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Abstract. The assumptions and detailed predictions of 
Van der Waals' equation and of classical nucleation 
theory in relation to homogeneous condensation and 
cavitation are discussed. The predictions of both can be 
expressed in terms of reduced variables, relative to those 
at the critical point, and display remarkable quantitative 
similarity over a wide temperature range. The extent of 
this agreement is surprising in view of the different nature 
of the assumptions underlying the two theories. 

1. Introduction 

Most students meet Van der Waals' equation in a first 
course in the kinetic theory of gases, where its heuris- 
tic orign is explained and its qualitative success in 
predicting the phase transition between vapour and 
liquid states is outlined. The sigmoid shape of the Van 
der Waals isotherms in a ( p ,  V )  plane is pointed out as 
giving a qualitative account of supersaturated vapour 
and the metastability of liquid under tension, but 
there the matter is usually left. 

Only a few physics students enter fields such as 
atmospheric physics or chemical engineering, where 
they may make the acquaintance of the classical theory 
of the nucleation of phase transitions, which provides 
an explanation, at the molecular level, of the physical 
processes involved in condensation or liquid fracture. 

In no cases of which we are aware do standard texts 
point out the surprising quantitative similarity 
between the predictions of Van der Waals' equation 
and the equations of nucleation theory. It is to remedy 
this omission that the present paper has been written. 
In doing so, we have purposely adopted a rather more 
sophisticated approach than would he used in a first 
course, but this is to avoid over-qualitative 
arguments. 

At the outset, it should be emphasized that the 
discussion deals only with the behaviour of pure bulk 
material, so that the processes by which condensation 
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or cavitation is initiated are homogeneous. It is 
possible to approach this ideal in the laboratory, but 
in the outside world condensation and cavitation pro- 
cesses are almost always heterogeneous, being 
initiated by the presence of solid surfaces or by sus- 
pended foreign particles. We deliberately set aside 
these possibilities here. 

2. Van der Waals' equation 

A good formal approach to deriving the behaviour of 
non-ideal gases is the Mayer cluster theory, in which 
an expansion is made in terms of the interactions 
between molecules grouped in clusters of 2, 3, 4,. , , 
and so on. Such a theory could be rigorous if we were 
able to consider clusters of all sues, but computational 
difficulties restrict what can reasonably be done. The 
usual result is the so-called vinal expansion 

p V = N k T ( l + 7 + p + . . . )  B C  

relating the pressure p and volume V of N molecules 
of the gas at temperature T. The constants B, C,. . . 
are called the vinal coefficients. The coefficient B is 
readily evaluated, Cis more difficult, and evaluation 
of higher coefficients is virtually impossible. The 
theory therefore works well only for gases that are 
under rather low pressure. 
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Van der Waals' equation can be regarded as an 
extreme simplification of this approach in which only 
interactions between pairs of molecules are taken into 
account, and any cooperative effects in larger clusters 
are ignored. We shall not go into this derivation here, 
since a good account has been given by Morse [I]. 
Elementary derivations of the equation often use a 
less rigorous approach, but we wish to point out this 
more formal origin. The equation itself is familiar, 
and has the form 

where a and B are constants. The term involving a 
represents an attraction between neighbouring 
molecules, and hence the effect of their pair inter- 
action term. N / Y  is the number of molecules per unit 
volume, and hence(N/V)'is proportional to the num- 
ber of pairs of molecules a specified distance apart. 
The term NB is the volume that is occupied by the 
molecules themselves, and hence excluded from the 
available free volume. 

