Harmonic? Anharmonic? Inharmonic?
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In molecular spectroscopy, an anharmonic oscillator has a nonparabolic potential which results in a
nonharmonic absorption spectrum, but the same oscillator treated classically has a precisely
harmonic vibrational spectrum. To avoid confusion, it is suggested that such an oscillator should
simply be called nonlinear. The term “inharmonic” is suggested as an appropriate descriptor for
classical oscillators, such as metal bars, that have nonharmonic vibrational spectra even in the linear
limit of small vibrations. © 2002 American Association of Physics Teachers.
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I. INTRODUCTION of the frequency of the fundamental are commonly produced
by sustained-tone musical instrumehtnd these upper par-

This paper was provoked by the response of a colleagueials are called “harmonics.*

working in the field of atomic and molecular physics, to the Here we have a system with just one frequency—why

author’s use of the word “inharmonic” to describe the over- should it be called harmonic? Perhaps melodic would be a

tones in the sound of a bell. Why not, he asked, use theetter term. The added descriptor “simple” appears to be apt,

common term “anharmonic”? An explanation perhaps con-but it implies the existence of a “complex harmonic oscilla-

vinced him of the difference between the two terms and wasor” or something of the sort, and that designation does not

the subject of a brief Letter to the Editor of the Australian appear to have been used.

journal The Physicist However, because the confusion of

terminology seems to be widespread, the matter is perhaps

worthy of a more detailed exposition. IIl. NONLINEAR OSCILLATORS

The word “anharmonic” appears in atomic and molecular
physics to describe a nonlinear oscillator whose behavior is

[l. SIMPLE HARMONIC OSCILLATORS described by
Everyone who teaches physics is familiar with the term md_ZZ: —f(z—2y) (4)
“simple harmonic oscillator.” Briefly, it refers to a dynami- dt® o/

cal system with a single degree of freedom and a linear re-

storing force, as expressed by the differential equation ~ Where the forcef(2) is a nonlinear function o, though
usually with a dominant first-order term at the amplitudes

considered. The potential well(z) is then a distorted pa-
rabola centered omz,. A typical example is the potential

) ) ) ) o between the two components of a diatomic molecule, which
wherez is the displacement coordinat, is the equilibrium a5 the approximate fofin

position,t is time, m is the mass of the moving particle, and V(r)—ar-M—prn 5
K is the restoring force constant. A term describing damping (ry=ar""-br-7, ®)
could be added, but it is unnecessary in the context of thevherer is the interatomic spacing, aredandb are positive

d?z

mW:—K(z—zo), (1)

present discussion. The solution, of course, is numbers. The particular case of the Lennard-Jones potential
; hasm=12 andn=6.
t)=2z,+A t+ 2 ;
20=2 sin(wt+4), @ The behavior of such a system has been thoroughly stud-
where ied, not just as an isolated oscillator, but also as a driven

_ 12 oscillator with dissipation, in which case the behavior can be
w=(K/m)™% (3 truly complex and indeed chaofid. These complexities are

A is the vibration amplitude, and is a phase constant. This not of concern here, but rather simply the behavior of the

oscillator can also be considered as a particle moving in Qn€-degree-of-freedom system described by(EqBecause

parabolic potential welV/=K (z— z,)%/2. the total energyE of the system is conserved, the particle
The only mystery is why such an oscillator should beV€lOCity is @ simple function of position

called “harmonic.” A harmonic series is well known in dz 2E 2 [z 172

mathematics and is the get,} with a,= 1/n. The relation to i 5w m . f({—zp)dl| (6)

music has been well established since the time of Pythago-
ras, when pleasant sounds were found to result from pluckand the particle’s behavior is therefore a simple repetitive
ing strings with lengths in the ratio of simple integés a  oscillation. Such an oscillation can be analyzed into its Fou-
more modern context, complex tones with upper partialgier components, and these turn out to have frequencies that
(that is, Fourier components of frequency higher than theare exact integer multiples of the fundamental frequency—
fundamental whose frequencies are exact integer multiplesthey are exact harmonics of the fundamental.
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An extreme example of such a nonlinear oscillator is thelV. INHARMONIC OSCILLATORS
simple case of a particle in a one-dimensional box potential,
V(z)=0 for —a<z<a andV(z)= for |z|=a. If the par-
ticle mass ism and its energy i€, then the fundamental
oscillation frequency is

