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A B S T R A  CT 

As part o f  a program in musical acoustics, it was required to design a non- 
regular but reflection-symmetric pentagonal gong, made from steel rod, o f  
such geometry that the first 5 or 6 of  its planar normal modes provide partial 
tones in nearly harmonic relationship, in order to achieve a musically 
satisfactory bell-like sound Techniques are described for exploring the 
accessible configuration space to reach this objective, using a combination 
of  analytic solution and finite-element analysis. The results and methods, 
which may be o f  wider applicability and interest, are described in detail, as 
also are two independent solutions reached to the design problem. The 
final gong has markedly different tone quality depending upon whether it is 
struck so as to excite the harmonic in-plane modes or the inharmonic out- 
of-plane modes. 

I N T R O D U C T I O N  

This paper reports upon an interesting problem relating to adjust- 
ment of the mode frequencies of  a multiply bent rod in such a way that 
it can be used as a tuned musical instrument of the percussion family. 
The discussion throws some light upon both the behaviour of mode 
frequencies and the factors that are of importance in musical percussion 
instruments. 
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The problem arose during the course of  development of  a family of  
new tuned percussion instruments by Australian composer,  and CSIRO 
Artist-in-residence, Moya  Henderson. The first instrument of  this series, 
the Alemba, 1,2 used a set of  tuned triangles, each of  which was coupled 
to a tube resonator through a driven diphragm as shown in Fig. 1. By 
tuning each resonator to the frequency of  the second mode of  the triangle 
to which it is coupled, the instrument was made to have a sustained and 
mellow sound, the exact timbre of  which could be adjusted by using 
beaters of  different mass and hardness. The instrument has been used in 
orchestral performances. 

The triangles used in the Alemba are of  isosceles shape, with an 
open apex as in a standard orchestral triangle. The relation between the 
mode frequencies of  such a structure can be varied to some extent by 
changing the base angles and the curvature of  its corners, and this 
has been investigated in a study by Dunlop. 3 The nominal pitch of  the 
triangle can be fixed by its overall size. In this way two other mode 
frequencies can be brought into harmonic relation with the nominal 
pitch. The remaining inharmonic partials are, however, quite prominent,  
and this is regarded by musicians as a limitation to the usefulness of  the 
instrument. 

The next instrument in the series, called the Tosca Bells, adopted a 
symmetrical pentagonal vibrating element, open at one corner, of  the 
general shape shown in Fig. 2. This shape was chosen on aesthetic, 
rather than acoustic grounds, and clearly the motivation is its bell-like 
profile. As with the Alemba, it was intended to couple a set of  these 
elements to appropriately tuned pipe resonators. The first 'pentangle',  

Fig. 1. The sound-producing elements of the Alemba are a set of metal rods, bent to 
triangular shape and coupled to separate tubular resonators, each tuned to the second 
mode of the associated triangle. The coupling is to a flexible membrane, covering one end 
of each tube, through a taut cord. The triangles are excited by blows from soft hammers. 
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constructed on these aesthetic grounds, did in fact produce a sound 
with several partials in nearly harmonic relation, but prominent discor- 
dant partials were also clearly audible. The present study was under- 
taken in an attempt to produce a design with this general shape and 
having a set of partials with as nearly harmonic a relationship as 
possible. 

Development of a pentangle of this type is in many ways analogous 
to bell-founding practice, 4'5 in which the appropriate shape has been 
developed through centuries of experience. In the making of bells, which 
represent a large investment, it is normal practice in most countries to 
refine the initial mode frequencies of the cast bell to the desired values by 
turning metal off the inside of the bell according to carefully established 
rules. In the case of a pentangle bent to well-defined geometry from 
uniform metal rod or bar, we might hope that this tuning step could be 
eliminated in the interests of simplicity and economy. 
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Fig. 2. The shape of a simplified Tosca Bell pentangle. The pentangle has an axis of 
symmetry, and the independent dimensional parameters al, a2, a3, 0 and ~b are shown. In 
a real pentangle, the comers cannot be ideally sharp, and the radius of curvature r of the 

bends appears as a further parameter. 
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C A L C U L A T I O N  OF MODE FREQUENCIES  

In order to attack this problem, we clearly require an accurate means for 
calculating the normal mode frequencies of a multiply bent rod. We will 
require to optimise these frequencies, which means that the calculation 
will be inside some sort of iteration loop, so that there is a high priority on 
speed and efficiency. This latter condition places finite-element packages, 
which are generally designed as general-purpose tools, at something of a 
disadvantage relative to a purpose written program. As we see below, an 
optimal approach involves using both these methods. 

