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Abstract: Progress made over the past decade in understanding the mechanisms of sound production
in music wind instruments is reviewed. The behavior of air columns, horns, and fingerholes is now
fairly well understood, and most recent interest centers on details of the sound generator — the reed
in woodwinds, the lips in brass instruments, and the air jet in flute-family instruments. Not only do
these generators produce the sound, but they are also largely responsible, through their nonlinearity, for
controlling the harmonic content and thus the musical timbre of the instrument, the one major excep-
tion being in loud playing on brass instruments where propagation nonlinearities in the air column are
also important. Despite considerable progress, there remain important and interesting questions to be
answered.
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1. INTRODUCTION

The aim of this paper is to survey progress that has
been made over the past decade or so in our understand-
ing of the acoustics of musical wind instruments, and to
look particularly at the important problems that remain. It
turns out that these problems all lie in two areas — non-
linear effects and detailed aerodynamics, so that this will
be the emphasis of the paper.

The subject of wind instrument acoustics is a large
one that has occupied the attention of acousticians from
the time of Helmholtz and Rayleigh to the present day. It
is not appropriate in this paper to review the whole of this
understanding. An up-to-date account with copious refer-
ences is given in the author’s book The Physics of Musical
Instruments [1], and for this reason few references earlier
than about 1990 will be cited here. Two recent articles
by Fletcher [2] and by Campbell [3] have paid particular
attention to the role of nonlinear phenomena in musical
instruments and could be consulted with advantage.

2. THE WIND-INSTRUMENT SYSTEM

It is convenient to think of a musical wind instru-
ment as a system with three components, as shown in
Fig. 1. The instrument itself is basically a resonant air
column, the acoustic length of which can be controlled
by the player by means of valves, slides, or finger holes.
Its behavior is basically linear, though, as we shall see,
there are exceptions to this statement in the case of brass

instruments. The modern form of most instruments has
developed gradually over several centuries to give a well-
aligned chromatic scale, an efficient fingering system, and
an acoustic input impedance that varies smoothly from
note to note, giving consistent tone quality. This air col-
umn is excited by a highly nonlinear valve controlled by
acoustic pressure or flow in its vicinity, and the whole is
fed by a steady air flow that must first pass through the
player’s vocal tract.

It is interesting to realize that, from an energy point
of view, the sound output of a musical instrument plays a
minor part, and typically represents only about 1 percent
of the input power. In the case of wind instruments, a
large fraction of the energy is consumed by turbulent and
other flow losses in the sound-generation mechanism, and
the balance by viscous and thermal losses to the walls of
the instrument tube.

The acoustical behavior of wind-instrument bores, ei-
ther the nearly cylindrical or nearly-conical woodwinds
or the more complex flaring horns of brass instruments,
has been well understood for many decades. Benade [4]
more recently gave particular attention to the finger-holes
of woodwind instruments and showed that the open holes,
as well as determining the pitch of the note being played,
provided a high-pass filter structure that had considerable
influence on the tone of the instrument. Harmonics of the
played fundamental lying above the cut-off frequency of
the finger-hole lattice are not reflected, and so are not re-
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inforced in the sound. An instrument with finger-holes
small compared with the cross-section of the bore ther-
fore has a “mellow” sound, while an instrument with large
tone holes sounds “bright.” This is now well accepted,
and little further development has occurred.

The horns of brass instruments have similarly been
studied and are now well understood. A good modern
exposition is that of Benade and Jansson [5].

At the other end of the system is the air supply pro-
vided by the player. Most early work simply assumed a
constant blowing pressure in the player’s mouth, this pres-
sure being adjusted to suit the note being played. While
this assumption is adequate for an initial understanding
and modeling of the instrument, it is now recognized that
the player’s vocal tract should be considered to be an
acoustic system in its own right, and that its resonances
can have a significant effect on the behavior of the whole
instrument. Several studies, which are mentioned later,
have examined this problem.

