
A class of chaotic bird calls?
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Evidence is presented that the basic vocalized sound produced by some cockatoos, specifically the
Australian sulfur-crested cockatoo~Cacatua galerita! and the gang-gang cockatoo~Callocephalon
fimbriatum!, has a chaotic acoustic structure rather than the harmonic structure characteristic of most
birdsongs. These findings support those of Feeet al. @Nature~London! 395~3!, 67–71~1999!# on
nonlinear period-doubling transitions in the song of the zebra finch~Taeniopygia guttata!. It is
suggested that syllables with chaotic structure may be a feature of the songs of many birds.
© 2000 Acoustical Society of America.@S0001-4966~00!04108-4#

PACS numbers: 43.80.Ka@WA#
ar
o
o
t

en
ha

en
b
n

e
da
n
n
e
s
in

-
r-

a
s
s

an
u

em
he

h
ic

ic
rm

ds
this
iated

od

the

osi-
-
iven

the
one

ties
ne
ing
ps on
lves
into
ase
on

eir
ist a
m.
em,
nti-
on
s an

le-
sy-
is

flow
ncy
o-
ut,
nts

sein
INTRODUCTION

Birdsong has been the subject of study for many ye
from physiological, acoustical, and behavioral points
view. A comprehensive account is given in the classic bo
by Greenewalt1 and there are many more recent papers
which we do not need to refer here. An excellent rec
account of the relation between physiology and birdsong
been given by Sutherset al.2

Until recently, only three types of birdsong have be
recognized, which we now discuss in turn. They might
termed simple voiced song, double-voiced song, a
whistled song, respectively.

Simple voiced song is characterized by an acoustic sp
trum consisting of a series of exact harmonics of a fun
mental frequencyF0 ~to use a notation common in huma
phonetics!. The envelope of the spectrum of this song at a
instant is characterized by a set of formant bands at frequ
ciesF1 ,F2 ,F3 , . . . in which the amplitude of the harmonic
of F0 rises above the general declining trend with increas
frequency. The frequencies of the fundamentalF0 and of the
formant bandsFn may vary with time under voluntary con
trol by the bird, the extent of the variation being very diffe
ent for different species of bird.

This simple voiced song is closely analogous to hum
speech and song generally, and to human vowel sound
particular. The physiological interpretation is given in term
of a ‘‘source-filter model,’’ as for human speech. The avi
syrinx acts as a self-excited oscillator, driven by air press
from the lungs to vibrate at a characteristic frequencyF0 that
is determined by the mass and tension of the syringeal m
branes. This vibration in turn modulates air flow into t
upper vocal tract at the characteristic frequencyF0 . Because
the flow equations for the syringeal valve are nonlinear, t
flow U contains a complete spectrum of exact harmon
nF0 of the fundamental, with amplitudesUn generally de-
creasing steadily with increasing frequency. The acoust
properties of the upper vocal tract can be expressed in te
of the frequency-dependent acoustic impedanceZ( f ) that it

a!Permanent address: Research School of Physical Sciences and Eng
ing, Australian National University, Canberra 0200, Australia.
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presents to air flow from the syrinx, and the formant ban
occur around the resonances of the vocal tract for which
impedance is a maximum, the acoustic pressure assoc
with the flow componentUn beingpn5Z(nF0)Un . Integra-
tion of these concepts into a calculable model gives go
agreement with experiment.3 The frequencyF0 of the funda-
mental can be varied by varying the muscle tension on
syringeal membranes, while the frequenciesFn of the vocal
tract resonances can be controlled by changing tongue p
tion and beak opening.4 Details of the mathematical ap
proach to calculations such as these have been g
elsewhere.5

In the case of song-birds, account must be taken of
fact that they possess two independent syringeal valves,
located in each bronchus. There are, in fact, two possibili
that are exploited differently by different species. In o
case, the bird simply closes off one syringeal valve dur
song and uses the other, perhaps permanently and perha
an alternating basis. In the second case, both syringeal va
operate at the same time, but their oscillations are locked
synchronism by the common oscillating pressure at the b
of the trachea. Such frequency and phase locking is comm
in many types of oscillators, and requires only that th
natural frequencies be not too far apart and that there ex
nonlinear physical coupling mechanism between the6

These conditions are easily met in the avian vocal syst
where the two syringeal valves are at least nominally ide
cal in structure, the flow through them is a nonlinear functi
of pressure, and the tracheal pressure oscillation provide
effective coupling mechanism.

