited by an axially
incident plane wave. In this case U; = 0. b) Network for a
driven horn radiating freely. Here U, # 0.

this performance degradation is less than 1 dB, unless
there is substantial loss contributed by hair inside the¢
ear. ’

For horns of rather small flare rate, however, the
damping of the lowest resonances may be provided
largely by wall losses rather than by radiation from
the mouth. Neglect of wall losses will therefore lead to
unduly prominent peaks for these resonances. In what
follows here, however, we omit any correction for wall
losses in the interests of simplicity and generality. The
moderately large flare rate of typical pinnae makes
this reasonable.

1.6. The horn as a receiver

To evaluate the behaviour of a horn as an acoustic
element receiving plane waves incident along its axis
we expect to be able to treat the system as shown in
Fig. 3a. The incident plane waye with free-field pres-
sure p, is represented, using Thévenin’s theorem, by a
pressure source of magnitude p’ in series with an
acoustic impedance Z’, and we require to determine
the values of these two quantities.

To do this we invoke the reciprocity theorem and
calculate the pressure amplitude on the axis at a large
distance R produced by a source of volume flow-U;
located in the otherwise blocked throat of the horn.
This situation is shown in Fig. 3b from which, using
(2), we find ‘

U,=—U,Z,,[(Z,, + Zyg). (27

Treating the flow — U, as approximately equivalent
to the same flow out of the end of an unbaffled pipe,
we can evaluate the pressure p(R) at R in the limits,
ka < 1and ka > 1.If ka < 1 then the resistive part of
the radiation impedance is only half that for a pipe set
in an infinite baffle [14], so that the radiated power is
less by 3dB than in the baffled case. The radiation,
moreover, is isotropic into a 47 solid angle rather
than 2 7 as for the baffled case, so the radiated intensi-
ty on the axis is less by 6dB. If ka > 1 however, the
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radiation resistance is the same in each case and, ex-
cept for minor side lobes, the angular distribution of
intensity is nearly the same [15]. We therefore see that

—jooUy,e #*R/4gR for ka<1

. - . 28
—jowU,e #*R2nR for ka1 28)

p(R) = {
The transition between these two forms has no simple
analytical representation, but it will be adequate for
our present purposes to use the interpolation approxi-
mation

PR)~ —[jewoU,e **/4nR](1 + tanhka), (29)

where U, is given in terms of U, by (27). There is no
significance in the choice of a hyperbolic tangent func-
tion except that it gives a cross-over between the two
forms of (28) of about the correct width at about the
correct k a value.

Now, invoking the reciprocity theorem, a simple
source of strength U, at R will produce a pressure
P(R), given by (29), in the blocked throat of the horn.
But this simple source produces a free-field pressure

Po=jowU e *¥/4nR (30)

at the mouth of the horn, so that from (27) and (29) we
can write -

py ~ — po (U,/U)(1 + tanhka)

X po(l +tanhka)Z, (Z,, + Zz). (31)

Ve

Comparison of this result with that for p, in the net-
work of Fig. 3a shows that the incident plane wave

behaves like a pressure generator with
P =po(1 +tanhka), Z' = Z,. 32)

The effective source pressure p’ thus doubles from the
free-field to the infinite-baffle value as ka goes from
small to large relative to unity.

1.7. Wavefront curvature

At high frequencies the effect of mismatch between

the curved wavefront in the horn and the plane wave -

incident from along the axis becomes significant. If we
consider only the lowest transverse mode thern, to a
good approximation, the wavefront in the horn is a
spherical cap with radius of curvature determined by
the local flare angle of the horn as shown in Fig. 4.
This is true at low frequencies for all horn shapes with
moderately small flare [5] and is also clearly true for a
conical horn in the high-frequency “optical” limit.
Higher modes upset this generalization at high fre-.
quencies for horns with nonuniform flare, but these
modes can be neéglected to a first approximation in our
present application, as we discuss later. If « is the
semi-angle of the cone locally tangent to the horn at
its mouth as shown, then the phase mismatch at a
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Fig. 4. Wavefront curvature at the mouth of a horn.

distance r from the axis is

¢ () =~ ka(r/a)® tan af2 (33)

and the effective pressure coupling the incident-plane
wave to spherical wave is no longer p’ but rather

1 a .
"o ! '_J¢(")2
P=— gp € nrdr (34)

or, neglecting phase,
F,(ka)=p"/p'| = sin(katan a/2)/(%katan «/2). (35)

If, instead of having an-incident plane wave, we
have an incident spherical wave from a source at dis-
tance R along the axis, then we should make the re-
placement

tana/2 —»tana/2 + a/2 R

in (35).