The central part of the system is, of course, the
sound-generating mechanism provided by the reed-valve
in woodwind instruments, the lip-valve in brass instru-
ments, and the air-jet generator in flute-family instru-
ments. It is here that most of the subtleties of the system
reside, for the valve involves both mechanical and aero-
dynamic influences, and the couplings between them are
generally highly nonlinear. It is to these matters that most
of the present paper will be devoted.

Once the complexities of this generator have been un-
derstood, it is possible to model the whole system using
a time-domain formalism developed by McIntyre, Schu-
macher and Woodhouse [6] and applied explicitly to reed-
driven woodwind instruments by Schumacher [7]. This
approach allows the calculation of both steady-state and
transient behavior and thus, in principle, the complete be-
havior of the instrument. Alternative approaches, such as
that of harmonic balance, which can treat only the steady
state, have been discussed in detail by Kergomard [8].
The one limitation to all these treatments is that the air

it. The symbol σ2 has the same implication for pres-
sure in the instrument mouthpiece. The configuration
(−,+), found in the reed valves of woodwinds, is like an
inward-swinging door, the (+,−) configuration is like an
outward-swinging door, and (+,+) is like a sliding door.

If p0 is the pressure in the player’s mouth and p that in
the instrument mouthpiece, then the motion of the valve
is described by an equation of the form

m

[
d2x
dt2 +α

dx
dt

+ω0
2(x− x0)

]
= A(σ1 p0 +σ2 p) (1)

where m is the effective moving mass of the valve, A is
its effective flap area, x0 its static opening, α its damping,
and ω0 its natural frequency. The volume flow U through
the valve is given by a Bernoulli equation of the form

U =
(

2
ρ

)1/2

W x(p0 − p)1/2 (2)

where W is the width of the valve aperture and ρ is the
density of air. Together these two equations provide the
groundwork for our discussion.

It is hardly necessary to point out that these equations
are oversimplified. In particular, it should be recognized
that the pressure p0 in the player’s mouth is not constant,
but depends upon the balance beween inflow from the
lungs, outflow through the reed opening, and displace-
ment flow caused by motion of the reed itself. It can be
shown [9] that the phase of the mouth-pressure oscilla-
tions is such as to add positive damping to woodwind-
type valves of configuration (−,+), thus smoothing their
frequency response, and to add negative damping to lip
valves of configuration (+,−) or (+,+), thus giving a
very sharp resonance in their response and indeed allow-
ing them to vibrate autonomously even in the absence
of an instrument tube. Various other refinements will be
mentioned later.
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column behavior is assumed to be linear, an assumption
that is violated for loud playing on brass instruments, as
we shall see.

3. PRESSURE-CONTROLLED VALVES

In both reed-driven and lip-driven wind instruments,
the heart of the generating mechanism is a pressure-
controlled oscillating valve. It is helpful to consider this
first in a generalized way. On the simplest model, the
valve can operate in one of three configurations which
can be defined by a couplet (σ1,σ2), where σ1 = +1
if positive static pressure in the player’s mouth tends to
open the valve and σ1 =−1 if this pressure tends to close

Fig. 1 A wind instrument as a system has three major
components: a steady air supply, a highly nonlinear
valve to modulate the flow, and a resonant air column
of controllable acoustic length. The player’s vocal tract
may also influence the performance. All components
are under the direct control of the player.
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∂U/∂ p presented by the reed to the bore of the instru-
ment, and it is clear that this quantity is negative only
over the region TC of the curve. The generator thus re-
quires a threshold blowing pressure p0(T), corresponding
to point T, before it will generate sound, and this pressure
is just one-third of the pressure p0(C) required to com-
pletely close the valve at point C.