The second type of song, which might be called doub
voiced song, is one in which the frequencies of the two
ringeal valves are controlled to be so different that locking
impossible. When this happens, each bronchus feeds a
signal to the trachea at its characteristic oscillation freque
F0

(1) or F0
(2) . Each of these flows contains harmonic comp

nents at integer multiples of its fundamental frequency b
in addition, there will be nonlinearly generated compone
at multiple sum and difference frequenciesnF0

(1)6mF0
(2) ,

wheren andm are positive integers. The amplitudes of the
mixture terms decline approximately asxn1m, wherex is a

eer-
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quantity less than unity that depends upon the exact natu
the flow nonlinearity and is proportional to the amplitude
the fundamental of the oscillation. Songs of this type sou
rather like pairs of notes played on musical instruments, p
vided the nonlinearity is not too great.

The third generally recognized type of song is term
whistled song. Analysis shows that it consists of an alm
pure sine wave with no upper harmonics, and the freque
can often be changed rapidly in a sweep over a range
about a factor two. The physiological mechanism for prod
tion of such song has not been established. The fact
whistles are often interpolated within a voiced song sugg
a common generation mechanism, and it has been sugg
that this might be a retraction of the syringeal membra
while in oscillation so that they no longer completely clos
leading to a great reduction in the harmonic content of
flow. Flow calculations, however, indicate that, while such
procedure would reduce the relative amplitude of higher p
tials in the flow, it would not eliminate them entirely, a
appears to be the case in whistled song. It should also
noted that some human languages, notably those from ce
Africa, involve the interpolation of aerodynamically pro
duced whistles amidst voiced speech.

An alternative explanation of whistled song is that it
produced by pure aerodynamic means without any vibra
surfaces, in much the same way as sound in flutes, o
pipes and whistles. In all these cases the source of soun
the interaction of an unstable air jet with a resonator. If
resonator has many modes, as in an organ pipe, then
sound has many harmonic overtones. If, however, it has
one mode, as in the case of the Helmholtz resonator o
occarina, which is a simple cavity vented by finger hol
then the sound output will approximate a pure sine wave
simple biological example is human whistling, in which th
resonator is the mouth cavity and the jet issuing through
aperture between the lips is subject to a varicose instab
~or change in diameter! which feeds back to influence flow
through the aperture and thus internal pressure. It is not c
what structures in the avian vocal system might be resp
sible for sound production by this mechanism. Possible c
didates are structures at the base of the trachea, but an
possibility involves the larynx, a raised tongue, and a furt
aperture between tongue and beak.

It is the purpose of the present note to present furt
evidence for a modified type of voiced utterance that mi
be called chaotic song. The possibility that some bird c
might be chaotic was raised by the present author some
ago7 in relation to the Australian sulfur-crested cockatooCa-
catua galerita, and since then a pioneering study of a tran
tion from normal to period-doubled and perhaps chaotic s
in the case of the zebra finchTaeniopygia guttatahas been
published by Feeet al.8,9 The difference between the cal
reported here and those of the zebra finch will be discus
briefly in the conclusion to the present paper.

I. ANALYSIS OF CHAOTIC CALLS

To the ear, the calls of Australian cockatoos have
sound of a steady raucous screech, quite unlike the m
melodious sounds of other birds. This observation was
822 J. Acoust. Soc. Am., Vol. 108, No. 2, August 2000
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stimulus of the present investigation. A good collection
the songs of Australian birds of the region near Canbe
recorded in their native habitat, is available,10 and this was
used for the required sound samples. The two cockatoos
lected for study were the sulfur-crested cockatoo~Cacatua
galerita! and the gang-gang cockatoo~Callocephalon fim-
briatum!. Each selected call was digitized at 32 kb/s and
waveform examined. A section of nearly constant amplitu
and duration about 0.7 sec was then selected for deta
analysis. From an auditory point of view these sections of
call were constant in loudness and sound quality, and
constancy was confirmed by the nature of the oscillogra
records of the waveforms, suggesting strongly that they
the result of processes that are ‘‘stationary’’ in a statisti
sense. Two similar segments from the songs of birds w
simple sound, namely the boobook owl~Ninox novaeseelan
diae! and the Eastern rosella parrot~Platycercus eximius!,
were similarly studied for comparison purposes.