The effect of the correction (35) from p’ to p” is
negligible at low frequencies but it reduces the horn
response at high frequencies. The effective driving
pressure p” becomes zero when

(36)

2nmw
a =
tan o/2

or as modified by (36).

To be completely consistent, we should really have
included the effects-of wavefront curvature in the dis-
cussion leading up to (32). To do this we introduce 2
correction factor which is simply F, (k a) into (28) and
(29), and it reappears in (32) in exactly the manner
discussed above.

(37

1.8. Higher modes

At frequencies high enough that wavefront curva-
ture produces a significant effect, an incident plane
wave will also excite higher modes within the horn.
These modes will propagate towards the throat of the
horn until the sound wavelength becomes nearly
equal to the local horn diameter. Beyond this cut-off
point the mode in question will have infinite phase
velocity and large attenuation.
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If the pressure transducer in the throat of the horn
responds only to the lowest horn mode, then the pres-
ence of higher modes has no effect. A plane-piston
coupling meets this condition. For other transducer
couplings such as a flexible diaphragm, however, the
response to the second axisymmetric mode may not
be much less than that to the first mode [16]. For a
flexible diaphragm stretching right across the horn
throat, response to the second axisymmetric mode can
be shown by simple integration to be about — 12dB
relative to response to the first mode. Higher modes
that are not axisymmetric will, however, have no effect
provided that the transducer is axisymmetric. The in-
teraction of two or more modes will clearly depend on
details of the transducer and horn-throat geometry,
but we may expect it to shift the positions of. the
response zeros given by (37). In general, however, the
envelope of F,(ka) should provide an approximate
upper limit to the envelope of the actual response. The
exact treatment of these higher modes will be the sub-
ject of another publication.

1.9. Horns in acoustic systems

The acoustic behaviour of a horn as a receiver of
axially incident sound is specified by the network of
Fig. 3a, with the definitions (32) and (35) determining
the driving pressure. In principle any acoustic system
can be coupled to the throat of the horn — typically a
short cylindrical meatus, a heavily damped resonant
tympanum and a backing cavity — and standard meth-
ods can then be used to analyse the whole system [6].

It is not our purpose to do this here, but it is appro-
priate to present the results of a few calculations and
measurements to illustrate the general behaviour. To
do this we have selected the case of a horn the throat
of which is blocked by a measuring microphone of
high acoustic impedance. Such a system presents no
disposable parameters and is easily reproduced. It
bears only a small relation to auditory systems, in
which the impedance of the tympanum is usually only
two or-three times the input impedance at the horn
throat.

The acoustic gain p,/p, of such a system relative to
the free field is readily calculated and, in decibel terms,
has the value

Gk Zi,
(ka) =20log;09| Z7——7-
22 R

(38)

where F, (ka) is given by (35). G cannot be written as
a function of k a alone if wall losses are included, as we
remarked before. -

Reference to the explicit forms for the Z;; given in
(5) to (22) and the limiting forms of Zy given in (23) to
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Fig. 5. Calculated curves for the gain of horns of (a) parabo-
lic, (b) conical, and (c) exponential profile for an axially inci-
dent plane wave when the measuring microphone blocks the-
horn throat and responds only to the lowest mode. The
mouth radius is a, the throat radius 0.1 g and the length 2.5 a
in each case, and ka is a frequency parameter (k = w/c).