If the analysis is refined by using the full equation (1),
then there is a favored oscillation regime at a frequency
that is just below the reed resonance frequency ω0 by an
amount close to α/2. The metal reeds of reed pipes on an
organ operate, in fact, in this regime, because their Q val-
ues are high, giving a pronounced peak in reed response

and a sounding frequency that is controlled largely by the
reed, rather than the pipe. The reeds of woodwinds, on
the other hand, are strongly damped by the players lips
and normally operate at frequencies well below their res-
onance, giving a flat frequency response and a sounding
frequency that is controlled predominantly by the pipe
resonator. The numerical approach of Schumacher [7,10]
then gives a relation between the flow U and the pressure
p in the instrument mouthpiece of the form

p(t) = Z0U(t)+
∫ ∞

0
r(t ′)[Z0U(t − t ′)+ p(t − t ′)]dt ′ (3)

where Z0 is the characteristic impedance of the instru-
ment tube and r(t ′) is the Fourier transform of the reflec-
tion function r(ω) at the mouthpiece. Further refinements
have been made by allowing for the mass-load provided
by the air in the flow channel of the valve, and for the
volume displaced by motion of the reed itself.

The oscillating flow generated by the reed, and thus
the loudness of the resulting sound, is controlled primar-
ily by the compressive pressure applied by the player’s
lips, which can reduce the magnitude of the static open-
ing x0. The blowing pressure is also slightly reduced for
soft playing. The result is that, for soft playing, the op-
erating point moves towards the peak of the curve at T.
When the fact is taken into account that a cylindrical bore
preferentially reinforces odd harmonics of the pressure
(because p = ZinU where Zin is the input impedance of
the tube at the mouthpiece end) then the pressure oscil-
lations are nearly symmetrical about the operating point,
with the result that the reed does not approach the closed
configuration C and the flow waveform becomes increas-
ingly simple. This contrasts with very vigorous playing,
in which the reed closes once in each cycle, generating
strong higher harmonics. In a conical-bore single-reed
instrument such as the saxophone, of course, all harmon-
ics are supported by horn resonances, the waveform is not
symmetrical, and the reed is easily induced to beat against
the mouthpiece in moderately loud playing.

Kobata and Idogawa [11] have shown experimentally
that clarinets, artificially blown, can exhibit bifurcations
and even transitions to chaotic behavior — the hallmarks
of highly nonlinear systems. This has been discussed also
by Kergomard [8], and the behavior in phase space has
been studied by Keefe and Laden [12] and by Wilson
and Keefe [13]. Barjau and colleagues [14, 15] have un-
dertaken a similar study but using a different approach
to modeling the instrument. Multiphonic sounds, which
may not be chaotic, can also be generated through the
nonlinearity of the driving mechanism. Such multiphonic
sounds are of limited musical interest, except in very
“modern” music, but are important for the information
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Fig. 2 Quasi-static volume flow U through a (−,+) reed
as a function of the pressure difference across it, mea-
sured in terms of the closing pressure of the reed. The
full curve is for a simple single reed, for which the
acoustic resistance, as seen from the instrument, is neg-
ative when the curve slope is negative. The broken
curve is for a double reed with a significant flow resis-
tance, in which case the reed tends to oscillate around
the path shown with dotted lines.

4. REED-DRIVEN WOODWINDS

Of all the reed-driven woodwinds, the clarinet has
received most attention. The reason for this is its rela-
tively simple geometry — a nearly cylindrical tube, and a
pressure-controlled valve consisting of a simple flat can-
tilever reed closing an aperture in a mouthpiece that is
almost a simple extension of the tube. The reed valve, as
in all common woodwinds, is of the type (−,+). In ad-
dition, it has proved to be a good initial assumption that
the natural frequency of the reed is very high, so that (1)
takes the simple form x = KA(p2− p1) where K = ρ/ω0

2

is the effective compliance of the reed in response to a
pressure difference across it. The flow equation (2) then
has a simple quasi-static form, shown as the full curve in
Fig. 2. The slope of this curve is the acoustic admittance
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of a valve aperture can have a significant effect upon
its vibrational behavior. While the practice of simply
ignoring these effects, or of allowing for them by us-
ing a simple parameter such as a flow contraction factor
which replaces x in equation (2) by Cx where typically
0.5 < C < 1, is a reasonable beginning, it is clear that a
complete understanding will require much more careful
attention to aerodynamics.