Detailed solution of the mode-frequency problem for a rod of appreciable 
diameter is a very difficult undertaking, so that an initial simplification is 
highly desirable. The preferred construction material for the pentangles is 
12-7 mm diameter mild steel rod, since it is not expensive, is easily 
worked, and has appropriate vibrational properties as far as internal 
damping and the mechanical admittance of the finished article is concerned. 
The length of rod in an individual pentangle varies from about 0.5 to 1.5 m, 
so that the rod can be regarded as moderately thin. This suggests that a thin- 
rod approximation is close to validity. This is the usual approximation for 
the behaviour of beams that is implemented in finite-element packages. 
The next simplification arises because the instrument is designed to 
be played using a hammer blow with velocity only in the plane of the 
pentangle. Ideally such an impulse will excite only modes lying in the plane 
and, even in non-ideal cases, the amplitudes of these in-plane modes will 
be much greater than those of the non-planar modes. A calculation 
limited to plane deflections is thus a good starting point, and may well be 
entirely adequate for practical cases. 

Even with these simplifications, however, a typical finite element solution 
takes a moderate amount  of computer time, since a large number of 
elements must be used to obtain accurate frequencies for the higher 
modes. It is therefore worthwhile to make one further simplification for 
an initial survey, and this is to approximate the corners as being ideally 
sharp. At one stroke this eliminates one parameter, the corner curvature, 
and allows an analytic solution for the straight-rod segments, which can 
be joined by appropriate boundary conditions at the corners. Implement- 
ation of this analytic solution is outlined in the Appendix. A computer 
program to evaluate the mode frequencies is simple to write, gives 
completely accurate eigenvalues, and executes much more rapidly than 
the finite-element package on a microcomputer, thus allowing a rapid 
survey of the primary parameter space for the shape of the pentangle. 

The results of a calculation using this analytic approach are given in 
Fig. 3, which shows the variation of the first 6 mode frequencies as a 1 m 
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Fig. 3. Variation of the frequencies of the first few in-plane modes for a thin rod as it is 
bent  into a pentangular  shape. Angles 0 and 4~ are as defined in Fig. 2, and side lengths 

are chosen so that R21 = a2/a ~ = 2, R3~ = a3/a ~ = 1. 

length of 12.7 mm diameter steel rod is progressively bent into the shape 
of a rectangular pentangle and then unbent in the opposite order. Clearly 
there are large changes in the relative frequencies of the modes, which gives 
some hope that a shape might be achieved to give a nearly harmonic 
relationship between some appreciable number of them. 

Once a suitable shape has been determined to first order, using this 
analytic approximation and the tuning philosophy outlined in the next 
section, it is relatively straightforward and not too time-consuming to 
use a finite-element package to refine the shape by including the finite 
curvature of the comers. 

T U N I N G  PHILOSOPHY 

Restricting ourselves to symmetrical shapes and leaving aside the possi- 
bility of changing the curvature at the bends, it is clear from Fig. 2 that 
we have 5 parameters (al, a2, a3, 0, t~) at our disposal for tuning the bell. 
This suggests that we should aim to tune 5 modes or, put more usefully, 
a basic pitch and 4 mode-frequency ratios relative to it. This is essentially 
the number of modes explicitly tuned in a church bell or carillon bell. 6 
For a given shape, the basic pitch is determined by the overall size 
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a 1 + 2a 2 + 2a3, so that  it is convenient  to take the parameter  set to be 
(R21, R31, 0, q~) where R2j = a2/a I and R31 = a3/a 1. 

Since the time of  Pythagoras,  2500 years ago, it has been known that  
musical notes sound pleasantly together if their frequencies are in the 
ratio of  two small integers. The psychophysical  basis for this observation 
has been subject to detailed investigation 7'8 since the initial work of  
Helmholtz  a century ago, and the effect probably arises in large measure 
f rom the regularly repetitive nature of  the waveforms of  such sounds,  
though the mat ter  is complex. Musical instruments  with sustained tones 
do in fact produce such precisely repetitive waveforms as a result of  
mode  locking caused by the nonlinearity of  their excitation mechanism, 9 
though the same thing is achieved only approximately in instruments  
with transient excitation as in the guitar or the piano. 