(24) allows us to remark that in the horns considered,
and indeed for any reasonably smooth horn profiles,
lim G(ka) =0dB (39

ka—0

while in the rangek a > 1 but before the fall in F, (k a)
G(ka) — 10log,,(4 S,/S;). (40)

For higher frequencies still, F,(ka) < 1 and G (ka) <0.
" Three typical examples for parabolic, ‘conical and
exponential horns with the same mouth and throat
diameters and the same length are shown calculated in
Fig. 5. Calculations took only a few minutes on a
small desk-top computer. Clearly the horn is an effi-
cient acoustic transformer over only a limited frequen-
cy band. There is a significant but not very large differ-
ence between the response curves for the three horns

calculated.

Fig. 6 compares the measured response for a
conical horn of axial length 192 mm, mouth diameter
148 mm and throat diameter 7mm excited by an axial
source at a distance of 1.7m with the calculated re-
sponse. The horn was constructed of 16 gauge alumin-
ium in such a way that a 1/4 inch condenser micro-
phone fitted snugly in the throat. The microphone
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Fig. 6. Calculated gain curve for a conical horn of semi-
angle 20°, mouth diameter 148 mm and throat diameter
7mm with the microphone blocking the horn throat and
responding only to the lowest mode. The broken curve shows
the measured response with a normal condenser micro-
phone.

output was recorded as a function of frequehcy from
100 Hz to 30 kHz and from this was subtracted the
corresponding curve for the same microphone located
in the free field at the position of the horn mouth (in
the absence of the horn) to give the horn response. The
agreement is acceptable over the whole frequency
range. '

The differences betweerf the two curves can be ac-
counted for, qualitatively, from known shortcomings

in both theory and experiment. In the first place the

calculations neglect wall losses as described by (25)
and (26). Inclusion of these losses woul lower the cal-
culated gain curve, particularly at high frequencies,
but the extent of this lowering is less than 1dB at
10kHz. Similarly the allowance for the finite acoustic
impedance of the microphone would further lower the
cugv»e,/but this effect is again considerably less than
1dB.

The residual disagreement at low frequencies can be
ascribed in part to inadequacies in the interpolation
formula (29) and in part to the effects of wall reflec-
tions in the experiment. The residual disagreement at
high frequencies is almost certainly due to neglect of
higher modes within the horn. The experimental curve
lies below the theoretical curve and the first zero is
shifted, which is what our discussion would lead us to
expect. The experimental curve does have further
maxima and minima above 20kHz of about the
magnitude expected, but their frequencies are not in
good agreement with those predicted for the first
mode alone.

2. Directionality of obliquely truncated horns

From a consideration of the complexity of a rigo-
rous calculation of the radiation from a normally

N. H. FLETCHER and-S. THWAITES: MODELS FOR VERTEBRATE PINNAE

ACUSTICA
Vol. 65 (1988)

truncated cylindrical pipe [11] it is clear that no really
accurate quasi-analytical calculation of the radiation
pattern, or equivalently the angular response, of an
obliquely truncated horn can be attempted. On the
other hand the problem is physically interesting and
its applicability as a model for vertebrate pinnae is
sufficiently close that even a rather roughly approxi-
mate treatment may give valuable insight. It is in this
spirit that we proceed. The methods are applicable to
any sort of horn and any geometry of truncation, but
for simplicity we limit discussion to comnical horns.

Our method of approach relies upon integration of
the primary radiation pattern produced by sources
distributed over the normal mouth of the horn, upon
which is superposed the radiation pattern produced
by coherent scattering of this primary beam from the
sloping upper wall of the cone. The accuracy of the
calculation does not warrant inclusion of Secondary
scattering of this beam.

The heart of the difficulty is the lack of any appro-
priate point-source radiation function (Green func-
tion) for the complicated geometry of this problem.
Indeed only the Green functions for the wave equa-
tion in the infinite region and in the semi-infinite re-
gion with a plane or conical boundary are readily
available. We must therefore devise approximate
Green functions applicable to the present problem.

2.1. Approximate Green functions

For simplicty we consider initially the velocity po-
tential dy produced at the point r by a source of
strength dQ located at '. If we suppress the time varia-
tion factor exp (jwt), then in the infinite domain

d ; .

dyy-= —~ ﬁ?ﬂe_mrﬂ l=dg G, (r,r), (41)
where 9, (r,r) is the free-space Green function. Simi-
larly, if we consider the velocity potential generated by
the same source dQ lying this time on an infinite baffle,
then its image in the baffle doubles its effective source
strength (while restricting its radiation solid angle to
2 w) and the appropriate Green function is .

