CHAPTER
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Nonlinearity, Complexity, and
Control in Vocal Systems

Neville H. Fletcher

Our emphasis in this book is on the complexity of the behavior of the
human vocal system. It is trite but true to say that all biological systems
are complex and nonlinear in their response—greater stimulus does not
simply increase the magnitude of the response but may bring about a
qualitative change in its nature. Here we focus on just a small part of
that nonlinearity by considering the physical behavior of the vocal folds
and the mechanisms and strategies by which their complex behavior
can be controlled.

In the case of the human vocal system, we encounter nonlinearity in
the vocal fold vibrations themselves, in the aerodynamics of the flow
through the voeal fold opening, and in the interaction between these
two quantities. This highly nonlinear active part of the vocal system is
coupled to passive and very nearly linear multimode vocal tract res-
onators both downstream and upstream from the glottis, and these
interact with the motion and flow mechanics of the vocal folds. While
it would seem that the nonlinearity and physical complexity of such a
system might make its control a matter of great difficulty, it turns out,
paradoxically, that the nonlinearity itself tends to lock the system into
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stable regimes of oscillation that can be brought under coordinated neur-
al control.

Human speech or song is a combination of phase-locked, harmonic,
voiced vowel sounds, and near-chaotic unvoiced stops and consonants,
produced in rapid time-sequence. The same is true of the sounds pro-
duced by many other animals, although there are cases in which the
vocal sound is both voiced and chaotic at the same time. The complex-
ity of this behavior presents a rich field for study.

VOCAL FOLD OSCILLATIONS

The human glottis contains two approximately symmetrical vocal folds
which can move to control the air flow through the larynx. Together
they form a pressure-controlled valve that can be set into autonomous
oscillation through interaction with the acoustic pressures in the respi-
ratory tract above and below the larynx. Simple single-mass models [1,2]
exhibit most of the characteristics of such systems for various possible
directions of motion of the valve flaps, but realistic models for the human
vocal folds must contain many more configurational parameters because
of the flexible nature of biological tissue. The two-mass model of Ishi-
zaki and Flanagan [3] is a well-known example of an extension in this
direction, though much more complex models have also been devel-
oped. Because of the nonlinearities we discuss in the following, it is
always necessary to resort to numerical methods to calculate the acous-
tic behavior of these system models [2,3].

The exact geometry of flow separation at the vocal folds is important
to details of the valve operation and has usually been treated simply by
assumption. The acoustic impedance of the air passages below the lar-
ynx, terminating in the lungs, has surprisingly also been neglected in
many models, but it can have a quite significant influence on behavior.
Indeed the conditions for autonomous oscillation of the vocal valve
involve not only the properties of flow through the valve itself, but also
the acoustic impedances of the ducts leading to and from it [1]—the
bronchi and lungs upstream and the trachea and mouth downstream of
the glottis. Valve oscillation is maintained by a combination of the influ-
ences of fluctuating pressure in the regions above and, more important-
ly, below the glottis, together with pressure differentials caused by
Bernoulli effects in the flow through the valve aperture. Which driving
mechanism is more important depends upon details of the valve geom-
etry and of the separation of flow though it, and indeed we might expect
these details to change progressively throughout the vocal range in the
case of singers.
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Note that, although there is some similarity between the operation of
the vocal folds and that of the lips when playing a brass instrument such
as the trumpet; there is also a very significant difference. In the vocal fold
case, the frequency of vibration, which is controlled by the mass and
muscular tension of the vocal cords, is much less than that of the first res-
onance of the vocal tract, except for high notes of a soprano voice. When
playing a brass instrument, on the other hand, the natural frequency of
the lip vibration is adjusted so as to nearly coincide with the frequency
of one of the resonances of the instrument horn. This difference has
important consequences for the exact physics of the oscillation.

One important point, usually ignored, is that the two vocal folds will
generally differ in mass and tension and thus in natural resonance fre-
quency. The motion of the folds can, however, be separated into two
normal modes with slightly different frequencies: one in which the two
folds, move cophase relative to the symmetry plane and therefore close
at-ohe extremity of their motion, and one in which they are antiphase,
as shown in Figure 1-1. The antiphase motion does not change the flow

(@) | (b)

Figure 1-1. (a) Symmetric or cophase oscillation; and (b) antisymmetric or
antiphase oscillation of vocal folds. The underlying model indicated is a “single-
mass” model.
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through the glottis, so that it cannot be maintained by feedback effects.
The cophase motion, however, couples directly to the flow and can be
maintained by appropriate feedback from flow-generated pressures. In a
real vocal system with appreciable damping, we can therefore usually
ignore the antiphase motion and treat the symmetrical cophase motion
as the only mode of significance. This is a completely linear effect.