It must  be realised, however, that  the audible effect of  pure tones 
sounding in combinat ion,  whether  these are produced artificially or as 
radiation from th~ normal  modes of  some solid vibrator, is quite different 
from the effect produced when two complex tones are sounded together, 
each having its own set of  harmonics.  In the former case no beats are 
produced,  unless the frequencies of  two normal  modes lie fortuitously 
close together, while in the latter there may be beats between any pair of  
upper  partials whose frequencies are comparable.  The tuning tolerance 
acceptable for natural  bell-like sounds is thus much wider than that  for 
bell-like chords produced by sounding the componen t  notes on other 
instruments.  

In percussion instruments of  the bell or gong family, the sound can be 
listened to in two ways. In holistic listening, the percept ion is of  a well- 
defined musical pitch and a characteristic musical t imbre or tone-quality; 
in analytical listening, the perception is of  the set of  individual partials 
making up the sound. For  a successful musical instrument,  the relation 
between the partials has to be such as to encourage holistic listening, and 
this is most  readily achieved if the most  prominent  partials have frequencies 
in integral (harmonic),  or nearly integral, frequency relationship. 

Such a relationship can be written as a product of primes 2"3m5 ~ . . .  where 
n, m and s are small positive or negative integers. The degree of  accuracy 
of  the required tuning is highest if only the factor 2 is involved (octaves), 
fairly critical if both 2 and 3 occur (fifths and fourths) and much  less 
critical if 5 occurs as well (major and minor  thirds). Tuning  of  intervals 
involving 7, or higher primes, is very uncritical as far as consonance is 
concerned. The exact sequence of  partial tones in the sound, and their 
relative strengths, has a great bearing on the sound quality, as does also, 
indeed, the strength and general frequency distribution of  the untuned 
higher partials which are generally not heard analytically. 
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TABLE 1 
Harmonic or 'Just' Pitch Ratios (First line relative to El, second line relative to C3) 

CI El Ft GI C3 E3 G3 C4 E4 G4 C5 E5 E/~5 Gs 
1 5/4 4/3 3/2 4 5 6 8 10 12 16 96/5 20 24 

0.25 0-3125 0-3333 0.375 1 1.25 1.5 2 2.5 3 4 4-8 5 6 

For  convenience, Table 1 sets out the harmonic (or 'just') frequency 
ratios for the musical pitches with which we shall be concerned here. The 
subscripts to pitch symbols refer to the octave in which they occur, 
Ca being 'middle C' and C1 the lowest C on the piano keyboard. The 
notes of  a keyboard instrument, such as the piano, are tuned to 'equal 
temperament ' ,  in which all the fifths are flattened (tempered) by about 
0.1 percent so that all 12 notes of  the scale have the same frequency 
ratio 2 H2 to their neighbours. This results in major and minor thirds 
which differ from the harmonic ratios 5/4 and 6/5 by about 1 percent. 

To produce a satisfying bell-like sound we aim to tune at least 4 
prominent  partials into small-integer ratios with the particular partial 
tone--generally the strongest low part ial-- that  is taken as the nominal 
pitch of  the bell. If  the aim is to produce a church-bell-like sound, then 
it also turns out to be highly desirable to include a minor-third interval 
(6 : 5 or one of  its octaves) relative to this nominal. 

For a straight rod of radius a and length L with free ends, the frequency 
of  the nth mode is given approximately by 

a ( ~)2 
L =  A - - ~  n +  (1) 

where A is a constant depending upon the density and Young's modulus of 
the rod material. The frequencies of the modes thus have ratios close to a 
sequence which can be most helpfully written 0.36 : 1-00 : 1-96 : 2.56 : 3.24 .. . .  
The lowest frequency is well removed from the others and is not radiated 
very efficiently, so that it is natural to take the frequency of the second 
mode as defining the nominal pitch. From Fig. 3 we see that the lowest 
mode of  a bent rod is similarly isolated in relative frequency from the 
upper modes, so that we make the same nominal pitch assignment for 
the Tosca Bell. It is appropriate to note that the second mode is also 
generally taken as defining the pitch of a church bell, the first mode being 
called the hum or undertone. 

Our task is now to explore the 4-dimensional parameter space {R21, 
R31, 0, ¢~} and find configurations for which the frequency ratios, relative 
to the second mode as nominal, have the required simple form. This task 
is potentially very extensive numerically, but it can be simplified greatly 
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by proceeding one mode at a time and by adding parameters one at a 
time, as we now show. 