1
2x|r — |

~ ke =r'

‘(qoo (l’, rl) = - (42)

Our first task is to devise a Green function %, (r, ¥)
for a point source lying on a circular baffle of radius
a. We know that, in the far-field where |r — ¥'| > a

G (r,¥) > %, (r,¥) for ka<1
GE(r,r) > 9G, (r,¥) for ka>1.

(43)

It is thus a reasonable approximation to take

GE(r,¥) = %, (r,¥)(1 + tanhka). (44
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Azimuthal variation around the axis of the disc has
been neglected for simplicity because we will usually
be integrating over this angular coordinate. No par-
ticular significance should be attached to the analytic
form of the factor in (44), as in the related expression
(29).

In the very near field, r < a. we clearly have, for
all ka,

GN@r,r) - G, (rr)=2%,(r,r). (45)

In the near field, r ~ a, ‘where most reflections occur,
(45) gives approximately the correct strength for the
field but is less accurate in relation to the direction of
the gradient. An interpolation formula would neces-
sarily be rather arbitrary and, in the interests of sim-
plicity, we therefore use 2 %, as a reasonable approxi-
mation in the near field.

The second Green function we require relates to
scattering or reflection from the walls of the horn. The
procedure is to calculate the velocity potential, and
thence the veloeity, at these walls and superpose a
source-distribution that will cancel the motion of the
fluid at the position of the wall. To achieve this we
require an appropriately phased doublet distribution
over the wall, with sources on opposite sides being T
out of phase.

Again we know limiting forms for the Green func-
~ tion for this case. If y is the angle between r. and the
normal to the surface, then the far-field doublet Green
function for a large baffle has the form

GE(r,r) = 2%, (r,¥)cosy for ka> 1. (46)

Similarly for a very small baffle we have just a simple
doublet and the far-field Green function is

BE (1) ~ G, (r,¥)kacosy forka<1. (47)

If we neglect details of interference effects on the basis
that these will average out, then an appropriate inter-
polation between these forms is

?f #r)~ %, (r,¥)tanhka(l + tanhka)cosy. (48)

In this case, since we are not concerned with second-
ary scattering, we do not need a near-field Green func-
tion.

It is reassuring to remark that the results of the final
numerical calculation are not very sensitive to the
exact forms assumed for these Green functions. In-
deed, simple use of 2 %, throughout gives qualitatively
similar results.

2.2. Calculation

The formal calculation is straightforward, though
rather complicated. The principles can be understood
by reference to Fig. 7. The conical horn is assumed to
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Fig. 7. A horn of semi-angle «, truncated obliquely at
angle f. The normal mouth radius is a.

-

o

have a semi-angle « and a truncation angle 8 as shown
(B = 90° for normal truncation). The “normal mouth”
AOB has radius a.

The calculation proceeds as a radiation problem,
which is equivalent to the reception problem by reci-
procity. The normal mouth AB is covered by sources
of unit strength per unit area and the velocity poten-
tial Y at each point P of the sloping wall is calculated
using the near-field Green function %X given by (45).
The acoustic velocity in the direction of the normal n

to the reflecting surface at P is calculated as

v=—n-Vy (49)

and a doublet source density F v per unit area is
distributed on the surface at P, the sign of the source
density on the inside wall being negative.

‘When this has been completed for all points P, the
velocity potential radiated in direction 6 to the cone
axis is calculated, using ¥, given by (44) for the nor-
mal mouth and 4} given by (48) for the reflecting
walls. In this latter Green function, a is really some
average of the distance of each individual point P from
the edge of the wall, and clearly the normal mouth
radius is an adequate approximation to this. Finally,
since pressure is directly proportional to velocity po-
tential at any given frequency, the angular distribu-
tion of intensity is readily calculated. By appropriate

. normalization, the response at angle § can be com-

pared with the on-axis response for a normally trun-
cated cone of mouth radius a.
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2.3. Results

For a normally truncated cone the axis of maxi-
mum sensitivity corresponds, of course, to the geomet-
ric axis. By beginning with a constant acoustic flow in
the horn mouth we confine ourselves to discussing a
factor Hj(ka,0) that would multiply the horn gain
discussed in Section I of this paper, the axial response
for a normally truncated horn being taken as the refer-
ence level.

