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Pressure-controlled gas-flow valves are responsible for sound generation in woodwind and 
brass instruments, and in the vocalization of many animals. When only a single degree 
of freedom is allowed for the valve motion, four simple configurations are possible, depending 
upon the effect upon the valve opening of static overpressures applied at either inlet or 
outlet ports in the presence of the flow. It is shown that, depending upon the valve 
configuration, there exist particular ranges of acoustic impedance for the inlet and 
outlet ducts to the valve within which self-sustained valve oscillation is possible. The results 
are particularly simple when the lengths of these ducts are less than one-quarter of a 
wavelength at the resonant frequency of the valve, in which circumstance oscillation takes 
place close to that resonance frequency. The analysis treats only the initiation of 
oscillations of small amplitude, as a precursor to the maintenance of large-amplitude nonlinear 
oscillations. 

PACS numbers: 43.75.Ef, 43.75.Fg 

INTRODUCTION 

Pressure-controlled valves are responsible for sound 
production in musical instruments of the woodwind and 
brass families, and in animal vocalization. In musical in- 
struments the operation of the valve is usually controlled 
by feedback from a passive resonator, the instrument horn, 
while in vocal systems the' valve itself is the controlling 
entity and the horn resonator serves primarily as an acous- 
tic filter. There have been many detailed analyses of the 
operation of reed- and lip-driven woodwind instruments,•-8 
of human vocal systems, 9-t4 for which quite sophisticated 
models have been developed, and of avian vocal sys- 
tems, •5-•6 these references being only some of many in the 
literature. There have, however, been only a few general 
treatments of the oscillation problem 5'7'•7 and these have 
mostly been particularized to the case of musical instru- 
ments. There does not seem to have been published a sim- 
ple unified discussion of the general conditions under 
which oscillations of the various simple types of pressure- 
controlled valve can be initiated and maintained. It is the 

purpose of the present paper to remedy this omission by 
analyzing the behavior of simple models with all possible 
configurations. 

The simple valves with which we are concerned are of 
three types, as indicated schematically in Fig. 1. In each 
case, the motion of the valve flaps is defined by a single 
geometric parameter. Our classification is also simply geo- 
metric and is based on the effect upon the valve of an 
additional small steady overpressure applied from one or 
other of its two sides, in the presence of a pre-existing flow 
but omitting from consideration any forces caused by Ber- 
noulli pressure. If a small overpressure applied from the 
upstream side of the valve causes it to open further, then 
we define a parameter a• to have the value + 1, while if this 

overpressure tends to close the valve then a• =- 1. Simi- 
larly, if a steady overpressure applied from downstream of 
the valve causes it to open further, then a parameter a2 is 
given the value + 1, while if it tends to close the valve then 
a2 = - 1. The configuration of a valve is thus defined by the 
couplet (a•,a2). By an obvious contraction of the notation, 
woodwind-type reed valves as shown in Fig. l(a) are of 
type ( -, d- ), simple models of the lip-valve driving brass- 
family musical instruments and the valve in the human 
larynx, as shown in Fig. l(b), are of type ( d-,-- ) (though 
we see later that such models are of questionable validity), 
and the valve in the avian syrinx, as in Fig. 1 (c), is of type 
(d-,d-). The reed pipes of the pipe organs are of type 
(-, d- ) like woodwind reeds. Harmoniums and harmoni- 
cas generally use sets of reeds of types ( +, - ) and ( -, d- ) 
in an apparently "free" configuration without any attached 
resonators, one of the sets being activated by blowing and 
the other by sucking? There does not appear to be a prac- 
tically useful example of a valve of type ( --, - ), but such 
a valve could perhaps be constructed. This classification is 
an extension of that used by Helmholtz, •7 who described 
woodwind-type reeds (-, d- ) as "striking inwards" and 
lip-type valves ( d-, -- ) as "striking outwards." By analogy, 
we might describe syrinx-type valves (+, d- ) as "striking 
sideways." 

It is important to emphasize that, in reality, pressure 
controlled biological valves, such as brass instrument play- 
er's lips, the human larynx, and the avian syrinx, are much 
more complex than suggested in Fig. I and require more 
than one geometric parameter to specify their configura- 
tion. This may mean that they cannot be unambiguously 
classified into our simple scheme. We return to comment 
upon this briefly later. 