As an initial study, sound spectrograms of the four b
calls were made, and the results are shown in Fig. 1. The
of the owl, in Fig. 1~a!, has a simply harmonic structure an
no pitch change, while that of the parrot, in Fig. 1~b!, con-
sists essentially of a single simple tone with rapid frequen

FIG. 1. Time-resolved spectrograms of the calls of the four birds in
study: ~a! the boobook owl,~b! the Eastern rosella parrot,~c! the sulfur-
crested cockatoo, and~d! the gang-gang cockatoo. In each case the dura
of the sample is about 0.7 sec and the frequency range is 0 to 5.5 kHz
822Neville Fletcher: A class of chaotic bird calls?
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variations. In contrast, the sulfur-crested cockatoo call in F
1~c! has a very broad-band spectrum, though with trace
two independent voices and vestiges of quasiharmonic st
ture. The call of the gang-gang in Fig. 1~d! is broadly simi-
lar, but with a higher pitch and less obvious substructure
appears reasonable to treat the major part of these latter
songs as being stationary in a statistical sense.

It was the assumption at the beginning of the study t
the calls in question might have a chaotic structure, and
digitized records were therefore subjected to analysis on
basis. Such an analysis of time-series data to detect c
and other interesting phenomena has been the subje
much detailed study,11,12 and a set of computer programs13

with the title ‘‘Chaos Data Analyzer’’ is available to carr
out the analysis. In addition, a newly available suite
programs14 for ‘‘Visual Recurrence Analysis’’ provides an
independent and rather different approach. These progr
were applied to the observational records with the res
detailed below.

The essential feature of normal nonchaotic song is
predictability. As discussed above, the short-term spect
consists of an assembly of pure sinusoidal tones that
generally in harmonic relationship, giving an exactly repe
ing waveform. When two syringeal sources produce sou
at unrelated frequencies the overall harmonic relationshi
complicated by multiple sum and difference tones and
waveform no longer repeats. In either case, however, o
the spectral composition of the sound is known, its futu
waveform can be predicted exactly. This statement app
of course, only to short segments of song in which the b
does not deliberately change the defining parameters suc
pitch and loudness.

At the other end of the scale comes random noise. H
the future waveform is entirely unpredictable and the sig
can be described only in statistical terms.

Between these two extremes lies chaotic behavior
which the oscillation is governed by well-defined and oft
simple laws but, because of nonlinearity in the basic vib
tion mechanism, the future waveform is unpredictable in
absence of knowledge of the precise initial conditions—
very small change in initial conditions makes an immen
change in the exact future course of the oscillation.12 Chaos
is often studied by examining the behavior of the syst
when the parameters of the underlying differential equati
are progressively changed. In a natural biological sys
such as birdsong such an approach is not possible; rathe
must attempt to find something of the nature of the unde
ing equations by examining the sound output.11

A. Data analysis

The syrinx is, of course, a complex vibrating syste
since the pressure-controlled vibrating valve, whether it
the syringeal membrane or some other structure, can sup
a large number of possible oscillation modes. It theref
turns out not to be possible to discover much about the e
nature of its vibration from the sound output, but a demo
stration that it is indeed chaotic is relatively simple. T
approach is to calculate the so-called Lyapunov expon
that describe the waveform. In essence this exponent m
823 J. Acoust. Soc. Am., Vol. 108, No. 2, August 2000
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sures the degree of sensitivity of the oscillation to its init
conditions and its deviation from predictability. First th
waveform is mapped onto a phase space which, in the s
plest case, plots the slope of the waveform at each p
against the magnitude of the waveform at that point. Fo
wave consisting of exactly harmonic components, this ph
map consists of a simple closed curve, while for more co
plex waveforms the map is correspondingly more involve
The Lyapunov exponent essentially measures the rat
which the distance between two points on the curve~related
by the sampling time between them! increases as the wave
form evolves. For a simple harmonic or multifrequency d
terministic system, the distance between the points se
down to a constant value, on average, while for a cha
system the distance increases steadily. The Lyapunov e
nent measures the exponential rate of this increase in s
ration. Chaotic systems are characterized by moderate p
tive exponents and simple systems by negative or z
exponents. Random systems have large positive expone