There has also been increasing recent interest in per-
formance technique. Clinch et al. [18] have shown how
the properties of the player’s vocal tract can modify play-
ing behavior in clarinet and saxophone. This is a sub-
ject of continuing interest, though relatively little has been

published. In principle, the problem can be addressed by
using an additional Schumacher-type equation to describe
the pressure in the player’s mouth and its interaction with
vocal-tract resonances. An intriguing study of the role of
the vocal folds in wind-instrument performance has been
made by Mukai [19], who found that professional players
of all types of wind instruments tend to adduct their vo-
cal folds to a nearly closed configuration during playing.
Researchers in various laboratories are following up this
conclusion on greater detail.

There have also been studies of blowing pressure in
reed instruments, as functions of pitch and loudness, by
Fuks and Sundberg [20]. They find that, in the clarinet,
blowing pressure is nearly constant across the pitch range,
and is about 2–3 kPa for soft playing and 4–6 kPa for loud
playing. Saxophone players use similar pressures for soft
playing, but can use pressures up to 8 kPa for extremely
loud playing in the middle register. Pressures for bassoon
and oboe playing rise somewhat with both pitch and loud-
ness, with an extreme near 12 kPa for very loud and very
high playing on the oboe. Double-reed instruments are,
however, very economical in their use of air, the oboe re-
quiring as little as 100 cm3s−1 for moderate playing.

5. LIP-DRIVEN BRASS INSTRUMENTS

The horn of a brass instrument has a shape that is de-
signed to give a series of impedance maxima at the input
end with a frequency progression like 0.7,2,3,4,5, . . ..
The lowest resonance is not used in normal playing, but
each of the higher resonances is supported by a series of
further resonances that are in closely harmonic relation-
ship to it. The gaps between the resonances are filled-in
with the aid of slides or valves that increase the length
of the cylindrical part of the basic tube. The mouthpiece
cup provides an auxiliary resonance that emphasizes the
impedance peaks in the normal playing range of the in-
strument. The formalism of Schumacher [7], discussed
above, can be used to model the interaction of the instru-
ment air column with the pressure-driven lip generator
and, as before, most current interest centers on the opera-
tion of this generator.

The vibrations of a brass-instrument player’s lips are
much more complex than those of a simple reed, but can
be analyzed to a first approximation in the same manner,
using equations (1) and (2). There is, however, a great
difference between the configuration and dynamics in the
two cases. Thus, while the reed in a woodwind instru-
ment is driven closed by the blowing pressure, the lips of
a brass player are driven open by this pressure. It is not
immediately clear, however, whether the lips are driven
open like swinging doors, in a (+,−) configuration, or
sideways like sliding doors in a (+,+) configuration. We
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they reveal about the underlying behavior of the reed gen-
erator.

Another development of importance is the extension
of the analysis to double reeds such as those found in the
oboe and bassoon. The whole subject is complicated by
the fact that the instrument bore is conical, rather than
cylindrical [16], but here we concentrate simply on the
reed generator. In double-reed instruments, the reed es-
sentially continues the conical bore to its apex, and so has
a very narrow passage for air flow. This results in a con-
siderable aerodynamic flow resistance in series with the
reed valve itself, so that equation (2) must be modified
by replacing the downstream pressure p on the reed by
the quantity p−RU2, where R is the flow resistance of
the channel. The consequences of this were pointed out
by Hirschberg [17], who showed that it leads to the com-
plex curve shown with a broken line in Fig. 2. If the flow
resistance is sufficiently large, then the curve is multival-
ued as a function of the mouthpiece pressure p, with the
result that oscillations lead to a type of switching behav-
ior in which the reed is either nearly fully open or fully
closed, as shown by the dotted loop. This behavior means
that there are sharp interruptions in the flow and a conse-
quent generation of large energy in the higher harmonics
of the waveform. While the amplitude of the flow, and
thus the loudness of the sound, can be varied by lip pres-
sure applied to change the equilibrium opening x0 of the
reed, this does not change the switching behavior of the
reed, with the result that sound quality in double-reed in-
struments remains nearly the same for both loud and soft
playing, in contrast with the behavior of single-reed in-
struments.