Whether or not a valve has an attached resonator, it 
must always have some form of pipe connection to at least 
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FIG. 1. Simplified models of three commonly occurring configurations of 
valves, described by the couplet (cq,%). (a) A valve of configuration 
(--,+), corresponding to a woodwind or organ-pipe reed valve; (b) a 
valve of configuration ( +,-- ), corresponding to a brasswind instrument 
lip valve or to a human vocal valve according to one possible model; and 
(c) a valve of configuration ( +, + ), corresponding to arian syrinx valve, 
or to a lip or vocal valve according to an alternative model. 

one of its ports. The acoustic impedance of these connect- 
ing pipes is, as we see later, vitally important to the vibra- 
tion behavior of the valve. Indeed, our purpose is to deter- 
mine the conditions under which valves of the three types 
mentioned can sustain spontaneous oscillations, once the 
connections to the two valve ports have been specified. A 
linearized theory is adequate to explore this problem, but 
does not suffice to define the subsequent large-amplitude 
vibrations of the valve. To treat these we must resort to 

numerical solution of the full equations defining the sys- 
tem, •8-2ø either in the time domain or in the frequency 
domain. 

Before we begin, it is important to make one qualifi- 
cation to our discussion. We have referred to valves of 

configuration ( --, q- ) as being of woodwind type, and this 
carries the incorrect implication that we are discussing the 
operation of these reeds as in complete musical instru- 
ments. This is, however, not the situation that we wish to 
consider. In a woodwind instrument, the natural frequency 
of the reed itself is high compared with the playing fre- 
quencies, and the method of analysis to be presented is 
unduly cumbersome when applied to this case. Rather, we 
wish to consider situations more closely analogous to reeds 
of the organ-pipe variety, in which the natural frequency of 
the reed is lower than, or comparable to, the frequency of 
the first mode of the resonator to which it is attached. 

Operation of the reed valve then takes place near the fre- 
quency of the peak in the negative acoustic conductance 
that has been identified 5 just below the resonance fre- 
quency of the reed in this case. To avoid confusion we shall 
therefore refer to the configuration ( --, + ) as being that of 
an organ-pipe reed. Valves with other configurations sim- 
ilarly operate near their negative conductance peak, and we 
should remark that this is necessarily true, even for close 
coupling to a resonator, for valves of configuration 
(q-,--), for which the conductance is negative only in a 

pressure-controlled 
valve 

inlet duct outlet horn 

(a) 

FIG. 2. (a) Schematic diagram of a pressure-controlled valve connected 
to appropriate inlet and outlet ducts. (b) Analog network describing a 
pressure-controlled valve fed from a static pressure generator •o of inter- 
nal impedance Z• A pipe with impedance coeffcients Z•i) ) connects the 
static pressure generator to the valve and a horn with impedance coeffi- 
cients ZI• ) exhausts to the air, where it is terminated by a radiation 
impedance Z n. The shunt impedance across the valve allows for oscillat- 
ing flow caused by displacement of the valve tongue. (c) The steady-flow 
version of the same circuit, assuming the ducts present no flow resistance 
at zero frequency. 

small frequency range just above the valve resonance fre- 
quency? 

I. THEORY 

Suppose that the physical system has the form shown 
in Fig. 2(a). An air supply, with internal acoustic imped- 
ance Z s, creates a steady overpressure/•0. In most of the 
systems with which we are concerned, this pressure source 
is the lungs, and Z s is large compared with the impedances 
of the connecting air ducts. Some sort of duct or horn 
connects the source to the valve, and we can characterize 

this by a set of impedance coefficients Z•) ) as follows. Sup- 
pose that Pi is the acoustic pressure at one end of the duct, 
denoted by i, and U• the acoustic volume flow into that 
end, with pj and Uj being similar quantities for the other 
endj. Then the relationship between these quantities can be 
written 

(l) 
and it can be shown that Zji=Z O. These equations then 
define the impedance coefficients Zij, which can be readily 
calculated for ducts of simple geometry and are given a 
superscript (1) or (2) to indicate the duct to which they 
refer. 

The exit side of the valve is connected, in general, to 
another horn with impedance coefficients Z•.f) which is 
terminated by a radiation impedance Z R. We should really 
know the values of these impedance coefficients both near 
the operating frequency of the valve generator and also in 
the steady flow domain, but it will be adequate for our 
discussion to assume zero resistance to steady flow through 
both horns. It is useful, in our subsequent development, to 
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specify also the pressures Pl and P2 immediately upstream 
and downstream from the valve. These will be time-varying 
quantities when the valve is oscillating. 

In analyzing this system, it is helpful to use the analog 
network shown in Fig. 2(b) and the steady-flow version of 
Fig. 2(c). We specify steady pressures and st?dy volume 
flow by barred letter fi and 0 and use.•i and U to indicate 
the oscillating parts of these quantities. If •s is the resistive 
part of the lung impedance Z s and .• v the resistive part of 
the valve impedance Z},, both at zero frequency, then 

fl=Rs+R •, f2=0. (2) 

It turns out to be much simpler to use the value of the 
steady pressure fl just upstream of the valve to character- 
ize the system rather than using the generator pressure fi0, 
so we shall make this change of viewpoint. It is easy to use 
(2) to relate this to the source pressure if we wish. 