The Chaos Data Analyzer programs13 provide facilities
for plotting phase-space maps, calculating the larg
Lyapunov exponent, and otherwise examining time-se
data. As a control, short segments of song from the boob
owl ~Ninox novaeseelandiae! and from the Eastern rosell
parrot ~Platycercus eximius! were also analyzed. The boo
book song was nearly sinusoidal, with a single domin
frequency, giving a simple closed-loop phase map an
largest Lyapunov exponent of 0.0660.03. The rosella song
contained two dominant frequencies, had a more comp
but still generally ring-shaped phase map, and a largest
ponent of 0.0260.02. Both these exponents are essentia
zero, as would be expected for deterministic signals. Fur
details of the analysis are given in Table I, which also sho
the capacity dimension~Hausdorff dimension! and correla-
tion dimension calculated from the data. For both of the
songs, the correlation function had the form of a cosine fu
tion and did not decay in amplitude over the sample leng
indicating a closely predictable behavior. The phase-sp
plot in both cases had the form of a broad elliptic ring,
would be expected for a basically sinusoidal signal mo
lated by other frequencies. Comparison with computed d
for a signal consisting of two nonlinearly interacting unr
lated harmonic oscillations, given in the first line of Table
indicates close similarity and confirms the predictable nat
of these songs, despite their irregular waveform. We ret
to discuss such songs in a later section.

The contrast with the calls of the sulfur-crested cocka

TABLE I. Parameters computed from CDA program.

Lyapunov Capacity Correlation
exponent dimension dimension

Two nonlinearly coupled signals 0.0 1.4 2.2
Henon attractor 0.6 1.4 1.3
Lorenz attractor 0.1 1.7 2.0
Random noise 0.15 2→4 1→6
Boobook owl 0.06 1.5 1.9
Rosella parrot 0.02 2.5 2.1
Sulfur-crested cockatoo 0.3 2.2 3.2
Gang-gang cockatoo 0.2 2.3 3.8
823Neville Fletcher: A class of chaotic bird calls?
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and the gang-gang cockatoo is marked. While the wavef
of the song of the boobook owl and rosella parrot appe
‘‘smooth’’ in each case, that of the two cockatoos has
‘‘rough’’ appearance, as shown for the case of the sulf
crested cockatoo in Fig. 2~a!. Each cockatoo call had a broa
power spectrum peaked at about 2.5 kHz and with m
subsidiary peaks, as shown for a short segment of the su
crested cockatoo call in Fig. 2~b!. This confirms the analysis
provided by the spectrograms of Fig. 1. The quasiperio
components are, however, of large amplitude. The larg
Lyapunov exponent for the sulfur-crested cockatoo call w
0.2860.06 and that for the gang-gang 0.2360.05. As shown
in Table I, these values are comparable with those comp
for typical chaotic signals, such as those associated with
Lorenz and Henon systems, and indicate a lack of pred
ability. For each bird the correlation function has the form
a decaying cosine wave, as shown for the sulfur-cres
cockatoo in Fig. 3, the decay rate being rather more rapi
the case of the gang-gang. In neither case, however, is

FIG. 2. ~a! Waveform and~b! spectrum of a short sample of the song of t
sulfur-crested cockatoo. Plots for the gang-gang cockatoo are very sim

FIG. 3. Computed correlation function for the song of the sulfur-cres
cockatoo.
824 J. Acoust. Soc. Am., Vol. 108, No. 2, August 2000
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decay as rapid as for the Lorenz or Henon systems, and t
appears to be significant sinusoidal residue.

From the data given in Table I it is clear that there is
close resemblance between the parameters for these
cockatoo calls and those for the well-known Lorenz a
Henon chaotic attractors. These two cases, however, de
from analysis of well-defined and simple nonlinear differe
tial equations and lead to phase-space maps that are fr
‘‘strange attractors.’’ In the case of the cockatoo calls,
phase-space maps essentially filled uniformly an ellipti
area, and no further information could be gained from the
even if the embedding dimension was raised. The expla
tions for this are probably that the call is not truly stationa
in a statistical sense, and that it also contains noise, bot
which features tend to blur any phase-space pattern, altho
it could also result from the dimensionality of the syste
being higher than 3. The further fact, however, that the co
puted correlation dimension, regarded as a function of
embedding dimension, rises to a gently sloping plateau va
for an embedding dimension greater than about 3, dis
guishes the call structure from simple band-limited noise,
which the correlation dimension rises smoothly to large v
ues with increasing embedding dimension.