The well known sigmoid isotherms of Van der 
Waals' equation are shown in figure 1. At tem- 
peratures above a critical value Tc the isotherms are 
simple, while at lower temperatures they show two 
stable regions, in which the compressibility - ( I /  
V)(aV/ap) is positive, separated by an unstable 
region. The two stable regions can be interpreted as 
representing gaseous and liquid phases respectively, 
and an appropriate joining line AE through the 
unstable region can be found from the requirement 
that the chemical potential, or molar Gibbs free 
energy, must be the same for liquid and gaseous 
phases in equilibrium, and therefore the mechanical 
work JpdV in going from A to E must be the same for 
the real isothermal path ACE and for the analytically 

Figure 1. Isotherms predicted by the Van der Waals 
equation, with reduced temperature TIT, as parameter 
The inset shows the procedure for evaluating the 
saturation vapour pressure 0%. the position of the line 
AE being adjusted to make the hatched areas AEC and 
CDE equal 
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defined path ABCDE. The hatched areas between the 
curve and AE must therefore balance. This require- 
ment allows us to derive the saturation vapour press- 
ureps as a function or temperature within the Van der 
Waals approximation. This pressure is found to vary 
approximately as exp(-const/T) in reasonable 
agreement with experiment. 

It is very useful to re-express the Van der Waals 
equation (2) in terms of the values of the temperature 
Tc, pressure pc and volume Vc at the critical point. 
These are given in terms of the original parameters hy 

l a  S a  Pc = -1 27 B V, = 3Np NkTc =-- 278 (3) 

so that Van der Waals' equation can be written in the 
reduced or universal form 

(4) 
+ 3(3)][- v - -1 1 8 T  = __ 

V Vc 3 3Tc' 

It is these reduced isotherms that are plotted in figure 
1. 

The reasonable interpretation of the shape of the 
Van der Waals' isotherms is that they describe, at least 
qualitatively, the fact that a vapour can be com- 
pressed beyond its normal condensation point into a 
supersaturated state, and that a liquid can support a 
negative hydrostatic pressure without rupturing. If 
this interpretation is accepted, then we can readily 
calculate a general form for the maximum metastable 
supersaturation in the vapour and the maximum 
metastable negative pressure in the liquid by setting 
ap/av= 0 in (4). If we write the reduced variables as 

PR = P/PC v, = v/vc TR = T/Tc ( 5 )  

then differentiation of (4) gives the equation 

If we set ap,/aVR = 0 and substitute forp, from (4), 
then we reach the equation 

4TRV2-9@+6VR-1=0 (7) 
which can be solved algebraically or numerically to 
give the reduced volume at the two extrema of the 
equation. We can wnvert these to the related press- 
ures p by using (9, with ap,/aV' = 0, in the form 

For convenience let us denote byp' the pressure at 
the condensation extremum D of figure 1, and by P 
the pressure at the cavitation extremum B. The physi- 
cally significant quantities are most usefully taken not 
to be p* and P themselves, but rather the quantities 
p'/ps, which is the limiting saturation ratio in the 
vapour, and (P - ps)/pc. which relates the cavitation 
pressure in the liquid, with respect to its saturation 
vapour pressure, to the pressure at the critical point. 
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Reduced temperature TIT, 

!%lure 2. The supersaturation limit set by homogeneous 
condensation as predicted by Van der  Waals' equation 
(lull curve) and by classical nucleation theory (broken 
curve). 

These relationships, which are universal in form, are 
plotted as full curves in figures 2 and 3. 

3. Homogeneous nucleation of condensation 

Classical nucleation theory, developed largely by 
Volmer and Weber [2,3], concerns itself with details of 
the kinetics of phase transitions and, in doing so, 
makes entirely different physical approximations 
from those adopted in deriving the Van der Waals 
equation. It recognises that, in a supersaturated 
vapour, there will be statistical fluctuations in density 
that can be interpreted as clusters of various sizes, and 
concentrates attention on those clusters that are nearly 
large enough to be thermodynamically metastable. 
Similarly, the statistical fluctuations in a liquid under 
negative pressure can be regarded as embryonic 

Figure 3. The cavitation pressure limit as predicted by 
Van der Waals' equation (full curve) a n d  by classical 
nucleation theory (broken curve). 

vapour bubbles, and the theory focuses on those that 
are nearly large enough to grow explosively. Under 
typical conditions, such critical clusters in either case 
contain some tens of molecules. 