The sub-nominal first mode  frequency is o f  little importance, since the 
resonator  in the complete Tosca instrument can be tuned to the second 
mode and will then radiate little at this lower frequency. We therefore 
neglect it and look only at the higher mode frequencies relative to mode 
2. If  we assume reasonable values for two of  the parameters, say the side- 
length ratios R21 and R31 , then we can explore numerically the 2-parameter 
{ 0, ~b} configuration space by computing mode frequencies over a grid of  
about  5 × 5 points and drawing (0, th) contours  along which the required 
harmonic frequency relationships are met. The base plane of  Fig. 4 
shows an example of  such contours for modes 3 and 4 at acceptable 
frequency ratios such as 2 : 1 or 3 : 1 relative to mode 2. If  a solution 
exists, then these two contours must cross at a point A within the 
accessible { 0, ~b} space. 

We now extend the phase space to three dimensions by calculating a 
similar set o f  acceptable (0, 40 contours  for additional values of  one of  
the remaining parameters,  say R21. This allows us to draw surfaces in the 
3-dimensional {0, Oh, R21 } space corresponding to acceptable values of  

R21 

Fig. 4. Solution surfaces in a 3-dimensional configuration space. Surface I corresponds 
to a satisfactory ratio of the frequency of mode 3 to that of mode 2, and surface II to a 
satisfactory ratio for mode 4. These two surfaces intersect in a curve AB. If the solution 
surface giving a satisfactory ratio for mode 5 intersects AB in a point such as S, then the 
configuration represented by S is a satisfactory solution for modes 3, 4 and 5 relative 

to mode 2. 
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the frequency ratios for modes 3 and 4, as shown in Fig. 4. These two 
surfaces will intersect in a curve AB, if a solution indeed exists. 

We can draw a third surface in Fig. 4 corresponding to an appropriate 
ratio for the frequency of mode 5. If this surface cuts the solution curve AB 
for modes 3 and 4, for example at the point S, then this point represents a 
satisfactory solution for modes 3, 4 and 5 relative to mode 2. The process 
can then be continued by including the remaining parameter, extending 
point S into a curve, and seeking an intersection with the surface for 
mode 6 at an acceptable frequency ratio. The advantage of  this procedure 
is that it limits the amount  of  configuration space that must be explored 
at each step to that near a previously established curve or surface, and 
thus greatly reduces the calculation time involved. 

In fact it is an effective procedure, once the approximate location of  
the solution point in configuration space has been identified, to search 
for the solution iteratively in the orthogonal {0, ~b} and {R21, R31} sub- 
spaces in turn. Thus Fig. 5 shows such a section in (0, ~b) space for R21 = 2, 
R31 -- 1, which is close to, but not coincident with, the exact solution 
ratio. It is clear that there are three regions in this sub-space, marked SI, 
S n and S m, which are close to multiple intersections of  the individual 
solution surfaces for particular modes. Exploration can then be limited 
to the immdediate vicinity of these regions. 
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Fig. 5. Contours  in the { 0, ~b} sub-space with R21 = 2, R31 -- 1 for modes 1 to 6 of  a 
pentangular  frame. Regions near S I, Sll and S m are close to possible solutions, which can 

be approached by successive opt imisat ion in {0, th} and {R21, R31 } sub-spaces. 
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SOLUTIONS 

Using the methods outlined in the previous section, these solutions were 
refined for the idealised sharp-corner tuning problem. Other useful 
solutions may possibly exist for greatly different side-length ratios, since 
the exploration was not completely exhaustive, but from a practical 
point of view it was satisfying to find even one! In fact only the solutions 
associated with region I turn out to be essentially exact. In the case of  
regions II and III the solution surfaces do not all pass through the solution 
point, but simply approach closely to it. Details of the initial solutions 
are given in Tables 2 and 3. 

Solution I bears a fairly close resemblance to the original Tosca Bell 
configuration, designed on purely aesthetic grounds, except that the top 
angles are closed so much that the two free ends overlap. This is unfortu- 
nate, but simply means that the frame must be bent slightly out of  plane 
so that there is adequate clearance. Modes 2 to 6 can be tuned exactly, in 
the sharp-corner approximation, and give a well-spread set of modes, 
including a minor third at mode 5. The nominal pitches of these notes are 
indicated, taking the nominal pitch of the bell as a whole to be tenor-C 
(C3). The sub-nominal mode 1 has an unfortunately dissonant pitch close 
to F~t 2, but this can be ignored, as we discussed above. 

Solution II gives a bell of 'coat-hanger' shape which, from Table 3, has 
a well distributed set of mode frequencies. The sub-nominal has, in this 
case, a well-located near-harmonic frequency. Once again there is a 
minor third, this time at mode 6 and, since mode 3 has frequency ratio 1-5, 
there may be an implied fundamental at frequency ratio 0.5, an octave 
below the nominal pitch, for psychophysical reasons. 