B. Visual recurrence analysis

As a second approach to understanding the nature o
cockatoo call, the technique known as visual recurre
analysis14 was used. In this approach, the signal is sample
a set of equally spaced timest i and at each time the follow
ing N sample values are used to define anN-dimensional
vectorYi associated with the timet i . A color-coded matrix
plot is then made of the Euclidean distance between all p
of vectors, such that the (i , j )th element of matrix is the
distance between the vectorsYi andYj . Although it is dif-
ficult to draw any quantitative conclusions from such a pl
it does show up patterns in the data in a very clear manne
a well-correlated signal gives a repetitive pattern, a cha
signal has an irregular but definite pattern, and simple no
has a pattern that is irregular at all scales.

Figure 4~a! shows a recurrence plot for a signal consi
ing of two incommensurate nonlinearly interacting harmo
signals, as discussed in the next section, and Fig. 4~b! a plot
to a similar scale for a random noise signal. These figures
the range of variation to be expected. Figure 5~a! then shows
the recurrence plot for the Lorenz attractor, while Fig. 5~b!
shows a plot to a similar scale for the cockatoo call. T
similarity between Figs. 5~a! and 5~b! is clear, as is their
difference from the plots of Fig. 4. We again conclude th
the call of the cockatoo likely has a chaotic nature.

II. PHYSICAL MODEL

It is important to seek the reasons why the cocka
calls might be chaotic, or at least the mechanism that m
lead to this result. For the present this is largely speculat
but as such is necessary as a guide to further studies
particular it is important to distinguish chaotic song from t
type of nonlinearly mixed two-voice song described in t
Introduction.

r.

d
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Although the largest Lyapunov exponent is significan
different from zero, the waveform in Fig. 2~a! has at least
one strong quasiperiodic component, which is also visible
the spectrogram in Fig. 2~b!. In addition, the correlation
function of Fig. 3 also has a periodic structure, although o
that decays toward zero with time. These facts suggest
the mechanism might be one in which the syringeal valve
the two bronchi of the bird oscillate simultaneously and
coupled by a strong interaction through the sound pressu
the base of the trachea. The fact that the bird has a very
cry, with an estimated radiated power of at least 100 m
implies an acoustic pressure at the base of the trachea th
perhaps as high as 1 kPa~154 dB!. Such an acoustic pressu
is comparable to the blowing pressure below the syrinx
can therefore strongly influence the vibration of the syring
valves. Furthermore, the airflow through these valves i
highly nonlinear function of pressure drop across them,
the membrane vibrations themselves are probably quite n
linear because they are likely to contact the wall once in e
cycle.

With two nonlinear vibrating sources and a strong no
linear coupling between them, there is an adequate num

FIG. 4. Visual recurrence analysis plot of~a! two nonlinearly coupled har-
monic signals, as defined by Eqs.~1!–~3!, and ~b! a random noise signal
~The original plots were in color.!
825 J. Acoust. Soc. Am., Vol. 108, No. 2, August 2000
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of degrees of freedom for chaotic oscillation, rather than s
ply for the generation of multiple sum and difference fr
quencies. At the same time, the natural frequencies of
two syringeal valves may well contribute quasiperiodic co
ponents to the overall oscillation, as observed.

On the other hand, it is possible that the two nonline
membrane vibrations simply couple nonlinearly to produc
multitude of multiple sum and difference frequencies th
gives the appearance of chaos. To test this, a synthetic s
y(t) was created from two harmonic signalsx1(t) andx2(t)
combined nonlinearly. Specifically,

x1~ t !5sin~v1t !1a1 sin~2v1t1f1!

1a2 sin~3v1t1f2!, ~1!

x2~ t !5sin~v2t !1a1 sin~2v2t1f3!