The detailed theory of nucleation behaviour con- 
siders the whole distribution of clusters of less than 
critical size, and calculates the equilibrium, or non- 
equilibrium, currents in this distribution. For our 
present purposes a much simpler approach suffices. 
Let us concentrate attention on a supersaturated 
vapour in the h t  instance, and suppose that the 
vapour pressure isp and the saturation vapour press- 
ure ps under the conditions of the experiment. 
Suppose that there is a spherical cluster of radius r 
containing (4/3)nr'nL molecules, where nL is the num- 
ber of molecules per unit volume in the liquid. Then 
the Gibbs free energy expended in creating such a 
cluster can be written 

AG(r) = % d n L & L  - p y )  + 471220 (9) 
where pL and pu are the chemical potentials @aha1 
free energies) of molecules in bulk liquid and vapour 
respectively, and (I is the surface free energy per unit 
area, or surface tension, of the liquid. It can well be 
argued that (I may depend significantly upon surface 
curvature for such small clusters, but we omit this 
refinement and use its macroscopic value. We can 
show that the dXerence in chemical potential between 
vapour at pressure p and bulk liquid, which is in 
equilibrium with vapour at pressure ps, is just 

pL - A  = -kTln(p/ps). (10) 
Using (9) and (IO), the free energy excess required 

to create a cluster of radius r, for the cases of unsatu- 
rated and supersaturated vapour, behaves as shown 
in figure 4. For unsaturated vapour, there is an 

Figure 4. The free energy barrier AG lor creation of an 
embryo droplet of radius r in a vapour, based on quasi- 
macroscopic classical nucleation theory. The broken 
curve refers to unsaturated vapour and the full curve to 
supersaturated vapour. AG* is t h e  nucleation barrier. A 
similar plot applies for nucleation of a bubble in a liquid 
under negative pressure. 
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increasingly large free-energy penalty associated with 
the creation of large clusters, so that we expect their 
concentration to be small, in accord with a Bolmann 
distribution 

n(r) = nvexp[-AG(r)/kT] (11) 

where nv is the number of molecules per unit volume 
in the vapour. If we apply the same reasoning to a 
supersaturated vapour, then the concentration of 
embryos of size r Erst decreases with increasing r up 
to a critical valuer:, after which it increases without 
limit. We may interpret this as the approach to con- 
densation and suppose that, when a vapour is brought 
to the supersaturated state, it initially has no clusters 
of size greater than r*, but that the concentration of 
critical clusters, n(r*), is given by (11). The rate at 
which condensation proceeds, by the nucleation of 
freely-growingdroplets, is then determined by the rate 
at which these critical embryos can capture another 
molecule so that their size exceeds r*. 

Differentiating (9) with respect to r ,  we End for the 
radius of the critical clusters, 

and, for the free energy barrier to nucleation of con- 
densation, 

The concentration ofcritical clusters is approximately 
n(r*) s nv exp( - AG*/kT). (14) 

From kinetic theory, the number of molecules collid- 
ing with unit area of surface per unit time is p/ 
(2nmkT)"'. where m is the mass of a molecule. The 
rate at which critical clusters grow to become 
supercritical is thus 

J = Kexp( - AG*/kT) (15) 
where, using (12), 

P pnv 
(2mkT)'" = (ZnmkT)'" K 4nr*'nv 

16d 
X L"z' 

For the nucleation of water vapour at room tem- 
perature, K - 1032m-3s-', and for other liquids the 
magnitude is not very different, by which here we 
imply that it is within about a factor 10' in either .. . 

Zeldovich, considers the evolution of the cluster 
distribution function when the vapour pressure is 
suddenly increased to a value greater than saturation. 
The nucleation rate Jis then taken as the rateat which 
clusters of radius r* + E are formed, where E corre- 
sponds to adding a single molecule to a critical cluster. 
The form of J is identical with that given in (Is), and 
the numerical value of the rate constant K is modified 
only by a factor of order 0.1 from that given by (16). 
The simple treatment is therefore justified. 