Now, we need an equation to quantify the steady flow 
through the valve and thus to give a value for valve resis- 
tance • v at zero frequency, defined to be the ratio of the 
steady pressure drop to the steady volume flow. For this we 
need two equations. The first specifies the flow 0 through 
the valve when the opening between its faces is g and the 
steady pressures on its two sides are fit and f2. Provided the 
channel length through the valve is small and the flow 
velocity high, this is given by Bernoulli's equation as 

O= ( 2/p ) 1/2 W(fl --f2) 1/2•, (3) 

where p is the density of air and W is the width of the 
valve. Equation (3) is, of course, only an approximation, 
and we should not expect it to hold exactly when the valve 
is nearly closed or when the flow is not simply two- 
dimensional. [A somewhat more general empirical form of 
this equation involving (fl-f•)ax -• with a•2/3 and 
fl•4/3, was reported by Backus 3 for the clarinet, but this 
has not been substantiated by later experiments.] Equation 
(3) leads to a value for the valve resistance at zero fre- 

quency, •,=(ffl-f•)/•, once we have evaluated ,• in 
terms of 

Equation (3) can also be applied as a quasistatic ap- 
proximation for the time-varying flow of air through the 
valve, provided the frequency is much less than the fre- 
quency of the valve response, simply by removing the bars 
from all the quantities involved. Before we resort to this 
approximation, however, it is necessary to examine the be- 
havior in rather more detail. 

A second equation is needed to describe the motion of 
the valve itself. This could be quite complicated, since even 
a simple system like a clarinet reed has many possible vi- 
brational modes. To be general, we should consider the 
behavior of each mode and sum their displacements in the 
throat of the valve to find the clear opening area. It is 
enough for our present discussion, however, to consider the 
valve tongue to behave in a simple manner with a single 
resonance frequency to0, damping k, and effective mass rn. 
If the valve presents an effective area S 1 to the upstream 

(a) (b) (c) 

FIG. 3. (a) Development of a jet in air flow thorugh a simple valve, with 
corresponding definitions of the geometrical areas $i and angles 0 and 
For a valve with two flaps, as shown, the areas Si for the two flaps must 
be added together. (b) More realistic geometry for a biological valve, 
showing flow separation and a vena contracta effect. (c) Possible alter- 
native flow geometry with delayed detachment of the jet flow. 

pressure p] and an effective area S2 to the downstream 
pressure p2, as shown in Fig. 3(a), then its motion can be 
represented by the equation 

d2x dx 2 1 1 
d-•+ 2k •+ eOo(X-Xo) =•(eruOlSl q- 0'2P2S 2 ) q-•p2S3, 

(4) 

where x 0 is the valve opening in the absence of any applied 
pressure. The final term in this equation represents the 
influence of the Bernoulli pressure produced by flow 
through the throat of the valve--the flow velocity is 
o-= [2 (pl --P2)/I 3] 1/2, the pressure in the throat is P l • 2 -- •pv , 
and we have assumed an effective area S 3 of the valve flaps 
over which this force acts. For simplicity we rewrite (4) in 
the form 

d2x dx 

d--'• + 2k • +tOo2(X-Xo)=(a11.ttp1+a21.t2p2), (5) 
where bh=S1/rn and t•2=(S•+a2S3)/m. Omitting the 
time variation, we see that the steady opening of the valve 
is 

)7=X0-3- (Crl/-t Ifl q- cr2/-t2•2)/to0 2. (6) 

The division of valve flap areas into the three classes 
Si, S2, and S3 is somewhat artificial in a general sense, 
though justified for the simple valve configurations we are 
considering. The total force acting on the valve flaps is 
properly obtained by evaluating the pressure at all points in 
the fluid and then integrating over the valve flap area, tak- 
ing account the moments if the valve motion is essentially 
angular. While the Bernoulli force is significant only in the 
narrow part of the valve channel, the extent to which the 
downstream surface of the valve flap is acted upon by a 
downstream pressure P2 depends upon separation of the 
flow from the surface and the formation of a jet, 21 as shown 
in Fig. 3. The location of the separation point depends 
upon the shape of the valve flap and the speed of the flow. 
While the separation point is usually well defined for a flap 
with a sharp edge, as in Fig. 3(a), the same is not true for 
a curved flap, as in Fig. 3(b) or (c). This is one reason for 
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uncertainty about the classification of vocal and lip valves, 
particularly when the valve deflection itself involves several 
geometrical parameters. 