In a more realistic model, and particularly as we approach the reality
of a model with a continuous distribution of mass and elastic properties,
there are of course many other vibrational modes that should be con-
sidered. In the simple two-mass model [3], the larynx is considered to be
two-dimensional, with each vocal fold consisting of a pair of masses,
one on the leading and one on the trailing edge of the fold, appropriate-
ly coupled together by springs as shown in Figure 1-2(a). As is well
known, numerical calculations with this model show that the mode of
vocal interest is one in which there is a phase difference between the
leading and trailing masses or, expressed in another way, a standing

(@) (b)

Figure 1-2. (a) Phase differences in a simple two-mass model; (b) some possi-
ble higher vibration modes in a more realistic continuum model. In (b) the upper
drawing is a cross section and the lower drawing a face-on view of the glottis.
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wave along each vocal fold, in the air flow direction, synchronized with
the basic opening and closing mode for the fold pair as shown in Figure
1-2(a). The nonlinearity of the system, which we discuss in a moment,
is important in synchronizing these two vibration modes to give a well
organized and apparently simple vocal fold oscillation.

Ina fully three-dimensional model, which comes closer to physical
reality, we must allow for the possibility of phase differences in the
motion of the folds, not only parallel to the air flow but also in directions
normal to it, as showr in Figure 1-2(b). Each fold, indeed, is able to
behave to some extent like a thick elastic plate, though this analogy is of
little assistance because of the complex shape of the folds. The various
possible vibrational modes of the folds have frequencies that are com-
pletely unrelated. Some of these vibrations can be ruled out of consider-
ation in a perfect larynx because their symmetry is such that they do not
affect the glottal flow, although the asymmetries of a deformed or dam-
aged vocal fold may reintroduce this coupling.

The principal sources of nonlinearity in the vocal fold oscillation are
illustrated in Figure 1-3. In a linear system, the effective vibrating mass,
the spring constant, and the damping coefficient are all constant over the
oscillation cycle, and the resulting differential equation describing the
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Figufe 1-8. Qualitative behavior of the spring constant and the damping coef-.
ficient for vocal fold oscillation. The coordinate x measures the opening between
the folds, with x, being the equilibrium opening distance.
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motion is linear, in a mathematical sense. For vocal fold oscillations this
is true for very small motions about the equilibrium position x, but the
approximation breaks down for larger oscillations. As the vocal folds
open more widely, the spring stiffness of the biological tissues increases
and so does the effective mass recruited into the vibration. As the vocal
folds close together, however, the departure of these parameters.from
constancy becomes extreme—the spring stiffness increases greatly and
so does the damping coefficient, because the tissues of the two folds are
being distorted by their contact. These nonlinearities are enhanced if the
equilibrium opening distance ¥, is small and if the amplitude of the vocal
fold oscillations is large.

The effects of nonlinearity upon oscillatory behavior are many and
varied. If we consider just a single mode of vibration, for example in a
single-mass model, then the effect is simply to distort the normal sinu-
soidal time variation of the opening dimension x:so that the waveform
is clipped softly at extreme openings and sharply when the folds close
together. This introduces phase-locked harmonics of the fundamental in
the motion and hence in the air flow through the glottis. The strength
of these harmonic partials increases with the amplitude of the vocal fold
vibration; initially the amplitude of the #th harmonic increases as the nth
power of the amplitude of the fundamental. This is reflected in the air
flow through the glottis and in the sound quality of the voice, which
progresses from dull to strident as the subglottal air pressure, which con-
trols vocal fold vibration amplitude, is increased.

In the case of a multimass model of the vocal folds, and in particular
for the realistic case in which the mass distribution is continuous, there
are many possible vibration modes with frequencies that have no sim-
ple numerical relation between them. In is a characteristic of such mul-
timode systems that a sufficient degree of nonlinearity can lock all these
vibrations into exact harmonic frequency relationship, so that the result-
ing motion is simple and periodic [4]. This almost always happens in
vocal fold oscillations, because the closing nonlinearity is extreme, and
to it we owe the fact that human vowel sounds, and indeed most voiced
animal sounds, have strictly harmonic upper partials, as can be seen
from the fact that the waveform of the steady sound repeats exactly in
each cycle.