In examining the breakdown of supersaturation 
through the homogeneous nucleation of condensation 
-without the aid of dust particles or ions to act as 
condensation nuclei-we seek to End the saturation 
ratio p'/ps for which the nucleation rate J becomes 

Examination of (15) with the numerical value of K 
inserted shows that this will occur when the super- 
saturation has increased enough to make 
AG* x 60kT. Because of the very large magnitude of 
the pre-exponential factor Kin  (19, the increase in J 
with saturation ratio is very sharp. We return to 
consider numerical values later, but note as an example 
that. for water vapour at room temperature, J m  
0.03 cm"s" for p[ps = 4.2 while, for p/ps = 4.6, 
Is 500cm-3s-'. In this calculation, K occurs as the 
argument of a logarithm, and its exact value is not 
important to the Enal result. The theory is thus 
adequate to give a value of the homogeneous 
nucleation threshold within an uncertainty of about 
10 per cent, independent of the exact definition of the 
nucleation rate at the threshold. 

appreciable, say J -  I cm-ls-' = 106m-' s .  - I  

4. Homogeneous nucleation of cavitation 

The theory of homogeneous nucleation of cavitation 
is formally very similar to that for the homogeneous 
nucleation of condensation, hut there are some 
important differences. In the nucleation of conden- 
satioh the suh-critical clusters are in mechanical equi- 
librium with their environment, but not in thenno- 
dynamic equilibrium until the critical size r* is 
reached. The vapour inside an embryo bubble in a 
liquid, however, is in thermodynamic equilibrium 
with the surrounding liquid, but not in mechanical 
equilibrium until the critical radius is reached. 

Since the chemical potential of molecules in the 
bubble is the same as that of molecules in the liquid, 
we can evaluate the free energy AC(r) for the pro- 
duction of a bubble of radius r simply in terms of the 
reversible isothermal work done when the bubble is 

direction. 
There is clearly a conceptual weakness in the theory 

as outlined above. This is the assumption that, at the 
moment when suuersaturation is established, the 

created, the external pressure remaining at the mag- 
nitude p. This gives an equation analogous to (g), 
namely 

AC(r) =+nr'(P -p,) + 4 d u  (17) 
wherep, is the pressure of vapour in the bubble, given 
by (12) and (IO). Using a negative radius ofcurvature 

distribution of clu&rs n(r), for r less than or equal to 
the critical size r*, is equal to the thermodynamic 
equilibrium distribution, while n(r) = 0 for r > r*. A 
more detailed derivation, orignally Put forward by 
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r for the liquid surface 

The concentration n, of molecules in the vapour has 
been neglected in comparison with that of molecules 
in the liquid, nL. 

At the critical bubble size r*, we have the condition 
for the mechanical equilibrium of the bubble 

2u p + = p * = p + -  
r* ' (19) 

Using this in (17) gives the free energy barrier to 
bubble formation 

which is closely analogous to (13). The critical bubble 
pressurep* can be found from (19) and (18) for r = P 
as the solution to 

To be exact, ps should be replaced by the saturation 
vapour pressure of the liquid under external pressure 
P, but this makes little difference and, in fact, the large 
value of the denominator on the right-hand side of 
(21) makes it an adequate approximation to take 

P+"PS. (22) 
The kinetic treatment now goes ahead just as for 

the case of condensation. The concentration of critical 
bubbles in the liquid is 

n(r*) = n,exp(-AF*/kT) (23) 
and the nucleation rate is just the rate at which 
bubbles gain an extra molecule to become free-grow- 
ing. In the case of boiling, this rate can be evaluated 
just as in the condensation case, since the vapour in 
the bubble is in thermodynamic equilibrium and we 
can examine the exchange from the vapour side of the 
interface. The result is thus formally the same as given 
by (IS) except that nL replaces nv in the first form of 
(16) and increases the kinetic constant by a factor of 
order IO', making K- 10'4m-'s-' when the 
Zeldovich correction is included. 

In the case of cavitation, the critical bubble is too 
small for this approach to be valid, and we must look 
at bubble growth from the liquid side. In this case it 
can be shown [4] that the kinetic constant has the 
value 

K-nLTexp($) kT 

where h is Planck's constant and Ag is the activation 
energy for molecular diffusion in the liquid. Essen- 
tially kT/h is an infrared vibration frequency, charac- 
teristic of the highest excited vibration in the 
condensed state at temperature T, and Ag represents 

a free energy barrier that must be surmounted if 
molecular dflusion is to take place. For most liquids, 
the numerical value given by (24) is not much different 
from that given by the vapour-side consideration. 