We have used the terms effective mass and effective 

area in this development, since only in particularly simple 
cases are these the true mass and geometric area. The con- 
version from true to effective quantities essentially consists 
of relating the displacement x to the shape of the vibration 
mode involved, whether this be rotation about a spring- 
loaded axis or bending of a cantilever beam, and similarly 
averaging the pressures over the mode shape. For a valve 
consisting of two stiff flaps mounted on spring hinges and 
making an angle 0 with the opening direction x, as shown 
in Fig. 1, and more specifically in Fig. 3(a), the opening x 
of the valve is related to the deflection • of the valve tip by 

x=x0+ • sin 0 (7) 

and we must consider the valve motion as rotation about a 

fixed axis. If we do this, and then convert from changes in 
the angular coordinate 0 to changes in the valve-opening 
coordinate x, we find that 

rn•rntrUe/3 sin 0; c cgeøm/9' S3•S• •øm sin •b. • •o 1,2 •*a 1, 2 
(8) 

The effective valve of $3, in particular depends upon the 
exact geometry of the valve channel, as defined for the 
simple case by the angle • of Fig. 3(a). The way in which 
the conversion factors are apportioned between rn and the 
$i is arbitrary to some extent, since only quotients S/rn 
enter the final result. It is clear, in this case, that a valve 
geometry with very small 0 is very inefficient as an acoustic 
generator, if its displacement mode is as described by this 
model, since a high blowing pressure is required to increase 
0 to a sufficient extent that there is appreciable flow. 

For valves with different geometries or different dis- 
placement modes, the conversions are, of course, rather 
different. If one of the tongues of Fig. 1 is replaced by a 
rigid stop, for example, as in an organ-pipe or clarinet reed, 
then the associated redefinition of the relation (7) between 
x and 0 means that 0• •r/2. 

For a valve of configuration ( +,+ ), as in Fig. I(c), 
the relations are 

D'/• D'/true• •' •,geom o•,2•,•,2 sin 0; S3.•S• eøm, (9) 

where the definition of 0 is now as in Fig. 1 (c). It is inter- 
esting to note that, if we take 0 = 0 in this geometry so that 
$•=S•=0, then the configuration (•r•,•r2) is formally un- 
defined, and the operation of the valve depends entirely 
upon the Bernoulli pressure. The effective configuration 
resulting from this depends upon the position of separation 
of the flow, as in Fig. 3, and this may itself depend upon 
the flow speed. 

Now suppose that the valve oscillates with very small 
a_mpli•tude at a frequency to so that we can replace U by 
U+ U(to), Pi by ffi-•fii(to), and x by •+i(to) in (3) and 
(5). The quantity t)(to) is of the form •reJ•øt, where 0 is a 
complex amplitude incorporating a phase factor e j•, and 
similarly for/•(to) and i(to). The network in Fig. 2(b) can 
be solved explicitly for components at this assumed oscil- 

lation frequency, and the importsant result comes from the 
central mesh of the network. If U •is the os•cillating volume 
flow through the valve itself, and U• and U 2 the oscillating 
flows produced by physical displacement of the valve flaps, 
then we see that 

(lO) 
where Z• is the input impedance of the supply pipe, termi- 
nated by the supply impedance Z s, as seen from the valve, 
and Z 2 is similarly the input impedance of the exhaust 
horn, terminated by its radiation impedance Z•. In (10), 

t7(1)•2 t7(2)•2 

Z Z (1) •12 / 2--•11 --7(2)/7 , (11) 
•22 T •R 

where the end of each horn connected to the valve is given 
the su•schpt 1 in the coe•cients Z•j. The displacement 
flows U 1 and • are given by 

0•=jmatStR, 02=--joa2S2R, (12) 
with the same effective areas S• and S2 as before. In a valve 
such as that fomed by a clarinet reed or our simple model 
for the human vocal folds, 0• = 02, while for a symmetric 
valve such as the arian syrinx, shown in Fig. 1 (c), 0• 
•- 02, which is allowable since oscillation of the valve 
gates causes a net volume change within the valve. The 
possibility of a net valve current of this type appears to 
have been first recognized by Saneyoshi et al. 7 While it is 
straightfo•ard to include the displacement flows through 
the valve in this way, it complicates the algebra and ob- 
scures the argument. For this reason, and since the dis- 
placement flow is generally at least an order of magnitude 
smaller than the fluid flow through the valve, we shall omit 
these correction terms in the analysis that follows. 

Before substituting the expansions for U, &, and P2 in 
(3), we must recognize that this equation contains only the 
resistive pa• of the acoustic impedance, so that we need to 
include a further term to account for the acoustic ine•ance 

of the air in the reed opening. If we take $ to be the length 
of the channel through the opening, then its area is WX 
and, in the simple-jet case of Fig. 3(a), its acoustic iner- 
tance is pS/Wx. The effective pressure driving the oscilla- 
tory flow is therefore not p•--p2 as in (3), but rather 

p• •U / p• •/2 
= 

X (fi,--ff2)'/' (2ff +• ' 13) 
• x p• 

Once again, in the interest of algebraic simplicity, and be- 
cause the correction term is small compared to p•--p2, we 
shall omit this refinement in the following analysis. 