There is a third important class of oscillators that is dis-
tinguished by the fact that its overtones are not harmonics of
the fundamental, and we refer to these as “inharmonic oscil-
lators.” A formal example is the oscillator described by the
fourth-order linear partial differential equation

T [ 2E 1/2 5 .
(01:% F (7) J Z_Sﬁ pA 9
Erare ©

Plotted against time, the displacement follows a square-wawhich describes the oscillations of an elastic bédrere z
pattern, and the frequency spectrum is precisely harmonigs the displacement coordinatejs the coordinate along the
with amplitudesA,=4a/wn for n odd and zero fon even.  |ength of the beam, anlis the beam stiffness divided by its

A reasonable terminology would be to refer to such a sysmass. If the beam is assumed to either have free ends or else
tem as a “complex harmonic oscillator,” or just a “harmonic to have both ends rigidly clamped, then its mode frequencies
oscillator,” or certainly a “nonlinear oscillator,” but some gre approximatelyw,~C(n+3)2, whereC is a constant.
physicists have chosen instead the apparently inappropriaighese frequencies are clearly not in harmonic relationship,
term “anharmonic oscillator,” incorrectly implying by this sqg that the term inharmonic is appropriate.
name that the overtone frequencies, or upper partials, are not The elastic beam is but one example of this type of oscil-
harmonics, because the prefix “an” implies negation. lator, and indeed essentially all idiophones, by which is

Nonlinear oscillators are common in areas other thanmeant sound-producing instruments that do so by virtue of
atomic and molecular physics, and indeed are at the heart @heir own vibration, such as gongs and bells, are inharmonic.
the process of sound generation in sustained-tone musicghe only partial exception is the bells of Western carillons,
instruments such as violins, clarinets, and trumpettiere  which have been shaped and tuned so that their first few
they are responsllble for the generation of the rlqh harmonl_q;node frequencies are in nearly integer relationship. The
sounds of these instruments. The fact that sustained-tone igpyunds of inharmonic oscillators are common in Asian music
struments pro_duce sounds with harmonic overtones is, iBased on gongs, an example being the Indonesian Gamelan
turn, responsible for the structure of Western music, itSyrchestra. The scales and harmonies used differ considerably
scales, concords, and d'SPOFdS- _ from those of Western music based upon sustained-tone har-

Returning to the question of nomenclature, we find themgnic oscillators, but are in fact equally pleasant. A detailed

origin of the term “anharmonic” in the infrared spectra of analysis of scales and harmonies based upon inharmonic
diatomic molecule§* A simple harmonic oscillator with a sounds has been given by Sethdres.

parabolic potential has, in quantum mechanics, the series of

energy levelsE,,=(n+3)%w, wherew is the classical fre- V. CONCLUSIONS

quency given by Eq(3). The quantum selection rules in this ™

case dictate that transitions can occur only between levels It would be impractical to suggest abandonment of the

andn+1 so that only a single vibrational absorption line term simple harmonic oscillator, because it has been embed-

would be observed. The spectrum is, of course, complicateded in the literature for more than a century. The adjective

by the presence of rotational levels. When the restoring forcanharmonic, when applied to molecular absorption bands,

is nonlinear, as it always is in reality, the energy levels can bavould be similarly difficult to change, though | would urge

written ad'1® spectroscopists to refer to an “anharmonic spectrum” rather

than to characterize the oscillator itself as anharmonic and

refer instead to the oscillator as simply nonlinear. In other

fields of physics involving vibration, there should be a clear

distinction made between nonlinear vibrators and those that

whereA, is the first anharmonicity constar, is the sec- are genuinely inharmonic in that they have nonharmonic

ond anharmonicity constant, and so on. mode frequencies; the term anharmonic should be studiously
Because of the asymmetry of the interatomic potentialavoided because of the confusion it is likely to ca(teeugh

transitions between levelsandn =+ m are allowed for values unfortunately nonlinear vibrators are called anharmonic in

of m greater than unity, although these transitions appear &ome very reputable physics text§ .