The aerodynamics of reed-valves is a topic that has
received rather little attention, except for the work of
Hirschberg and his colleagues [17]. Most theories of
valve operation use a simple equation for Bernoulli flow
through the valve aperture, and neglect such features as
flow separation and vortex generation, despite the fact
that it is well known in practice that the detailed shape
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istence of traveling waves on lip-like elastic structures,
and has suggested that this is the basic form of motion of
brass-players’ lips. This motion is very similar to that
found in human vocal folds during phonation, and re-
quires at least a two-mass model for each lip, as used
by Ishizaka and Flanagan in 1972 to model the human
vocal folds. If the model is also to incorporate the two
types of motion studied by Adachi and Sato, it will need
to be more complex still. In all these cases, it goes al-
most without saying that a more sophisticated evaluation
of pressure forces acting upon the lips is required than the
simple approximation on the right-hand side of equation
(2), and it is also necessary to consider flow separation in

detail.
It is well known that brass instruments, particularly

trumpets and trombones, are able to produce incisive
sounds with very high levels of upper harmonics. The
mechanism underlying this has been obscure, but has re-
cently been clarified by Hirschberg et al. [26] In very
loud playing, the acoustic pressure level in the bore of
a trumpet or trombone has been measured to be as high as
175 dB, or about 20 kPa. This is about one-fifth of normal
atmospheric pressure, and is so large that wave propaga-
tion is nonlinear, and generates shock waves. In these
waves there is steepening of the advancing wavefronts
and transfer of energy from lower to higher harmonics.
The development of shock waves is greater in instruments
such as the trumpet and trombone, which have long sec-
tions of cylindrical bore, than in the more mellow-toned
instruments with longer sections of quasi-conical horn.

Playing technique has mostly been examined only in
general terms, but Fletcher and Tarnopolsky [27] have re-
cently published the results of a study of several experi-
enced trumpet players. They found distinct differences in
blowing pressures used, which correlated with the stur-
diness of the player’s physique. The greatest measured
blowing pressure, for high notes played extremely loudly,
was 25 kPa, which is greater than normal systolic blood
pressure and likely to cause physiological distress, even
for a very sturdy player. The study also showed a pro-
gression of threshold blowing pressures related linearly
to the frequency of the note being played, and provided
further support for the shock-wave theory.

6. FLUTE-FAMILY INSTRUMENTS

Instruments of the flute family are excited by entirely
aerodynamic means without any mechanical influences
apart from instrument and lip geometry. The general fea-
tures of the excitation mechanics have long been under-
stood, and date back to Lord Rayleigh’s work on the in-
stability of laminar jets. Essentially, the flow from the
player’s lips (or from the instrument flue) is acted upon by
a transverse acoustic flow through the embouchure hole of
the instrument. This interaction induces a wave-like dis-
turbance on the jet which grows as it propagates towards
the lip of the instrument mouth. Upon striking this lip, the
flow divides, and the amount that enters the bore of the
instrument depends upon the deflection of the jet at that
instant. This entrant flow then acts upon the air column,
both by volume injection and by momentum transfer, to
further excite the original tube oscillation.

The major difficulty with understanding this mecha-
nism is the phase shifts involved. There are three of these,
the phase difference between the acoustic flow through
the instrument mouth and the deflection that it excites
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return to this question later. The important thing is that
the acoustic effect of the player’s mouth cavity is to pro-
vide a negative damping to the lip motion in either case,
so that the effective Q value for the lip oscillation is very
high [9, 21]. This means that the resonance frequency of
the lips, rather than the acoustics of the air column in the
instrument horn, primarily determines the sounding fre-
quency, though in actual playing the two frequencies are
brought into close agreement. Because the lips operate
at very nearly their resonance frequency, their motion is
normally closely sinusoidal, without an appreciable time
spent in the ‘closed’ configuration. This has long been
known from stroboscopic observations.