Now, setting fi•=0, in accord with our assumption 
that the resistance of the exit horn to steady flow is very 
small (or equivalently by measuring • relative to fi2), sub- 
stituting the small-signal expansions for U and the Pi in the 
quasisteady flow equation (3), expanding, and collecting 
together the quantities with frequency w, we see that 

O= (2ffl/p)1/2 W{ [•(•1 --)2)/2ffl ] +•} (14) 
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to first order. The steady flow, in this approxim/•tion, is 
given by (3) with x=•as given by (6) andsif2=0. We can 
substitute in (14) the simplified form of (10), omitting •7• 
and 02, to obtain 

O=2W•ffl.•'/[(2pffl)•/2+W.•(Zl+Z2)] . (15) 
This equation, used in the simplified form of (10), gives 
expressions for fil and fi2 in terms of • that can be substi- 
tuted in (5) to give 

+ = [ w(z, 
(•6) 

Equation (16) is the key equation of our analysis. The 
left side is simply what we expect for the damped free 
vibration of the reed, while the right side contains the in- 
fluence of the blowing pressure ffi and the upstream and 
downstream impedances Z1 and Z 2. These impedances are 
generally complex quantities, so that the tern on the right 
is complex, independently of the effect of the small correct- 
ing terms for valve channel inertance and valve flap dis- 
placement. Its real part can be combined with the tern o• 
on the left side to affect the resonance frequency, while the 
imaginary pa• can be combined with the tern 2jk• to 
affect the damping. The oscillation frequency • is given by 

•2=•_Re(2W"1(•2Z2--alp'Z') ) (2pffi)•/2+ W•(Zi +Z2) ' (17) 
where Re implies the real pan of the following expression. 
We are not particularly concerned here with this result, 
though clearly we must have a real vale for w, which im- 
plies that the correction term on the right must be greater 
than -•. Our main interest is rather with the conditions 
under which self-maintained oscillation can commence. 

For this to happen, we must have 

[ 2 Wff• (a•2Z2 -- al• iZ 1 ) • 
Im [ (2pff•) •/2 + WX(Z• + Z2) ] > 2ko, (18) 

where Im implies the imaginary pa•. In both (17) and 
(18), we must use the expression (6) giving • in terms of 
the static pressure ff•. We must also use the value of • 
given by (17) both in the right-hand side of (18) and also 
in evaluating the impedances Z1 and Z2 in both (17) and 
(18). This implies the necessity for a recursive calculation, 
but fortunately, as we see below, it is an adequate approx- 
imation for the problem that we are addressing here to take 
o=•0. This is clearly true for small values offfi, since the 
correction tern in (17) vanishes as ffl • 0, and substitution 
of typical values for the parameters involved suggests that 
it remains a valid approximation as long as there is not an 
impedance maximum for Z• or Z 2 within the possible op- 
erating frequency range. 

Equations (17) and (18), as separated forms of (16), 
form the basis of our subsequent discussion. We should 
recall that we have made simplifications in these two•qua- 
tions by omitting the displacement flows • and U 2 de- 
scribed in (10) and (12) and the valve ape•ure inertance 
correction given by (13). Both these contributions could 

be included at the expense of complication to the algebra. 
Because both these corrections are small in most cases of 

interest, however, we can proceed to draw general conclu- 
sions based upon the simpler analysis. 

II. GENERAL CONCLUSIONS 

The general case clearly has many variations, so we 
examine here some particular cases in order to show the 
behavior of different sorts of valves with rather simple 
loading impedances. The first simplification we can make, 
which has already been applied in ( 16)-(18), is to neglect 
both the valve channel inertance, given by (13), and the 
displacement flows given by (12). Insertion of typical nu- 
merical values shows that these are both an order of mag- 
nitude less than the terms to which they are corrections, 
provided only that the operating pressure is more than a 
few hundred pascals, equivalent to a few centimeters water 
gauge pressure. While it is straightforward to include the 
effect of the resistive parts of the impedances Z•j in a nu- 
merical calculation, we can deduce important general prin- 
ciples of valve behavior by neglecting this refinement. With 
this in view, we neglect wall losses in the two horns, neglect 
the resistive part of the radiation impedance Z n, and take 
the source impedance Z s to be very much larger than Z•I ). 
The two loading impedances Z 1 and Z 2 of (11 ) are then 
both purely imaginary and we shall denote them by jX l 
and jX2, respectively. Under these simplifying assump- 
tions, (17) becomes 

W2 (Xo + 0'1• lffl/•O 2 ) (0'2.•2X 2 -- 0'1• 1X1 ) (Xl q-X 2 ) 
P+ ( W2/2/•1 ) (Xo+alpU•l/•Oo2)2(Xl-•-X2) 2 ' 

(19) 

while the inequality (18) becomes 

( 2pffl ) 1/2 W( 0'2].t 2X 2 -- 0'1/• 1X1 ) 
p+ ( W2/2/•1 ) (x0+ a•/alt•l/CO•)2(X• +X2) • > 2kto0, 

(20) 

where we have substituted from (6) for g. 
Equations (19) and (20) are in a form that lets us 

make some simple explicit statements about the behavior 
of different valve configurations. For simplicity, we shall 
also make the assumption that/.q =/.re, which is true for 
many practical systems, although it is easy to treat the 
more general case if we wish. 