much lower intensity in the spectrum than does the funda- Of course, those familiar with music theory will know that

mental absorption transition=0—n=1. Although the ab- there Is also a term “enharmonic’—but that is another

sorption spectrum is complicated by rotational transitionsStOrY*™

the vibrational transitions define a sequence of overtone

bands>'? the infrared frequencies of which are not exact ACKNOWLEDGMENTS

integer multiples of the fundamental frequency. _ I
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molecule as anharmomc’ We. see that this mha_lrmo_nlcny I81N. H. Fletcher, “Harmonic? Anharmonic? Inharmonic?,” The Physicist

related to changes in the oscillator frequency with vibration 37 159 (2009.

amplitude, and not to any lack of harmonicity in the classical 2r. v. Hunt, Origins in Acoustic§1978 (reprinted by Acoustical Society of

oscillator spectrum. America, Woodbury, NY, 1992 Chap. 1.

En=(n+ Dfio[1-Ay(n+ D+A(n+ H)%+], (8

1206 Am. J. Phys., Vol. 70, No. 12, December 2002 Neville H. Fletcher 1206



3N. H. Fletcher, “The nonlinear physics of musical instruments,” Rep. °M. D. Harmony, “Molecular spectra and structure,” & Physicist's Desk

Prog. Phys62, 723—-764(1999.

4P. M. Morse Vibration and Sound1948, 2nd ed (reprinted by Acoustical
Society of America, Woodbury, NY, 1981pp. 85, 161-162.

5J. Goodismanpiatomic Interaction Potential TheoryAcademic, New
York, 1973, Vol. 1, pp. 72-86.

SUniversality in Chaos edited by P. Cvitanovi¢Adam Hilger, Bristol,

1984.

’G. L. Baker and J. P. GollutGhaotic Dynamics: An IntroductiofCam-

bridge U.P., Cambridge, 1996

8H. L. F. Helmholtz,On the Sensations of Tori&877, 4th ed., translated
by A. J. Ellis (Dover, New York, 1955

G. HerzbergMolecular Spectra and Molecular Structuf¥an Nostrand,
New York, 1950, pp. 90-92.

Referenceedited by H. L. AndersoitAmerican Institute of Physics, New
York, 1989, p. 242.

MW, A. Sethares,Tuning, Timbre, Spectrum, Scal@pringer, London,
1998.

127, B. Pippard, The Physics of VibratioriCambridge U.P., Cambridge,
1978, Vol. 1, pp. 12-21.

BIn music theory an enharmonic change is one in which the naming of a
note changes, for example, fromgGo Ab. In modern equal-tempered
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Tune Analyzer. This apparatus uses Lissajous figures to show that the ratio of the frequencies in a diatonic scale are ratios of small numbers. On the
right-hand side is an air-driven vibrating re@harmonica regdvith a small mirror attached to its free end. The revolving drum contains eight reeds, ranging
up the scale from the same frequency as the fixed reed to its octave. In use, the box holding the fixed reed would be rotated 90 degrees, making it oscillate
at right angles to the other reeds. A beam of light reflecting from the two reeds in succession undergoes simple harmonic motion in two perpendicular
directions, thus producing a Lissajous figure. The shape of the figures produced by two frequencies which bear small number ratios to each other is
well-known. The apparatus, by Newton and Company of London, dates from the last quarter of the nineteenth century, and is in the collection of the
Smithsonian Institution(Photograph and notes by Thomas B. Greenslade, Jr., Kenyon Qollege
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