As well as the mode-locking behavior that can be induced by strong
nonlinearity, nonlinear systems are also capable of a variety of complex
behavior, depending upon details of their excitation. If the system is suf-
ficiently simple, such as a single-mass model, then we can find the nor-
mal progression from a period-doubling bifurcation, giving a subhar-
monic an octave below the normal frequency, through further succes-
sive bifurcations to chaotic behavior [5]. This chaotic behavior is called
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deterministic chaos, because it is governed by simple underlying laws,
and the tools that have been developed for its study are many. In par-
ticular, we can derive much of the detail from a consideration of the
time series representing the oscillation [6] and from that a strange attrac-
tor with fractal geometry. Needless to say, if the vocal fold oscillation is
bifurcated or chaotic, so too will be the flow through the glottis and
hence the vocal sound. We return to this later.

Any realistic model of the human vocal folds necessarily involves a
description of its configuration involving more than a single displace-
ment parameter—the dimensionality of the system is greater than unity.
Such complex systems can again show two sorts of behavior: Either they
can become locked into a stable oscillation regime or they can exhibit
bifurcations and chaos. The stable regime is simple to treat, since the
variations of all coordinates are harmonically related, but the chaotic
regime can be very complicated. It is not possible, in general, to derive
simple attractor mappings from the time series representing the oscilla-
tion, because its description may involve a phase space of many dimen-
sions. Any projection onto a space of lower dimensionality then results
in a featureless cloud from which nothing can be deduced.

While examples of chaotic vocal fold oscillation are happily rare in the
case of humans, the same is not necessarily true of other animals. An
excellent example is provided by the Australian sulfur-crested cockatoo
(Cacatua galerita). The syrinx of a bird is in many ways analogous to the
larynx of a human, but there are several distinct differences. In the first
place, the valve in the syrinx is not a single structure lying in the trachea
above the junction of the two bronchi but rather a pair of independent
valves, one in each bronchus, lying just below the junction with the tra-
chea. In the second place, each valve consists of a membrane forced into
the airway by pressure in a surrounding air sac, rather than a flap of tis-
sue tensed by cartilage. Nevertheless, the operation of the syrinx can be
described by a simple nonlinear model that is quite similar to a single-
mass model for the human vocal folds [7]. While mostly exhibiting a
simple phase-locked oscillation regime similar to that of the human
vocal folds, this model can be induced to display complex and chaotic
behavior. It is to be expected that a more realistic model, with the syrinx
membranes described by several geometric parameters, would behave
similarly. The cockatoo Cacatua galerita is one of those birds that can be
trained to imitate human speech, but its natural call is an extremely loud
and raucous screech with a wide-band spectrum peaking around 7 kHz.
Analysis of the resulting time series suggests that the dimensionality of
the oscillation is high; reflecting a multiparameter oscillating system, so
that it is difficult to treat. We should perhaps be grateful that the normal
speech of humans is more disciplined!
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FLOW NONLINEARITY

Oscillation of the vocal folds, as we have seen, is nonlinear, with the
folds spending an appreciable part of each cycle in the closed state and
with the extent of peak opening limited by elastic nonlinearities. The
extent of this oscillation nonlinearity will increase as the energy-of the
oscillation increases, an effect that can be achieved by increasing the
pressure below the glottis. Muscular control of the static separation of
the vocal folds can also influence the fraction of each period spent in the
closed state, although under nearly all assumptions the vocal folds do
close once in each cycle.

The source spectrum for the voice is determined by the flow of air
through the glottis, and therefore by the product of the area of the glot-
tal opening and the velocity of air flow. The open cross section of the
glottis does not behave in a simple sinusoidal fashion, as we have seen,
because of elastic nonlinearities and collision of the vocal folds upon clo-
sure. The extent of this departure from sinusoidal behavior is at least
partially under muscular control. Flow through the vocal fold aperture is
itself nonlinear and governed to a good approximation by the Bernoulli
equation, which shows that flow velocity is proportional to the square
root of the pressure drop across the aperture. This Bernoulli flow non-
linearity is convolved with the nonsinusoidal variation of the aperture
area and with the variation of pressure below and above the vocal folds
and further distorts the flow waveform. Both the acoustic power in the
glottal source and the fraction of energy in high harmonics are increased
if the subglottal pressure is high, though the conversion efficiency from
pneumatic energy in flow from the lungs to acoustic energy in the vocal
tract is typically less than 10%.