First, consider the configuration (-, + ) of Fig. 1 (a). 
If the inequality in (20) is to be satisfied, then certainly we 
must have 

( -,-{- ) :=•Xl-•-X2 > 0. (21) 

This means that the sum of the termination impedances 
must be inertire, and reflects the observation that, when 
tuning a reed pipe in an organ by altering the resonance 
frequency of the reed, oscillation can be maintained over a 
large frequency range up to the pipe resonance, but not 
above it. If the condition (21) is satisfied, then (19) im- 
mediately tells us that 
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( -,+ ) •co <COo. (22) 

This conclusion is in agreement with earlier analysis? 
Conversely, for the configuration ( +,-- ) of Fig. 1 (b), 

we must have 

( -{-,-- ) ::•>Xi -{-X2 < 0. (23) 

This means that the sum of the termination impedances in 
this case must be compliant if the valve is to oscillate. An 
oboe reed blown from the staple end refuses to crow be- 
cause the inertante of the staple tube is dominant. The fact 
that a trumpet player can easily buzz his lips in the absence 
of the instrument can be explained by the assumptions that 
the lip valve is of type (+,--), because the small volume 
enclosed by the player's mouth gives a capacitive imped- 
ance. As we see below, however, this can also be explained 
by the assumption that the lip valve is of type (-{-,-t-). 
From (19), for the ( +,- ) case, 

( +,- ) • co > coo. (24) 

For a valve of configuration (+,-)-) as in Fig. l(c), 
we must by the same argument have 

( q-,q- ) :•XI--fi/2 <0. (25) 

In this system, a capacitive up-stream impedance and an 
inertire down-stream impedance both favor oscillation. An 
assumption that this is the configuration of a brasswind 
player's lips or of the human larynx is thus also in accord 
with the observed autonomous oscillation. From (19), the 
frequency shift in the (+, + ) case has the same sign as 
(x-xb. 

A valve with configuration (--,--), if one existed, 
would require 

( -,- ) =>X• -X2 > 0. (26) 

This requires either a narrow tube leading from the source 
to the valve, to give an inertive impedance, or an outlet 
duct in the form of some sort of open horn operating just 
above one of its resonance frequencies to give an acoustic 
compliance. The sign of the frequency shift away from the 
valve resonance will be that of 2 2 (X2-X•). 

Suppose now that the auxiliary impedances are ar- 
ranged as described above for each valve type, so that au- 
tonomous oscillation is possible in principle. We wish to 
determine the conditions under which it will occur in prac- 
tice. Once the physical parameters are given, we can plot 
the left side of the inequality (20) as a function of the valve 
inlet pressure •5• and compare it with the damping expres- 
sion on the right side. This is done qualitatively in Fig. 4. 
For the two cases having rr• = + 1, in which the blowing 
pressure tends to open the valve, there is no limit to the 
blowing pressure or flow, except that in reality our simple 
geometric model for the valve will cease to apply for very 
high pressures and consequent large valve openings. If rr• 
=+1, the left side of the inequality goes from zero 
through a maximum value and then declines again toward 
zero as ffl is increased. Depending upon the damping k, 
this curve will either not reach the line representing the 
right side of the inequality, and thus no oscillation can 

k 2 

Static pressure 

FIG. 4. Qualitative behavior of the two sides of the inequality (20) as 
functions of the blowing pressure •l for the cases % = + 1, corresponding 
to a valve that is blown open by the applied static pressure, and ai = - 1, 
corresponding to a valve that is blown closed by applied static pressure. 
For low damping ki, the + 1 curve lies above the damping curve over tlhe 
pressure range from A to B so that oscillation can occur within this range. 
Similarly, oscillation can occur for the -- 1 case from C up to point D at 
which the valve becomes completely closed. For higher damping k2, au- 
tonomous oscillation is unable to occur in either case. 

occur, or else it will cut it twice, giving a limited pressure 
regime in which autonomous oscillation is possible. In 
practice the upper pressure limit for oscillation is usually 
so large that nonlinear effects obscure its existence. For the 
two cases having al =- 1, in which the blowing pressure 
tends to close the valve, the value of the left side of tile 
equation rises steadily from zero and then terminates 
abruptly as the valve is blown completely closed. Depend- 
ing upon the damping, again, we either have no oscillation 
or else autonomous oscillation between a threshold blow- 

ing pressure and the pressure at which the valve closes. 