Two particular horns were calculated in detail using
the procedure set out above. Both had semi-angle
a = 20° and the angles of truncation § were 30° and
60° respectively. The 30° horn was qualitatively very
similar in shape to the pinna of a rabbit or kangaroo.
The calculations required only a few minutes on a
small desk-top computer.

In general for an obliquely truncated horn the axis
of maximum sensitivity does not coincide with the
geometric axis. For ka < 1 the response maximum is
broad, as is to be expected, and is directed at a large
positive angle 6* to the axis. As ka increases, 6% de-
creases sharply and may become negative for ka
greater than about 2. The calculated behaviour for the
two horns is shown in Figs. 8 and 9 respectively. The
limiting behavior as ka — 0 is not well defined in the
calculations, since the primary lobe of the angular
pattern becomes very broad for ka < 1, as indicated
by the —3dB curves in the figures, and the exact
direction 6* is sensitive to the precise form of the
approximate expression (48). This is not important in
a practical sense, since the response is nearly isotropic
for ka <05.

Also shown in these figures is the-calculated gain
H (6%) in the direction of maximum sensitivity relative
to the on-axis gain of a normally truncated horn.
H(0*)is 0dB for ka < 1, goes through a broad maxi-
mum near ka = 1, and then declines slowly towards
0dB as ka increases further. The maximum value of
H (6*)is about + 6dB for a horn truncated at 30° and
+ 3dB for a horn truncated at 60°. Such an increase
of gain is, of course, to be expected because of the
increased mouth area.

To check the calculations, measurements were
made on two metal horns in an anechoic chamber.
These horns were also made out of aluminium and
were truncated at angles, § = 30° and 60°. The axial
distance from the throat to the beginning of the mouth
was 192mm, the mouth diameter at this point was
148 mm and the throat diameter was 7 mm, all corre-
sponding to the normally truncated horn measured
earlier. The throat fitted into a face plate over a high
power one inch dome tweeter.

With a microphone placed about 1.7m from the
throat, and the horn mounted on a turntable, polar
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Fig. 8. Calculated angle 0* of maximum response and gain
H(6*) at that angle relative to the axial gain of a normally
truncated horn, for a conical horn of semi-angle « = 20°
truncated at an oblique angle § = 30°. Broken curves show
the angles at which the response is 3 dB down from its maxi-
mum, and points are the results of measurements. The radius
of the normal mouth of the horn is 4, and ka is a frequency
parameter (k = w/c).
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Fig. 9. Asfor Fig. 8 for a horn truncated less obliquely with
B =60°.

radiation patterns were obtained for k a values rang-
ing from 0.5 to 10. The angle of maximum gain, 6%,
was read from these and is shown plotted as points in
Figs. 8 and 9. The uncertainties involved in aligning
the horn and the receiving microphone and in reading
0* from the polar pattern amounted to about + 5° for

- each point. There was some difficulty in achieving all

the desired experimental conditions because of the
range of ka values involved. The horn truncated at
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B = 30° was 0.9m long. Consequently, the measure-
ments were made at a rather modest distance and
were not in the true far field. Nevertheléss, they con-
firm the conclusions reached in the calculations.

It is clearly possible to perform similar calculations
for horns-with different profiles. The general nature of
the analysis given above leads to the conclusion that
such horns should show similar deflection of the direc-
tion of maximum sensitivity away from the horn axis
at low frequencies and a similar increase in gain. Geo-
metrical considerations suggest that the conical horn
represents an intermediate case, with the directional
shift 6* being relatively smaller for an exponential and
larger for a parabolic horn.