As is well known, the flow spectrum is then multiplied by the reso-
nant response of the vocal tract to impress upon it the formants that are
a vital part of speech. In principle, there are also formants that include
the part of the vocal tract below the glottis during the part of each cycle
in which the vocal folds are open. The prominence of these formants
depends upon the damping of the complete vocal tract, including its
lower termination in the lungs. It seems that this termination is suffi-
ciently resistive in humans that these full-length formants are not
observed, though the opposite appears to be true of at least some birds
[7]. We should also, in principle, take into account the interaction of the
high-frequency pressure fluctuations in the trachea upon the motion of
the vocal folds. In practice, however, since these formant oscillations are
at frequencies that are a high multiple of the vocal fold vibration fre-
quency, they have little effect. They are important, however, in influ-
encing the instantaneous flow through the open glottis.
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Because of flow losses in the glottis and viscous and thermal losses-in

" the vocal tract, the total conversion efficiency from pneumatic energy

. supplied by the lungs to acoustic energy radiated from the mouth rarely

exceeds 1%, and is often much lower [7]. Similar figures apply to sound-

producing systems of other types, including musical instruments and
electromagnetic loudspeakers.

. COMPLEX FLOW BEHAVIOR

. . Complexity of flow behavior, apart from that introduced by complex
behavior of the vocal folds, can arise in two ways. The first, which can
occur even in laminar flow, is a variation of the point of detachment of
‘the:flow from the trailing edge of the valve aperture, as shown in Figure
11-4. Such a variation can clearly have a large effect on the Bernoulli pres-

(a) (b)

Figure 1-4. Variation in flow detachment points. (a) Early flow detachment
with a vena tontracta effect that further reduces the jet cross section; (b) late
detachment with partial expansion of the jet after the constriction.
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sures acting on various parts of the vocal folds and thus upon their
motion. If this variation is periodic then it simply adds to the harmonic
development, but more complex behavior is possible. Because the pro-
cess is nonliniear it can exhibit period bifurcation and thus the generation
-of subharmonics. In the limit this can lead to chaotic behavior and tur-
bulence. Since flow behavior is responsible for acoustic output and also
reacts back upon the motion of the vocal folds, these complexities of
flow are important for understanding voice quality.

The second effect, which is largely responsible for the wide-band noise
associated with fricatives and sibilants, derives from turbulent flow
either at the larynx or in the mouth. This turbulence generally has so
many possible degrees of freedom that it is truly chaotic rather than
deterministically chaotic, as we find with systems of lower dimensional-
ity. There may, however, be deterministic elements embedded in the
flow and associated with quasiregular vortex shedding from parts of the
bounding structure. It is difficult to do much with turbulence except to
describe its fluctuation spectrum and associated radiated acoustic power.

CONTROL

When controlling a linear system, one has simply to set the values of

controlling parameters, such as muscular tensions and blowing pres- -

sures, and then allow sufficient time for the system to settle into equi-
librium. This time is controlled by the system Q value and is typically a
few tens of cycles of the fundamental oscillation. In the control of a non-
linear system, on the other hand, we must pay attention not just to the
final state but also to the trajectory in parameter space by which that
state is approached, since the final oscillation regime can be a function
of system history.

This complexity might at first sight appear quite daunting, but in fact
it can have some advantages from the point of view of control, particu-
larly when we wish to produce several different kinds of output. A
deterministically chaotic system has two important properties. The first
is that its trajectory in phase space goes close to every possible point on
the attractor and thus to every possible regime of oscillation, usually
within rather few cycles of the basic oscillation. The second is that the
future behavior of the trajectory, and thus the form of the future oscilla-
tion, can be influenced to an-extremely large extent by a very small
change in the parameters of the system. Together these two facts mean
that any desired mode can be stabilized, at least in principle, by repeat-
ed application of very small corrections to the system parameters. They
also mean that, if we wish to change the regime of oscillation, then we
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just need to let the system run autonomously for a short time until its
trajectory brings it close to a point on the orbit we wish to choose, when
asmall correction can stabilize this new regime.