In the absence of experimental data, the motion of
a brass-player’s lips might equally well be described in
terms of a (+,−) or a (+,+) valve. Recently, however,
several experiments have thrown light on this question.
Yoshikawa [22] carried out an experimental study with
strain gauges attached to a trumpet player’s lips, while
Copley and Strong [23] used stroboscopic methods for a
trombone player. Both studies concluded that the player
has a good measure of control over the effective vibration
mode, but that generally the longitudinal (+,−) behavior
is dominant at low frequencies and the transverse (+,+)
behavior at high frequencies.

Adachi and Sato [24] investigated the problem theo-
retically by modeling the behavior of lips with two de-
grees of freedom, longitudinal and transverse. The re-
sults from the calculation support the experimental ob-
servations and show, moreover, that the pitch of the note
produced depends a little upon which mode of oscilla-
tion is dominant. This gives the player additional con-
trol over intonation. In the lower range, where the (+,−)
mode is dominant, the playing frequency is a little above
the resonance of the lips and a little above the horn reso-
nance, while these frequency shifts are reversed for higher
horn modes where the motion is primarily that of a (+,+)
valve.

More recently, Ayers [25] has demonstrated the ex-
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gest that, despite certain reservations, a relatively simple
theory of jet wave excitation and propagation is probably
adequate.

The interaction of the jet with the flute tube is also a
complex matter, and has so far generally been treated by
sweeping all the aerodynamic interactions into a simple
‘mixing region’ in which the flow becomes uniform and
momentum balance is satisfied. The result is a relation
between the volume flow Up induced in the pipe and the
jet flow Uj into it, of the form

Up =
(V + jω∆L)ρUj

SpZ
(5)

where V is the jet speed, ∆L is the end-correction at the
embouchure hole, Sp is the pipe cross-section, and Z is
the impedance of the flute tube and embouchure hole in
series. It is in the mixing region that most of the energy
loss takes place, the efficiency of energy transfer from the
jet to the pipe oscillation being about (Sj/Sp)1/2, where Sj

is the cross-section of the jet. This efficiency is typically
of order 1 percent.

The oscillating jet flow Uj depends upon the deflec-
tion (4) and the geometry of the embouchure hole. This
geometry also determines the jet flow into the pipe. Al-
though much of this theory is linear, the interception of
the jet by the lip of the pipe is certainly not, for the jet flow
saturates of goes to zero when the jet blows entirely into
or outside the lip of the embouchure hole. In addition,
the jet itself has a velocity profile that also contributes to
nonlinearity in the flow, and the undeflected jet mid-plane
may not line up with the lip of the embouchure. These
effects together are responsible for the increase in upper
harmonics in the sound at high playing levels and for the
sensitive way in which tone quality can be controlled by
altering jet width and direction. The results of studies
made some time ago by Fletcher and Douglas show good
agreement between theory and experiment.

Despite the general success of this theory, there are
still many features that demand more detailed aerody-
namic explanation. A beginning was made on such an ex-
planation by Howe [30] many years ago and has been fol-
lowed up by Hirschberg and his collaborators [17]. The
problems involved are so formidable, however, that no
complete treatment has yet been produced. In many cases
organ pipes are the preferred instruments to study because
of the simplification of their fixed geometry.

Playing technique on flutes and related instruments
has also been the subject of study, principally by Coltman
and by Fletcher [1]. Players use techniques that are in ac-
cord with the expectations of the theory outlined above.
To match phases correctly, it is necessary to use a partic-
ular combination of blowing pressure and jet length for
each note, the jet length decreasing and the blowing pres-
sure increasing steadily with the pitch of the note to be
played. Pressures are quite low, ranging from 200 Pa for
low notes to about 2 kPa for very high notes. Loudness
is controlled largely by varying the lip opening, and thus
the total flow of air in the jet.