Solution III has a very flattened shape because of the small value of ~b. 
The mode frequencies are densely clustered in the range 1.0 to 2.5 and 
contain no fewer than three major thirds relative to the nominal pitch. 
The subjective pitch may again be below the nominal pitch because of the 
close spacing of these mode frequency ratios. The shape of this pentangle, 
however, is not satisfactory for practical reasons, particularly when we 

TABLE 2 
Initial Configurations 

R21 Rsl 0 (deg) ch (deg) 

Solution I 1.95 0.92 96 93 

Solution lI 2.20 1.07 135 46 

Solution III 1-85 0.97 146 10 
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come to consider rounded corners. For this reason this solution was not 
carried any further. 

As the final important refinement to the design problem, the finite-element 
package Strand5 ~° was used, again on an AT-compatible microcomputer,  
to include the effects of corner rounding. This package is particularly 
suitable for the calculation since its structure allows access to all the files 
and executable modules, so that it was easy to write a batch program to 
perform the necessary exploration of  configuration space in the immedi- 
ate vicinity of  the initial solutions. It also does not require inclusion of  
external constraints on the pentangle. Optimisation, using the approach 
described above, typically takes only a few hours. 

It is not very useful to report the calculated effects of changing bend 
radius upon mode frequencies, since this depends significantly upon 
which other parameters are kept constant. Nominally the other parameters 
are the side-length ratios, but when corner curvature is included we must 
define exactly how these are to be measured--between centres of curvature, 
between the intersections of  the axes of the rod segments, or in some 
other way. The choice will have a significant influence upon the results 
when the corner radii are large or the bend angles large. 

For steel rod, the minimum reasonably achievable bend radius corre- 
sponds to bending the rod around itself, giving a neutral-section bend 
radius about equal to the rod diameter, so that corrections to straight- 
side lengths of at least this magnitude are involved. Since the rod diameter 
introduces an absolute scale into the problem, it is necessary to design 
the highest pitched gong to have at least the minimum achievable bend 
radius, after which the lower pitched gongs can be derived by simple 
scaling. The relative sharpness of  the bend clearly depends upon the 
pitch of this smallest gong, and various design solutions are possible. In 
one particular case, the calculation was based upon using 12.7 mm steel 
rod and an internal bend radius of  20 mm (neutral section bend radius 
26 mm) at a rod length of  1000 mm. This allowed design of  a set of bells 
covering pitches up to about Ca, middle C, without impractically sharp 

TABLE 3 
Initial Mode Frequency Ratios 

Solution I (0.35) 1.00 2.00 3.00 4.80 6.00 
Pitches (F l) C3 C4 G4 E/% G 5 

Solution II (0.32) 1.00 1.51 1.98 2.99 4.80 
Pitches (El-F1) C 3 G 3 C 4 G 4 E/~ 5 

Solution III (0.31) 1.00 1.25 1.46 2.49 4.04 
Pitches (El) C3 E3 G3 E4 C5 
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bends. With this assumption, Solutions I and II were refined to produce 
practical gong designs, as shown in Fig. 6. 

In the case of Solution I, rounding of the corners requires only small 
adjustments to the straight-side lengths and reduction in the inside angles 
to approach again the design mode frequencies to an accuracy better 
than 2 percent. The shape of this final Tosca Bell is essentially rectangular, 
with a large side overlap, as shown in the lower part of Fig. 6. In the 
case of Solution II, however, rounding of the lower corners produces a 
considerable change in mass distribution, as can be seen in the upper 
part of Fig. 6. This necessitates a considerable reduction of the angle 

relative to the sharp-corner configuration. Nevertheless, the original 
calculated mode frequencies are regained to better than 1 percent. The 
extent of this angular change, however, supports the view that a pentangle 
corresponding to Solution III could probably not be made by simple 
bending of the rod. 

By relaxing the planar constraints applied to the finite-element solution, 
it is simple to calculate the frequencies of the out-of-plane modes as well 
as of the planar modes in which we are primarily interested. The Strand5 
package also allows visualisation of these modes. We shall not follow up 
this extension here, as its practical importance is small. The existence of 

SII 

SI 

Fig. 6. Shapes of the two Tosca Bells derived from optimisation of solutions near 
regions SI and Stl of  Fig. 5, using a finite-element program to include corner bend radii. 
In the case of Solution I, the pentangle is bent slightly out of plane to give clearance 

between its two end sections. 
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these inharmonic out-of-plane modes, however, allows to the performer a 
degree of control of the timbre of the instrument, since it can be struck so 
as to either minimise or maximise the amplitude of these modes relative 
to the harmonic in-plane modes. 