As with homogeneous condensation, nucleation 
theory predicts a very sharp onset for the nucleation 
of bubble growth when the value of (p* - P) in (20) 
becomes large enough to reduce the value of A P  
to about 60kT. This can occur either by super- 
heating, which sharply increases the saturation 
vapour pressure ps and hence, by (22), the critical 
bubble pressurep*, or by subjecting the liquid to large 
negative pressure P, as in cavitation conditions. 

5. Nucleation equations in reduced form 

It isinstructive toattempt torewrite thepredictionsof 
nucleation theory in universal reduced form so that 
they can he compared with those of the Van der Waals 
equation. This involves some approximations, but has 
a good level of accuracy. 

As a first step, we rewrite the nucleation equation 
(IS), using either (13) or (20) for AG*, in the explicit 
form 

where the two forms on the left side refer to con- 
densation and bubble formation respectively. 

Surface tension and surface free energy are numeri- 
cally equal for liquids, though the same is not true of 
solids. We can therefore write 

(26) 
where E, is the surface energy and S, the surface 
entropy. This shows that 

U = E, - TS, 

du s = - -  
dT '  

Various considerations, which we need not consider 
here, show that the surface entropy is positive and of 
order k per surface molecule, the exact value depend- 
ing on the nature of the liquid (for example, whether 
or not it is molecularly associated and whether it is 
polar). The surface tension thus declines approxi- 
mately linearly with increasing temperature, and 
vanishes at the critical temperature, where liquid and 
vapour states become indistinguishable. We can 
therefore make the reasonable approximation 

u=uo( l  -$) 
where uo is the surface free energy at T = 0 or, 
equivalently within our approximation, the surface 
energy 4. 

Turning now explicitly to the case of condensation, 
we note that J -  106m-'s-' for an appreciable 
nucleation rate, while K- lO''m-'s-' for nearly all 
liquids of interest. We can therefore use (28), together 
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with these data, to write (25) in the generalized form 

in@ E 3.5 x  IO^^(&) ($- (29) 

on before, though of course the general qualitative 
similarity of thepredictionsis well known. Indeed, the 
fact that spot comparisons of the predictions of the 
two theories for particular materials often show sip 
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wherep' is the nucleation threshold for homogeneous 
condensation. We can go a little further and note that 
aO/n~'  measures the energy difference at 0 K between 
a molecule in the surface of a liquid and one in the 
bulk, while Tc is proportional to the binding ener of 
bulk liquid. We therefore expect the factor oo/$Tc 
to have essentially the same value for all simple 
liquids. Indeed substitution of experimental values 
shows that it varies only between 2 x IO-'& and 
4 x J deg-' for liquids as diverse as argon, water 
and mercury. Taking 3 x Jdeg-' as a represen- 
tative value, (29) can be rewritten in the universal 
reduced form 

(30) 

Proceeding from (25) in just the same way for the 
case of bubble formation leads to the equation 

Now the expression $O/pCTc should vary little from 
one material to another, since uo is proportional to 
binding energy per unit area, and thus varies as 
TcV;", and we expect Tc to be proportional to 
pc Vc. Inserting typical numerical values, we fmd the 
simple reduced form 

T Tc 
PC T T  

6. Discussion 

nificant disagreement tends to obscure the wide extent 
of the agreement between them. 

The derivations set out above show that the extent 
of this agreement is the more remarkable in that the 
two theories make very different initial assumptions, 
or at least very different truncations of the rigorous 
cluster expansion. The Van der Waals treatment 
ignores all interactions except those between pairs of 
molecules-not for any physical reason, but simply to 
allow a closed approximation to the cluster series. 
Nucleation theory, on the other hand, treats all 
clusters ofless than critical size in a phenomenological 
manner through the introduction of a quasi- 
macroscopic surface free energy, and all attention is 
then concentrated on the very small number of 
clusters of critical size. 