1a2 sin~3v2t1f4!, ~2!

y~ t !5@x1~ t !1x2~ t !#1b1@x1~ t !1x2~ t !#2

1b2@x1~ t !1x2~ t !#3, ~3!

where the fundamental frequenciesv1 and v2 have no
simple integer relationship (v251.3824v1), and the ampli-
tudesan and bn are given asa150.3, a250.1 andb15b2

FIG. 5. Visual recurrence analysis plot of~a! the Lorenz attractor time
series, and~b! the song of the sulfur-crested cockatoo. The recurrence
for the Henon attractor is qualitatively very similar to that for the Lore
attractor.~The original plots were in color.!
825Neville Fletcher: A class of chaotic bird calls?
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50.1. The waveform and spectrum of this signal show
patterns broadly similar to those recorded for the cocka
cries. As shown in Table I, however, the largest Lyapun
exponent in this case is essentially zero, the actual va
given by the CDA program being20.0160.03. The corre-
lation function is irregular but shows no decline in amplitu
with time, while the visual recurrence plot, shown in Fi
4~a!, has an obvious regularly repeating structure. We c
clude that a simple nonlinear mixing of two periodic signa
as might indeed be achieved in the syrinx, cannot explain
nature of the observed sound signal.

The final possibility to be investigated is that the sign
consists of a nonlinearly combined pair of harmonic signa
as just discussed, with a significant admixture of rand
noise. A signal with this property was constructed, the ra
of peak noise to peak signal being either 0.1:1, 0.3:1 or
The CDA program was then used to determine the larg
Lyapunov exponent for the signal and also the behavio
capacity and correlation dimensions with increasing emb
ding dimension. For noise ratios of 0.1:1 and 0.3:1, the la
est Lyapunov exponent was less than 0.01, indicating n
chaotic behavior. For a noise ratio of 1:1, the calcula
Lyapunov exponent was 0.2, but the capacity and correla
dimensions increased steadily with increasing embedding
mension, as for an essentially random-noise behavior. It
be concluded that the bird cry is not adequately simulated
such signal.

III. CONCLUSIONS

The conclusions to be drawn from this brief examinati
of the calls of these particular birds appear clear. The so
of birds such as the boobook owl and the rosella parrot
basically sinusoidal, but with rapid modulations in the ca
of the rosella. Such songs are quite normal variations of
sic voiced or whistled song. The basic repetitive ‘‘carrier’’
provided by vibration of the syringeal membranes, and
amplitude and frequency are modulated at a slower rate
oscillatory changes in the tension of the supporting muscl2

These songs can therefore be classified as ‘‘normal’’ in
present context. This conclusion is supported by the fa
that the largest Lyapunov exponent is approximately ze
that the phase-space plot is essentially an elliptical ri
which is perhaps the projection of a torus in a space of hig
dimension, and that the correlation function extends with
diminished amplitude over a long time period.

For cockatoos, specifically the sulfur-crested and
gang-gang cockatoos, on the other hand, we conclude
the call structure is very different, and in fact chaotic. Th
conclusion is supported by the fact that the largest Lyapu
exponent is in each case in the range 0.2–0.3, a range ty
of chaotic behavior rather than random noise or nonlinea
coupled periodic signals, and by the visual appearance o
recurrence mappings. The power spectrum does have se
dominant frequencies, which presumably represent major
cillation modes of the syringeal structures, but the am
tudes and phases of these modes vary in a chaotic fas
The chaotic nature of these calls is audibly recognizable
their harsh screeching character.
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The investigation of chaotic oscillations in simple sy
tems, by which is generally meant systems with a small nu
ber of degrees of freedom or dynamic variables, is now
well-established subject.12 The case of birdsong is likely to
be more complex because the primary oscillating system,
syrinx, has many degrees of freedom corresponding to wa
like motions on the membranes or other vibrating structur
and because there may often be two vocal sources invol
This makes detailed analysis much more difficult.

This study thus supports the detailed work of Fee a
colleagues8 on the song of the zebra finch. Their analys
showed the existence of abrupt period-doubling transition
the song, a feature that is characteristic of one major rout
chaos.15 Their numerical analysis showed that such a tran
tion could be derived for the case of a simple model of a
flow through a compliant constriction, without requiring tw
independent oscillatory sources. It is also interesting to n
that the double reeds of woodwind instruments such as ob
or bassoons show a period-doubling transition when blo
vigorously and not fitted to the instrument — a test carried
out when the reed is being adjusted by the player.

While the vocal utterances of these Australian cockat
appear to be entirely chaotic in structure, and thus an
treme case, it seems likely that shorter syllables with hig
nonlinear or even chaotic structure may be part of the vo
repertoire of many birds.
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