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In molecular spectroscopy, an anharmonic oscillator has a nonparabolic potential which results in a
nonharmonic absorption spectrum, but the same oscillator treated classically has a precisely
harmonic vibrational spectrum. To avoid confusion, it is suggested that such an oscillator should
simply be called nonlinear. The term ‘‘inharmonic’’ is suggested as an appropriate descriptor for
classical oscillators, such as metal bars, that have nonharmonic vibrational spectra even in the linear
limit of small vibrations. © 2002 American Association of Physics Teachers.

@DOI: 10.1119/1.1509419#
u
he
r-
th
n
a

an
of
a

rm
-
r

d
in
th

s
in

be

g
c

ia
th
le

ced
-

hy
e a
pt,

a-
not

lar
r is

es
-
l
ich

ntial

tud-
ven
be

the

le

ive
ou-
that

y—
I. INTRODUCTION

This paper was provoked by the response of a colleag
working in the field of atomic and molecular physics, to t
author’s use of the word ‘‘inharmonic’’ to describe the ove
tones in the sound of a bell. Why not, he asked, use
common term ‘‘anharmonic’’? An explanation perhaps co
vinced him of the difference between the two terms and w
the subject of a brief Letter to the Editor of the Australi
journal The Physicist.1 However, because the confusion
terminology seems to be widespread, the matter is perh
worthy of a more detailed exposition.

II. SIMPLE HARMONIC OSCILLATORS

Everyone who teaches physics is familiar with the te
‘‘simple harmonic oscillator.’’ Briefly, it refers to a dynami
cal system with a single degree of freedom and a linear
storing force, as expressed by the differential equation

m
d2z

dt2
52K~z2z0!, ~1!

wherez is the displacement coordinate,z0 is the equilibrium
position,t is time,m is the mass of the moving particle, an
K is the restoring force constant. A term describing damp
could be added, but it is unnecessary in the context of
present discussion. The solution, of course, is

z~ t !5z01A sin~vt1f!, ~2!

where

v5~K/m!1/2, ~3!

A is the vibration amplitude, andf is a phase constant. Thi
oscillator can also be considered as a particle moving
parabolic potential wellV5K(z2z0)2/2.

The only mystery is why such an oscillator should
called ‘‘harmonic.’’ A harmonic series is well known in
mathematics and is the set$an% with an51/n. The relation to
music has been well established since the time of Pytha
ras, when pleasant sounds were found to result from plu
ing strings with lengths in the ratio of simple integers.2 In a
more modern context, complex tones with upper part
~that is, Fourier components of frequency higher than
fundamental! whose frequencies are exact integer multip
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of the frequency of the fundamental are commonly produ
by sustained-tone musical instruments,3 and these upper par
tials are called ‘‘harmonics.’’4

Here we have a system with just one frequency—w
should it be called harmonic? Perhaps melodic would b
better term. The added descriptor ‘‘simple’’ appears to be a
but it implies the existence of a ‘‘complex harmonic oscill
tor’’ or something of the sort, and that designation does
appear to have been used.

III. NONLINEAR OSCILLATORS

The word ‘‘anharmonic’’ appears in atomic and molecu
physics to describe a nonlinear oscillator whose behavio
described by

m
d2z

dt2
52 f ~z2z0!, ~4!

where the forcef (z) is a nonlinear function ofz, though
usually with a dominant first-order term at the amplitud
considered. The potential wellV(z) is then a distorted pa
rabola centered onz0 . A typical example is the potentia
between the two components of a diatomic molecule, wh
has the approximate form5

V~r !5ar2m2br2n, ~5!

wherer is the interatomic spacing, anda andb are positive
numbers. The particular case of the Lennard-Jones pote
hasm512 andn56.

The behavior of such a system has been thoroughly s
ied, not just as an isolated oscillator, but also as a dri
oscillator with dissipation, in which case the behavior can
truly complex and indeed chaotic.6,7 These complexities are
not of concern here, but rather simply the behavior of
one-degree-of-freedom system described by Eq.~4!. Because
the total energyE of the system is conserved, the partic
velocity is a simple function of position

dz

dt
56F2E

m
2

2

m E
0

z

f ~z2z0!dzG1/2

, ~6!

and the particle’s behavior is therefore a simple repetit
oscillation. Such an oscillation can be analyzed into its F
rier components, and these turn out to have frequencies
are exact integer multiples of the fundamental frequenc
they are exact harmonics of the fundamental.
1205rg/ajp/ © 2002 American Association of Physics Teachers
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An extreme example of such a nonlinear oscillator is
simple case of a particle in a one-dimensional box poten
V(z)50 for 2a,z,a andV(z)5` for uzu>a. If the par-
ticle mass ism and its energy isE, then the fundamenta
oscillation frequency is

v15
p

2a S 2E

m D 1/2

. ~7!

Plotted against time, the displacement follows a square-w
pattern, and the frequency spectrum is precisely harmo
with amplitudesAn54a/pn for n odd and zero forn even.

A reasonable terminology would be to refer to such a s
tem as a ‘‘complex harmonic oscillator,’’ or just a ‘‘harmon
oscillator,’’ or certainly a ‘‘nonlinear oscillator,’’ but some
physicists have chosen instead the apparently inapprop
term ‘‘anharmonic oscillator,’’ incorrectly implying by this
name that the overtone frequencies, or upper partials, are
harmonics, because the prefix ‘‘an’’ implies negation.