3. Discussion

The two parts of this paper can now be combined
to give the total acoustic behaviour from an obliquely
truncated horn. We have comsidered this explicitly
only for the case of a conical horn but other profiles
can be treated similarly. The conical horn is a close
enough approximation to the pinnae of animals such
as kangaroos, rabbits and bats to give a reasonable
approximation to the behaviour.to be expected.

In PartI we evaluated the parameters Z;; and the
source parameter p” from which the behaviour of a
normally truncated horn acting ‘as an input coupler
from the free field p, to the rest of an auditory system
could be calculated.

As a particular case we calculated in (38) a universal
expression for the simple case in which the auditory
system was replaced by a pressure microphone of
large acoustic impedance. This was expressed as an
on-axis gain function G(ka). For a horn truncated
obliquely at an angle § less than 90°, we have calcu-
lated in’ Part II the gain Hj(k a,6) at angle 6, relative
to the gain of a normally truncated horn. This factor
essentially multiplies the input pressure p”. If
Hpy(ka, 0)is expressed in decibels then it can be simply
added to the on-axis gain G(ka) given by (38). The
calculation of H, (k a, 0) gives the direction 6* of maxi-
mum sensitivity for any value of k a and also the effec-
tive beam width of the horn in the 6 direction. For
reference we note that the angular response of a nor-
mally truncated horn has approximately the form

Hoo(ka,6)~ 2J, (kasin§)/kasin 0 (50)

where J, is a Bessel function of order 1 [17]. This
expression actually applies only for single-mode prop-
agation and with an infinite surrounding baffle. It is,
however, a good approximation in the unbaffled case
within the primary lobe region where kasing < 4.
From (50) the angular width of the response decreases
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with increasing frequency and this decrease is very
similar in the case of oblique truncation, as shown by
the 3 dB-down curves of Figs. 8 and 9.

Strictly one minor modification is required in this
analysis because the radiation impedance Z; of an
obliquely truncated horn is somewhat larger than that
of a normally truncated horn. The main effect is to
shift the first horn resonance, clearly visible in Fig. 5,
to a slightly lower frequency. This shift will, however,
generally not exceed about 10 percent of the reso-
nance frequency and so can be neglected.

When the horn is considered as a component of a
more complex auditory system, as is usually the case,
then we may wish to calculate the motion of a tympa-
num, or the pressure in front of it, for comparison
with experiment. The way in which this can be done
has been set out elsewhere [6]. The present analysis
provides all the mechanism for doing this by giving
the horn coefficients Z; ;, the cut-off function F,(ka),
the obliquity function H (k a, 6), and the total effective
source pressure

P ~po(1 + tanhka) F,(ka) Hy(ka,0), (51)

where p, is the free-field pressure in a plane wave
incident from direction 6. To avoid unduly‘ emphasiz-
ing the lower resonances of the horn it will generally
be necessary to include wall losses through egs. (25)
and (26) as well as in other parts of the system. It is not
our intention here to give any detailed application of
these results to auditory systems, though it is straight-
forward to extend results such as (38) to the case in
which, rather than being blocked at the throat, the
horn terminates in a damped resonant tympanum in
front of which the pressure p, is measured. If the im-
pedance of the tympanum is Z, then we simply make
the replacement

ZlZ ZIZZT

. - o
Zypy+Zy (Zap+ZQ)(Zy+Zy)— 27,

in (38). The two expressions are clearly equivalent in
the limit Z; — co, while the gain is substantially re-
duced if Z; < Z,;.

A similar, though more complicated, extension can
be made to the case where the tympanum is connected
to the horn throat by a short cylindrical meatus. The
calculated behaviour of such a system for the case
where Z; is a few times Z,; exhibits a gain behaviour
broadly similar to that of the blocked-throat horn and
has the same direcitonal properties. Measurements
made in this way on kangaroo ears [18] show horn
gain, horn bandwidth, and shift of axis of greatest
sensitivity in semi-quantitative agreement with the
predictions of our model.

(Received July 28%, 1987.)
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Note added in proof:

Attention should be drawn to the work of Dezso [1 9] who
has calculated the axial radiation from a horn in an infinite
baffle, including a correction for wavefront curvature. His
results agree generally with ours for this case when allowance
is made for the presence of the baffle.
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