The pentangles, as designed above, require no hand-tuning, their mode 
frequencies being defined by their basic shape. The same is true to some 
extent of traditional church bells, but it is almost universal practice to 
fine-tune the mode frequencies by turning small amounts of metal off the 
interior surface of the bell on a lathe, following recipes which have been 
established by long experience. Clearly the same sort of procedure could 
be used with pentangles, both to reduce the residual tuning discrepancies 
of the first six modes and perhaps also to tune some of the higher modes. 
A practical approach to this tuning problem for the case of bells has 
been developed by Mills. 11 This involves evaluating the effect on the 
tuning of all modes of the removal of a small amount of metal from each 
of a large number of bands along the interior surface of the bell. A linear 
programming procedure is then used to define a metal-removal schedule 
that will produce optimal tuning. Such a procedure is readily implemented 
for a pentangle by using the finite-element package to determine the effect 
of filing metal off the rod in various locations. We have not, however, 
attempted to carry out this fine-tuning. 

SCALING 

Once a suitable design has been achieved for a pentangle element of some 
assumed size, it is necessary to scale this design to the size necessary to 
produce the required set of nominal pitches for the complete instrument. 
There are three possible approaches. 

Conceptually the most straightforward is simply to scale all the dimen- 
sions of the pentangle (rod length, diameter and bend radius) uniformly. 
From eqn (1), the mode frequencies will then all vary inversely with the 
scale factor. The practical difficulty is that this requires a different rod 
diameter and bend radius for each pentangle of the set. 

At the other extreme, one might keep both the rod diameter and bend 
radius constant and scale only the lengths of the rod segments. This 
would require that we perform a separate finite-element optimisation to 
incorporate corner rounding for each different member of the set, and 
the limitations imposed by a fixed bend radius might mean that the over- 
tone structure of the pentangles might have to change at certain points 
along the compass. This is not very satisfactory. 

Most practically appealing, therefore, is to use the same diameter rod 
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for all pentangles, scaling rod length and bend radius, and to use once 
more the scaling law eqn (1), which shows that the mode frequencies in this 
case vary inversely as the square of  the scale factor. This has economic 
advantages, though a different bending die has to be made for each size 
of  pentangle. 

RESULTS 

Several sizes of  members of  the Tosca Bell family, corresponding to the 
refined versions of  Solutions I and II, have been made. It is necessary to 
evaluate these both from the viewpoint of  agreement with the calculated 
design and also, more importantly, for the musical effectiveness of  their 
sound. 

Table 4 shows the measured mode frequency ratios of  two Tosca Bells, 
constructed to be as close as possible to the calculated curved-corner 
designs. The measured deviations from the calculated frequencies can be 
ascribed in large measure to small deviations from the desired geometry of  
the pentangle, since the rod was bent by hand in a simple jig. Agreement 
is certainly adequate to validate the design principles. 

Also shown in Table 4 are the frequencies of  the out-of-plane modes, 
which form an inharmonic series interlacing those of  the planar modes. In 
practice, and despite the lack of planarity of the pentangle made necessary 
by overlap of  the ends in Solution I, it is easily possible to execute the 
strike so as to excite almost exclusively the in-plane or the out-of-plane 
modes. The large inharmonicity of  the out-of-plane modes creates a very 
different sound, and thus places some interesting effects in the hands of  
the performer. 

In judging musical effectiveness, we can either take the view that we 
are attempting to simulate the sound of  a traditional western European 

T A B L E  4 
Calculated and Measured Frequency Ratios 

Mode numbers 
1 2 3 4 5 6 

Design Solution I 0-35 
Pentangle I (measured) 0.35 
Out-of-plane (measured) 0.39 

Design Solution II 0-32 
Pentangle II (measured) 0.33 
Out-of-plane (measured) 0-83 

1.00 1-96 3.05 4-82 6.13 
1-00 2.01 3-05 4.79 5.93 
1.43 2-40 o 4.97 9.57 

1.00 1.50 1.99 3.04 4.76 
1-00 1.49 1.96 3.05 4.75 
1.06 1.42 2.57 4.03 5-17 
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church bell, or we can simply require that the sound be pleasant, a matter 
which can be judged only subjectively. 