Over the temperature range plotted in figure 2, the 
critical saturation ratio for homogeneous conden- 
sation is in close numerical agreement for the two 
theories, though the predictions diverge somewhat for 
temperatures below 0.4Tc. For such low tempera- 
tures, the critical clusters are so small that the quasi- 
macroscopic assumptions underlying nucleation 
theory are certainly no longer valid, while the pair- 
wise interactions that form the basis of Van der 
Waals' equation are more appropriate, 

The cavitation threshold curves in figure 3 are of 
almost exactly the same shape, and diRer only by an 
overall factor of 2. This discrepancy is associated with 
choice of 'typical' values of the physical quantities to 
give the factor 15 in (32). Changing this factor to 7, 
which could readily be justified, would lead to almost 
exact agreement between the two theories. 

It is necessary, of course, to compare the predic- 
tions of both sets of equations with experimental 

In the case of cavitation well below the Critical tem- determinations of homogeneous condensation and 
perature, Pis large and negative, and we can neglect cavitation thresholds. These experiments are difficult 
p* in comparison. More generally, it is preferable to to perform because of the necessity of removing all 
make a better approximation and set p' = ps. foreign particles upon which nucleation might occur. 

We can now display the general form ofthe predic- The experimental situation is simplest in the case of 
tions of nucleation theory for the cases of water vapour condensation [SI, for the condensation 
honlogeneous condewtion and homogeneous nuclei become captured by the droplets that they 
cavitation by Plotting (30) and (32) as functions of nucleate and precipitate on the floor of the chamber. 
T/Tc. This is done in figures 2 and 3. in which the Thus nucleation of water droplets from ordinary 
predictions of nucleation theory, plotted as broken moist air at room temperature occurs initially at 
cufles, are compared with those Or Van der Waals' saturation ratios pips less than 1.01, through the 
equation. agency of suspended salt particles about 0.1 pm in 

diameter. When these have been precipitated, smaller 
insoluble particles are activated at progressively 
higher supersaturations until the true saturation limit 
is reached at about p/ps  = 4.3. Somewhat below this 
limit, condensation can be initiated by ions produced 
by fast charged particles, as in the Wilson cloud 
chamber, thecritical saturation ratios for positive and 
negative ions being significantly different because of 
the stmcture of the water molecule, 

Examination of figures 2 and 3 shows a remarkable 
degree of agreement between the shapes ofthe curves 
predicted by Van der Waals' equation and by the 
equations of nucleation theory. It does not appear 
that this quantitative agreement has been remarked 
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Definitive measurements on bubble nucleation in 
liquids are much more difficult to perform, because 
nucleating particles are not removed from the liquid 
by the bubble formation process. All that can be done 
is to take the utmost care in filtering the liquid and 
cleaning the walls of the container. Experiments on 
superheating can then be performed in a simple closed 
container, while cavitation experiments, which 
require large negative pressures, can be carried out in 
sealed capillary tubes, filled with liquid and spun in a 
centrifuge. Understandably, these experiments can be 
relied upon only to provide a lower limit to the attain- 
able supersaturation or cavitation pressure. 

This paper is not the place to examine the exper- 
imental data in detail, and to present selected results 
would be to invite scepticism. A rather cursory search 
of the literature, however, shows that nucleation 
theory (without the approximations used in obtaining 
the reduced equations) gives a reasonably good semi- 
quantitative account of the measurements for super- 
saturation (p'/ps from 2 to IO) and cavitation (P 
typically - 300 bar or - 30 MPa) of many materials. 
Where the predictions of nucleation theory differ 
from those of the Van der Waals equation at around 
room temperature, nucleation theory is generally 

closer to the observations, but the remaining 
discrepancies are often as large as a factor 2, par- 
ticularly in the caSe of cavitation. In most cases the 
metastability limit predicted by nucleation theory is 
greater than that observed experimentally, which 
suggests either a limitation in the theory or the pres- 
ence of heterogeneous nuclei in the experiment. In a 
few carefully studied materials, such as water, the 
agreement between nucleation theory and experiment 
is surprisingly good for a variety of experimental 
conditions. 
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