When such a control operation is considered ab initio, its possible com-
plexity is daunting. It is quite another thing, however, when the control
is exercised by a human neural system. Such a neural system behaves as
an elaboration of the simple neural networks that are now exciting
increasing attention as intelligent decision and control systems. A simpli-
fied example is shown in Figure 1-5. Each element of the system mimics
a heuron, in that it has several input connections and a single output, and

outputs to muscular activators

inputs from neural sensors

Figure 1-5. A simple neural network. Layer 1 of the network accepts stimuli from
neural sensors in various parts of the body, while layer 3 produces control signals
for the vocal muscles. Layer 2 is a hidden layer with no external connections. The
arrows indicate signal-path connections between the three layers, each connection
having an assigned weight that can be changed during the training process.
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has only two output states, “on” and “off.” Whether a neuron is in the on
or the off state is determined by a weighted average of the on or off sig-
nals applied to its inputs, the weighting factors for the input links being
important parameters of the network. The elements are arranged in at
least three layers and there is a great deal of interconnectivity between
them. The neurons of the lowest layer sense the physical state of the sys-
tem at some instant and each tumns on or off depending upon the stimu-
lus it receives. The outputs of this layer feed to the second “hidden” layer
and turn its elements on or off depending upon the weightings assigned
to the network links. The outputs of the elements of the second layer
now pass on to the third layer and similarly determine its pattern of on
and off states. There is thus a wave of “neural” activity that passes
through the system from its first to its third layer, and we can suppose
the process to be repeated many times each second as the state of the
system changes. The third layer is the output layer of the network, and
its pattern of on/off states directly controls muscular actuators that influ-
ence the state of the system. Note that the elements of the neural net-

work are highly nonlinear in their response—a small change in the input

states can flip a neuron from its off state to its on state. The network as

a whole is nonlinear in a very much more subtle and complex way, and

its outputs are not simple functions of its inputs.

We can represent this more formally by supposing that O is the out-

put signal, either 0 for “off” or +1 for “on,” from the ith neuron. The
input signal [; to the jth neuron is then

L= ZW:‘/O/'

A
\
A

where the w; are the synaptic weighting factors, either positive or neg-
ative, for the links between neurons 7 and /. Neuron j will now fire and
produce an output signal of +1 if I;> T where T is a threshold value built
into the neuron. Each neuron of the network has a similar behavior, but
the weighting factors w; are different for each link of the network.
Neural networks “learn” by modifying the weights assigned to their
internal synaptic connections so as to reinforce desired outputs and
inhibit those that are undesired. In this way they can maintain a system
in a desired state, which may be either constant or else varying in time
in a regular manner. The same approach can be applied to system tra-
jectories. The time-varying weighting parameters corresponding to the
desired trajectory are stored somewhere outside the network and thgn
passed to it in sequence. This is quite cleatly closely related to the way in
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" which humans learn complex tasks—first we learn to maintain steady

states such as vowel sounds and then to combine them to produce
.desired outputs such as phonemes and then words. One might speculate

that the problems associated with a “breaking” voice in adolescent male
humans are not so much due to physical changes in the larynx, although
these are certainly present, but rather to a time lag in adjusting the
synaptic weights in the associated neural control system.

With simple neural networks, and even more strikingly with real
neural control systems, it is difficult or even impossible to analyze the

behavior at a component level—the system is not a conventional von

Neumann machine, like an ordinary computer, but something altogeth-
er more complex.

CONCLUSIONS

While the physiology and physics of voice production are both interest-
ing subjects in their own right, the importance of studying these matters
comes from the fact that vocal communication is a vital part of our
everyday life and cultural heritage. The more we can understand about
the complexities of the vocal system and its control mechanisms, the
better we will be able to repair its defects and to learn or teach about its
exploitation.

This book focuses on nonlinearity and complexity in both the vocal
system and its neural control. As we have explained above, the nonlin-
earity of the system is responsible for the richness of vocal sounds, and
it is also responsible for the fact that these sounds generally have regu-
larly repeating waveforms and thus harmonic spectra. The nonlinearity
locks the behavior of the system into one of a number of regimes of
autonomous oscillation, which can then be controlled as stable entities.
At the same time, nonlinearity allows the possibility of more complex
and even chaotic behavior, and it is generally the objective of the neur-
al control system to avoid these.

A recognition of the nature of the neural control system, and its sim-
plified modeling as a neural network, shows us the role of both imita-
tive practice and conscious thought in achieving both routine vocal
utterances and special vocal effects. Certainly this approach has been
exploited by evolutionary processes in natural childhood development,
and recognized by teachers for millenia. A more thorough understand-
ing of the science upon which these methods are based should make

them even more effective.
J v
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