For a traditional church bell, 6 the first five modes are the hum or under- 
tone, with frequency 1 "2 relative to the second mode, the fundamental or 
prime, which is the reference frequency, the tierce or minor third (6"5) 
and the nominal or octave (2" 1). Clearly neither of  the two Tosca Bells 
comes close to this set of frequencies. Solution I contains the correct 
frequency ratios, including the minor third, to within powers of  2, except 
in the case of  the first mode, but they are spt'ead over several octaves 
rather than being concentrated. Solution II has rather more closely 
clustered mode frequencies and again has a minor third. Solution III has 
mode frequencies clustered more like those of a church bell but, as 
explained above, this design has not been followed up for practical reasons. 
Musical effectiveness cannot therefore be a matter of  exact simulation 
but must rather rely on production of an appropriate subjectively bell- 
like sound. 

Since the diameter of the rod is very small relative to the wavelength 
of the lowest modes, these are radiated very inefficiently and can be heard, 
in the sound from an isolated pentangle, only in the near field. The radi- 
ated sound is thus dominated by the inharmonic higher modes. Attach- 
ment of a simple bucket-shaped non-resonant radiator (in fact a plastic 
bucket was used) by means of a short cord to one of the corners of the 
pentangle, however, increases the radiation efficiency of  the lower modes 
very greatly, while not adding much to the radiated intensity of higher 
modes, which are attenuated in the cord and in the resonator 
material. Such an arrangement is a first approximation to the structure 
of  the completed Tosca Bell instrument. The sound is judged subjectively 
as being mellow and pleasant, which was the original aim of  the design 
exercise. 

In order to evaluate the musical effectiveness of the design, we have 
now constructed a complete chromatic octave (13 notes) of  the Type II 
bells, again using simple hand jigs. Frequency measurements for all the 
in-plane modes shows that the fundamental of each bell is within about 
1.5 percent of  its nominal value, and the mode tuning of each bell agrees 
with the design to better than 2 percent. These bells are to be coupled to a 
carefully designed sound-board radiator, rather than to individual tubular 
resonators, to produce a complete musical instrument. The coupling itself 
requires analysis, taking account of the mechanical impedance of the 
soundboard. The ideal attachment point should be near to a node for the 
musically important  modes, in order that their tone may be sustained, 
and fortunately the sharp bends are close to ideal for this purpose. The 
compliance of the coupling cord itself provides a desirable high-frequency 
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cut-off behaviour and reduces the prominence of  inharmonic upper 
partials. 

Preliminary experience suggests that these pentangular vibrating elements 
will provide the basis for an interesting new musical tuned-percussion 
instrument, with a mellow bell-like basic sound quality but with freedom 
allowed to the performer to introduce inharmonic components  at will. 
The design method developed can be applied to bars of  non-circular 
cross-section, in order to vary the relationship between in-plane and out- 
of-plane modes, or to elements of  more complex geometry. 
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APPENDIX 

The propagation of transverse elastic waves along a thin rod is described 
by the well-known equation 12 

34y _ 4p 32y (A1) 
~X 4 Ea  2 Ot 2 

where y is the displacement normal to the rod, x is the coordinate 
measuring length along the rod, p is the density and E the Young's 
modulus of the rod material, and a is the radius of the rod. This equation, 
appropriately supplemented for longitudinal motion as we show presently, 
describes the behaviour of each straight section of rod, and we simply 
require to impose appropriate conditions at the bends where two rods 
meet, and at the free ends. In this way we can achieve an analytic solution 
to this approximate representation of the real problem, in such a way as to 
allow simple and rapid calculation of the normal mode frequencies. 

Inspection of eqn (A1) shows that its general solution can be written in 
the form 

y . ( x )  = a. cos k x  + ~. cosh k x  + 7. sin k x  + 6,, sinh k x  (A2) 

where k is the wave number, given from eqns (A1) and (A2) in terms of 
the angular frequency oJ by 

k 4 - 4t°2P (A3) 
Ea 2 

In eqn (A2), which refers to a section of rod labelled by the subscript n, the 
quantities an,/3n, 3'n and 6, are constants, the values of which are determined 
by the boundary conditions at the two ends of this section of rod. 

Equation (A2), of course, describes only displacements normal to the 
axis of the rod, and to complete the specification we must allow the 
possibility of displacement parallel to its axis. For the section n of the 
rod we use the symbol en to denote this parallel displacement. We take 
each en to be constant along the length of the relevant rod, which means 
that we are ignoring the possibility of longitudinal waves in the rod 
material. This is physically justified, since the frequencies of the normal 
modes associated with these waves are much higher than those of the 
bending modes, and they are therefore outside the frequency range in 
which lie the modes we wish to tune. 