III. PARTICULAR CASES 

Let us examine three particular cases in greater detail. 
Suppose that a valve of specified configuration is connected 
to a steady pressure source of high internal impedance by 
a pipe of length ll and cross-sectional area A • and exhausts 
to the free air through another pipe of length l 2 and area 
A 2. It is often an adequate approximation to assume that 
pipe 1 is acoustically closed at the end remote from tile 
valve and that pipe 2 is acoustically open, and to neglect 
dissipation in these ducts. Their input impedances are then 

/COil\ pc [COl2\ 
PCcot[•-], Z2=j tan [-•-), (27) z'=-J Z 

where c is the velocity of sound in air. If we assign numer- 
ical values to the physical quantities involved, we can now 
calculate the range of pipe lengths and diameters over 
which the valve can oscillate. As an example, let us choose 
a valve with the basic parameters 

m=100mg; Sl=S2=lcm2; S3=0; xo=l mm; 
(28) 

w0= 1000 s-•; /•=12= 100 mm. 
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The valve thus has size and other physical parameters 
roughly comparable with those of the reed of an organ 
pipe, the vocal flaps of a human larynx, or the syringeal 
membranes of a large bird. We leave the valve damping k 
as a free parameter. 

A. Nonresonant case 

Let us assume that the lengths of both supply and 
exhaust tubes are small compared with a quarter- 
wavelength at the valve resonance frequency to 0. The situ- 
ation then corresponds to the practically important cases 
of sound generation in the human larynx or the avian syr- 
inx, as well as to more trivial examples such as buzzing the 
lips in the absence of a brass instrument or causing the reed 
of an oboe or bassoon, removed from the instrument, to 
crow. 

To an adequate approximation, in this case, we can 
write (27) in the form 

Z•-j(pc2/Vro), Z2mj (p12ro/.'12), (29) 

where V is the volume of the entry tube. The volume of the 
entry tube and the diameter of the exhaust tube therefore 
make convenient parameters in terms of which to describe 
valve behavior. 

Because the system is operating below the first reso- 
nance of either of the ducts, the reactance X 2 of the open 
outlet is certainly small, and the reactance X• of the inlet 
duct is small provided that its volume is not very small. 
Under these conditions, from (19), we see that 

to•to0 (30) 

the direction of the deviation from the valve resonance 

frequency being determined by the configuration of the 
valve, as discussed in Sec. II. 

The first case to be considered is the configuration 
(-, +) of Fig. ! (a). For convenience in this example, we 
choose the volume of the inlet chamber to be very large, so 
that it does not affect the result, and vary the diameter of 
the exit tube. The calculated threshold behavior for three 

values of the valve damping parameter k, corresponding to 
quality factors Q of 10, 5, and 2.5, respectively, is shown in 
Fig. 5. There is a range of outlet tube diameters, extending 
downward from about 20 mm, over which the valve oscil- 
lates readily, but for larger diameters oscillation cannot be 
initiated. The results for tube diameters less than a few 

millimeters cannot be regarded as physically reliable, since 
we have neglected the effect of wall losses in the calculation 
of Z 2. For the parameters chosen, the reed actually closes 
for pressures in excess of 1000 Pa, so that the curves ter- 
minate at the upper border of the graph. 

The next case is that of a valve with configuration 
( -I-,-- ), as shown in Fig. 1 (b). For convenience, we now 
take the diameter of the exit tube to be large, so that the 
valve effectively exhausts into free air, and vary the volume 
of the inlet chamber. The thresholds for oscillation, for the 
same three values of the damping parameter k, are then as 
shown in Fig. 6. It is clear that the threshold pressure for 
valve oscillation is a strong function of inlet volume, and 
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FIG. 5. Threshold blowing pressure for oscillation of a valve of configu- 
ration ( --, + ), as in an organ reed pipe, as a function of the diameter of 
the exhaust tube, assumed 1130 mm in length, when supplied from a 
reservoir of large volume. The parameter on the curves is the damping 
coefficient k; the values selected correspond to quality factors 10, 5, and 
2.5, respectively, for the reed resonance. 

that this volume must in fact lie between about 10 and 500 
cm 3 for efficient operation with the particular valve param- 
eters chosen. 

Finally, we consider a valve with configuration 
( +, q- ) as in Fig. 1 (c). In this case, we show in Fig. 7 the 
behavior of a ( +, q- ) valve when supplied from a reservoir 
of volume 100 cm 3. The added impedance of the reservoir 
enhances the instability of the valve, when the exhaust tube 
diameter is large, and oscillation is maintained even when 
the exhaust tube is effectively removed, as for a (+,-) 
valve. If a reservoir of similar volume had been connected 

to the ( -, q- ) valve of Fig. 5, then oscillation would have 
been inhibited for exhaust tube diameters greater than 
about I0 mm instead of 20 min. 