7. TRANSIENTS

Most of the discussion above has been in terms of the
steady sound of an instrument, but it is widely known that
this is only part of the story. Indeed the attack transient
is one of the most characteristic features of instrumental
sound, and it is very difficult to identify musical instru-
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u

)]
(4)

where the wave velocity u is about half the jet speed.
The first term represents simple convection of the jet in
the acoustic flow, while the second shows a ‘negative-
displacement’ disturbance initiated at the aperture and
growing exponentially with a coefficient µ . More detailed
studies of jets have shown that this growth coefficient µ
has a maximum value for waves with wavelength about
5 times the jet thickness and falls to zero when the wave-
length is less than about 1.5 times the jet thickness, so that
there is an optimal jet geometry for the generating mecha-
nism. The phase shift of the jet deflection clearly depends
upon jet length and velocity, and thus on blowing pres-
sure. It turns out that the phase-closure requirement for
the whole instrument demands a propagation phase shift
or about pi, or about half a wavelength, along the jet.

Clearly, however, this description of the jet neglects
many important details. Sinuous wave propagation is cer-
tainly a nonlinear phenomenon, and for large amplitudes
the wave breaks up into a series of vortices moving along
with the jet. The assumptions that go into the equation
(4), are also a considerable oversimplification from an
aerodynamic point of view [17, 28], although reasonable
on other grounds. Many of these questions can be settled
only by detailed experiments such as those of Thwaites
and Fletcher. The most recent studies by Nolle [29] sug-

upon the jet, the phase delay for propagation along the jet,
and phase shift involved in the interaction of the jet flow
with internal acoustic waves in the pipe. In total these
must sum to 2π for the feedback loop to close. Most of
these matters were worked out some time ago by the com-
bined efforts of Coltman, Elder and Fletcher, and result
in a coherent theory that gives reasonable agreement with
experiment [1]. If the acoustic displacement in the mouth
aperture of the instrument is zcosωt and x measures dis-
tance along the jet from the aperture in the player’s lips,
then the wave on the jet is fairly well described by the
equation

y(x,t) = z
[
cos(ωt)− cosh(µx)cos

(
ωt − x
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seek to remedy these deficiencies in understanding. This
is likely to prove important, not just for the satisfaction of
producing a detailed model, but also for the light it may
shed upon instrument design and playing technique.
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ments from recordings in which the attack transient has
been removed.

Fortunately, the method of analysis of sound pro-
duction outlined above is adequate to treat time varying
phenomena in general and attack transients in particular.
There are, however, some reservations that must be placed
upon this assertion. It assumes that the time variation of
some controlling parameter, such as the air pressure in
the player’s mouth or the air flow from the lungs or lip
tension, is specified, and that no new phenomena enter.
This covers many interesting cases, and in particular vi-
brato, which is generally induced by a rhythmic variation
in mouth pressure, perhaps controlled by vocal-fold mo-
tion [19]. Mention should, however, be made of some
exceptions.

The most important and interesting of these is the at-
tack transient in flute-like instruments. This was investi-
gated some time ago, for the case of organ flue pipes, by
Fletcher and by Nolle, and a recent study has been pub-
lished by Castellengo [31]. Various mechanisms that are
not present in the steady sound contribute, among them
the generation of edge tones by the jet, the excitation of
evanescent transverse modes in the pipe, and excitation of
pipe resonances by jet turbulence. There is much still to
be learned of this subject.

8. CONCLUSIONS

The past few decades have seen the development of
a generally satisfactory set of theoretical treatments of
sound generation and playing technique in musical wind
instruments. Work over the past decade has built upon
this understanding and has allowed us to understand many
details of harmonic generation, and thus the characteris-
tic timbre of instruments, and the way in which this varies
with loudness or under the control of the player.

Along with this increased understanding has come the
realization that some of the standard treatments, though
practically useful, conceal within their broad formulation
a considerable ignorance of aerodynamic fundamentals.
It seems likely that work in the immediate future will
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