Nonlinear oscillators are common in areas other th
atomic and molecular physics, and indeed are at the hea
the process of sound generation in sustained-tone mu
instruments such as violins, clarinets, and trumpets,3 where
they are responsible for the generation of the rich harmo
sounds of these instruments. The fact that sustained-ton
struments produce sounds with harmonic overtones is
turn, responsible for the structure of Western music,
scales, concords, and discords.8

Returning to the question of nomenclature, we find
origin of the term ‘‘anharmonic’’ in the infrared spectra o
diatomic molecules.9,10 A simple harmonic oscillator with a
parabolic potential has, in quantum mechanics, the serie
energy levelsEn5(n1 1

2)\v, wherev is the classical fre-
quency given by Eq.~3!. The quantum selection rules in th
case dictate that transitions can occur only between leven
and n61 so that only a single vibrational absorption lin
would be observed. The spectrum is, of course, complica
by the presence of rotational levels. When the restoring fo
is nonlinear, as it always is in reality, the energy levels can
written as9,10

En5~n1 1
2!\v@12A1~n1 1

2!1A2~n1 1
2!

21¯#, ~8!

whereA1 is the first anharmonicity constant,A2 is the sec-
ond anharmonicity constant, and so on.

Because of the asymmetry of the interatomic potent
transitions between levelsn andn6m are allowed for values
of m greater than unity, although these transitions appea
much lower intensity in the spectrum than does the fun
mental absorption transitionn50→n51. Although the ab-
sorption spectrum is complicated by rotational transitio
the vibrational transitions define a sequence of overt
bands,9,10 the infrared frequencies of which are not exa
integer multiples of the fundamental frequency.

This lack of harmonic relationship between the freque
cies of the overtone bands is the origin of the term anh
monic in molecular spectroscopy. Although it is certain
appropriate to describe the absorption spectrum of a diato
molecule as anharmonic, we see that this inharmonicit
related to changes in the oscillator frequency with vibrat
amplitude, and not to any lack of harmonicity in the classi
oscillator spectrum.
1206 Am. J. Phys., Vol. 70, No. 12, December 2002
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IV. INHARMONIC OSCILLATORS

There is a third important class of oscillators that is d
tinguished by the fact that its overtones are not harmonic
the fundamental, and we refer to these as ‘‘inharmonic os
lators.’’ A formal example is the oscillator described by th
fourth-order linear partial differential equation

]2z

]t2 5S
]4z

]x4 , ~9!

which describes the oscillations of an elastic beam.4 Herez
is the displacement coordinate,x is the coordinate along the
length of the beam, andS is the beam stiffness divided by it
mass. If the beam is assumed to either have free ends or
to have both ends rigidly clamped, then its mode frequenc
are approximatelyvn'C(n1 1

2)
2, whereC is a constant.4

These frequencies are clearly not in harmonic relations
so that the term inharmonic is appropriate.

The elastic beam is but one example of this type of os
lator, and indeed essentially all idiophones, by which
meant sound-producing instruments that do so by virtue
their own vibration, such as gongs and bells, are inharmo
The only partial exception is the bells of Western carillon
which have been shaped and tuned so that their first
mode frequencies are in nearly integer relationship. T
sounds of inharmonic oscillators are common in Asian mu
based on gongs, an example being the Indonesian Gam
orchestra. The scales and harmonies used differ consider
from those of Western music based upon sustained-tone
monic oscillators, but are in fact equally pleasant. A detai
analysis of scales and harmonies based upon inharm
sounds has been given by Sethares.11

V. CONCLUSIONS

It would be impractical to suggest abandonment of
term simple harmonic oscillator, because it has been emb
ded in the literature for more than a century. The adject
anharmonic, when applied to molecular absorption ban
would be similarly difficult to change, though I would urg
spectroscopists to refer to an ‘‘anharmonic spectrum’’ rat
than to characterize the oscillator itself as anharmonic
refer instead to the oscillator as simply nonlinear. In oth
fields of physics involving vibration, there should be a cle
distinction made between nonlinear vibrators and those
are genuinely inharmonic in that they have nonharmo
mode frequencies; the term anharmonic should be studio
avoided because of the confusion it is likely to cause~though
unfortunately nonlinear vibrators are called anharmonic
some very reputable physics texts!.12

Of course, those familiar with music theory will know tha
there is also a term ‘‘enharmonic’’—but that is anoth
story!13,14
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Tune Analyzer. This apparatus uses Lissajous figures to show that the ratio of the frequencies in a diatonic scale are ratios of small numbe
right-hand side is an air-driven vibrating reed~a harmonica reed! with a small mirror attached to its free end. The revolving drum contains eight reeds, ran
up the scale from the same frequency as the fixed reed to its octave. In use, the box holding the fixed reed would be rotated 90 degrees, making
at right angles to the other reeds. A beam of light reflecting from the two reeds in succession undergoes simple harmonic motion in two perp
directions, thus producing a Lissajous figure. The shape of the figures produced by two frequencies which bear small number ratios to eac
well-known. The apparatus, by Newton and Company of London, dates from the last quarter of the nineteenth century, and is in the collecti
Smithsonian Institution.~Photograph and notes by Thomas B. Greenslade, Jr., Kenyon College!
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