In relation to these three figures, we should remark 
that the damping coefficient k is not simply the one that 
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FIG. 6. Threshold blowing pressure for oscillation of a valve of configu- 
ration (+,--), as in one possible model for a brasswind player's lips or 
for the human larynx, as a function of the volume from which it is 
supplied, assuming exhaust to the open air. The parameter on the curves 
is the damping coefficient k, as in Fig. 5. 
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FIG. 7. Threshold blowing pressure for oscillation of a valve of configu- 
ration (+, + ), as in an avian syrinx or in an alternative model of the 
brasswind player's lips or the human larynx, as a function of the diameter 
of the exhaust tube, assumed 100 mm in length, when supplied from a 
reservoir of volume 100 cm 3. 

would be measured from the damped decay of vibration of 
the reed tongue in the absence of any blowing pressure. 
Aerodynamic flow through the valve may well contribute 
further damping and, since this depends upon vortex gen- 
eration, the damping may depend upon the direction of the 
flow through a given valve, rather than simply upon its 
magnitude. There has been relatively little investigation of 
these effects? 

B. Resonant case 

In musical wind instruments, the outlet duct takes the 
form of a horn of some sort, and the resonances of this 
horn determine the oscillation frequency of the pressure- 
controlled valve generator. This can happen because the 
impedance Z 2 given by (27) can be reactive, very large, 
and of either sign, close to the horn resonance. If we as- 
sume that X 2 is very large in (19) then we see that the 
difference between to2 and to0 • is of the same order as to0 •, 
while its sign is opposite to that of (r2. 

This means that, for a woodwindlike reed of configu- 
ration ( --, + ), the operating frequency can be close to that 
of a horn resonance, provided the frequency of that reso- 
nance is less than the resonance frequency too of the reed. 
For an organ reed pipe, the situation is rather different, 
since the reed is tuned to nearly match the pipe resonance, 
so that both X• and the correction to to o are small. If a 
brass-instrument player's lips are adequately represented 
by a valve of type (+,--), as assumed both by Helm- 
holtz 17 and by Fletcher, 5 then we expect that the playing 
frequency to should be higher than the lip resonance fre- 
quency too. The careful measurements of Saneyoshi et al.,7 
which included an evaluation of reed and lip resonance 
frequencies under playing conditions, confirm the predic- 
tion above for clarinet and bassoon players, but show that, 
contrary to expectation, the resonance frequency of a eu- 
phonium player's lips is somewhat higher than the fre- 
quency of the note being played. These authors take this to 

imply that the lip-valve has an effective configuration 
(--, q- ), but this seems physically unlikely. The observa-. 
tions are equally explicable if the lip-valve actually func-. 
tions as though having configuration ( +, q- ), like an avian 
syrinx, the lip motion being essentially at right angles to 
the air flow direction. For a system as mechanically com.- 
plex as a vibrating lip or larynx, however, such a single.- 
parameter model can at best provide a rough approxima- 
tion to the true behavior. 

IV. CONCLUSION 

This brief analysis has provided a coordinated and 
comparative view of the autonomous oscillation behavior 
of four configurations of simple valve. Together they en.- 
compass the valve types met with in organ pipes and brass 
musical instruments, in the human vocal system, and in the 
avian syrinx. The treatment is concerned only with the 
conditions under which autonomous oscillation can be 

maintained in these valve systems, and shows the crucial 
importance of the acoustic impedances of the inlet and 
outlet ducts to the valve. Several refinements to the treat-- 

ment that were neglected in the interests of simplicity can 
be included in a more careful analysis, but do not affect the 
general conclusions. 

The treatment has the advantage of great analyticall 
simplicity, so that it is possible to examine with great ease 
the effect of changing particular parameters. We have dis.. 
played such variations only in relation to the supply and 
exhaust ducts individually, but this can easily be extended 
to the ducts in combination, as in Fig. 7, or to variation of 
parameters such as initial valve opening x 0, valve reso- 
nance frequency, valve mass, and effective area. 

Because this analysis has concerned itself only with the 
initiation of oscillations, the underlying theory has been a 
linearized approximation. To treat the subsequent develop- 
ment of oscillations to their full amplitude, a genuine non.- 
linear treatment is necessary, either in the time domain or 
in the frequency domain? -•ø Such nonlinear theories al- 
most inevitably deal with the detailed behavior of a single 
specific case, and necessarily involve detailed numerical 
computation. The present discussion, taken together with 
more specific analyses in the literature, provides a suitable 
starting point. 
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