This completes the geometrical description of the motion. Since there 
are 5 straight sections of rod, this implies 25 unknown coefficients. We 
note, however, that the pentangle has a plane of mirror symmetry, shown 
in Fig. 2, and this implies that the modes must be either symmetric or 
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antisymmetric in relation to this plane. Applying this condition reduces 
the number of unknown coefficients to 15. 

These 15 coefficients are, however, not adequate to describe the dynamics 
of the problem. In particular, we require an appropriate balancing of forces 
and moments at the corners of the pentangle. The bending moments are 
properly described in terms of the elastic moduli, the rod radius, and the 
second derivative of the normal displacement y. The shear forces similarly 
involve the elastic moduli and the third derivative of the normal displace- 
ment. Description of the tension forces in the rod, however, requires 
introduction of tension forces T which vary along the length of each rod. 
We are concerned only with matching conditions at the corners, and this is 
seen to introduce a further 5 independent quantities. These can be desig- 
nated, with reference to Fig. 2, in terms of the symbol used for the corner 
(or the centre O) and the rod number, as T °, T ¢, T A, T2 a and T3 a. The 
tension at the free end C clearly vanishes. Symmetry considerations have 
been used to allow us to specify tensions for one half of the pentangle 
only. 

Adding the 5 tension quantities to the 15 independent displacement 
parameters gives the total of 20 independent parameters necessary to 
specify the dynamics of the simplified thin-rod model. We now require 20 
linearly independent equations relating these quantities. Once these have 
been written down and solved, we have a nonlinear equation in the wave 
number k, or equivalently in the frequency to, the solutions of which are 
the mode frequencies for the pentangle. We shall not go through this in 
exhaustive detail, but simply give the origin and general nature of the 
equations and show how they can be solved. 

For each of the two bends A and B, we require that the rods join 
together in a continuous manner (2 equations) and that their slopes by/Ox 
match (1 equation), so that the bend angle is not distorted, for this 
would take an infinite moment about the join point. Furthermore, con- 
sideration of a tiny element of rod at the bend shows that, if its motion 
is to remain finite, the bending moments in the two rods at the join must 
be equal, implying continuity of O2y/bx2 (1 equation). Finally the forces 
exerted on the element by the two rods must balance in two orthogonal 
directions in the plane (giving 2 equations involving b3y/Ox3, T, and the 
bend angle. This gives 6 equations at A and a further 6 at B, making 12 
in all. 

At the free end C, the bending moment and the shear force must both 
vanish, giving ~2y/~x2 ---- 0 and ~3y/~x3 (2 equations). We have already set 
the tension force equal to zero by not including it among the unknowns. 

We then consider the longitudinal motion of each rod section under 
the influence of the difference between the tensions at its two ends. This 
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is equal to the product  of  the mass and acceleration of the rod, and is 
thus proportional to the displacement quantity e, the rod length, cross 
section and density, and the square of  the frequency (3 equations). 

This gives a total of 17 equations. The remaining 3 are derived for 
the point O on the symmetry plane, and are different for symmetric and 
antisymmetric modes. For  the symmetric case, clearly Oy/Ox = 0, and 
O3y/Ox3 = 0, while the necessity for a stationary centre of  mass requires 
that T ° -- 0. For  the antisymmetric case, symmetry dictates that y = 0, 
~2y/t)X2 = 0 ,  and ~4y/~x4 = 0. In either case we have 3 additional equa- 
tions, making the total set up to the required number  of  20. 

The 20 equations are homogeneous, since no external forces are involved, 
and the necessary and sufficient condition that they have a real solution is 
that the determinant of the matrix of  their coefficients should vanish. This 
determinant is complicated, since the coefficients themselves are seen 
from (A2) to involve quantities such as cos ka and cosh ka. Fortunately 
there are simple computer  programs ~3 for evaluating a determinant once 
its elements are given numerical form by choosing a value of  k, so that 
the problem reduces to using such a program to search for those values 
of  k for which the determinant vanishes. We can then use eqn (A3), with 
values of the elastic constants inserted, to convert these k-values to 
frequencies. A program to perform this operation is easily written and 
gives the first 6 or 7 mode frequencies to good precision in a few minutes 
on an AT-compatible microcomputer using Microsoft QuickBasic. Indeed 
the speed can be further improved by first using algebraic manipulation to 
reduce the rank of  the determinant. There is no problem about requiring 
extra constraints and eliminating rigid-body modes as there is in some 
implementations of the corresponding finite-element calculation. 


