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A detailed quantitative physical model is developed which gives a successful quanti- 
tative account of the "voiced" song of birds such as ravens. Using available anatomi- 
cal and physiological data, the model allows calculation of syringeal membrane 
motion, volume flow waveform, tracheal pressure waveform, radiated acoustic 
power, and acoustic energy spectrum. Computed results for radiated acoustic power 
as a function of air-sac pressure and volume flow are in good agreement with 
measured values in the literature. The radiated power spectrum consists of exactly 
harmonic components at multiples of the vibration frequency of the syringeal 
membrane, the inharmonic modes of which are locked into frequency and phase 
coherence by the non-linearity of the driving force when the membrane strikes 
against the cartilage of the opposing air-passage wall. The spectral envelope has 
formant bands at the "closed-pipe" resonance frequencies of the trachea, supple- 
mented by formant bands at slightly below the "open-pipe'" resonance frequencies. 
The strengths and origins of these bands are made clear by the model. The computed 
power spectrum is in excellent agreement with the Sonagraph spectrum of Corvus 
mellori when anatomical parameters for this bird are used. 

While the model is also able to produce inharmonic "screeched" song, attempts 
to produce a nearly pure-tone output by restricting the motion of the membrane so 
that it does not strike against the opposing cartilage have proved unsuccessful, the 
acoustic output being low in intensity and still exhibiting many overtones of the 
membrane frequency. This failure suggests that "whistled" song is produced in an 
entirely different manner from voiced song. 

1. Introduction 

The acous t ics  o f  b i rd  song has been  d i scussed  in deta i l  in the  c lass ic  b o o k  by 
G r e e n e w a l t  (1968), as well  as in many  o ther  pub l ica t ions .  G r e e n e w a l t  p rov ides  
references  to the ear ly  l i t e ra ture  whi le  Brackenbury  (1979b, 1982), G a u n t  & G a u n t  
(1985) and  Casey  & G a u n t  (1985) review more  recent  work.  Whi le  some  may  cons ide r  
tha t  G r e e n e w a l t  has  p r o v i d e d  an e x p l a n a t i o n  o f  all the m a j o r  fea tures  o f  the subject ,  
it is c lear  tha t  this view is not  he ld  by all workers  in the area,  and  qui te  bas ic  aspec ts  
o f  the acous t i ca l  p rocesses  involved  con t inue  to be the subjec t  o f  specu la t i on  in the 
current  l i te ra ture  (e.g. Casey  & Gaun t ,  1985). In the words  o f  G a u n t  & G a u n t  (1985), 
however ,  much  o f  the  d i scuss ion  is at the  level o f  " i n f o r m e d  s u p p o s i t i o n " .  

As was c lear ly  r ecogn ized  by G r e e n e w a i t  (1968) and  r e - emphas i zed  by G a u n t  & 
G a u n t  (1985), there  is no single s imple  m e c h a n i s m  used  by  all b i rds  to p r o d u c e  
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sounds for communication. Indeed consideration of human speech, in which voiced 
sounds, sibilants, fricatives, clicks and whistles are all employed by different cultures, 
should prepare us for a comparable variety of mechanisms in bird song. 

It is not the purpose of the present paper to consider the whole gamut of these 
mechanisms in detail, but rather to concentrate on one of them. This concentration 
is not intended to minimize the importance of other mechanisms in particular cases, 
but simply serves to limit the field of discourse. In particular there will be no detailed 
discussion of sounds produced by purely aerodynamic means, without the aid of 
mechanically moving surfaces. Such aerodynamically produced sounds, which we 
may refer to generically as whistles, may well be important in some types of bird 
song (Gaunt et  al., 1982), and the acoustics of their production presumably involves 
the instability of air jets in interaction with apertures, edges and cavities. They may 
be discussed in analogy with the sound production mechanism in musical whistles, 
flutes and organ pipes (Rayleigh 1896; Powell, 1961; Chanaud, 1970; Coltman, 
1976; Fletcher, 1979a), as has been recognized by Gaunt et  al. (1982). 

When there is mechanical motion of part of the vocal system in the course of 
sound production, an analogy can similarly be found with the mechanism of sound 
production in reed-driven woodwind musical instruments (Backus, 1961; Benade 
& Gans, 1968; Fletcher, 1979a, b), though the relative importance of source and 
resonator terms may be very different in the two cases. We shall refer to sounds 
produced in this way as "voiced", and the subsequent discussion in the present 
paper will be limited to such voiced sounds. 

Both these sets of analogies are particularly fruitful because the study of sound 
production in musical instruments is much simpler than the biological case, and it 
has reached a stage of considerable quantitative sophistication. Understandably, 
however, this literature is little known to workers in the biological area, and there 
seems to have been little other than qualitative use made of the analogy. The fact 
that the behavior of musical instrument reeds or air jets is normally dominated by 
their associated tube resonator does not restrict the quantitative use of methods 
derived for musical instruments, provided account is taken of the different situation 
pertaining in vocal systems. 

There are several distinct phases in the study of sound production in animals 
such as birds. In the first place the acoustical properties of the radiated sound 
(frequency spectrum, time evolution, power, etc.) must be known. A rich set of data 
on most of these features is given by Greenewalt (1968), and this has been supple- 
mented by studies of typical radiated acoustic power levels by Brackenbury (1977, 
1979a). Many further detailed studies of particular species can be found in the 
literature, but these compilations will be adequate for our present purposes. The 
next necessity is a knowledge of the anatomy of the sound-producing and sound- 
modifying organs. Again there is a considerable literature on this subject, but surveys 
in adequate detail for our present purpose have been given by Warner (1972), 
Brackenbury (1982), and Gaunt & Gaunt (1985). The final necessary observational 
input is a knowledge of relevant physiological variables for the system, such as air 
pressures and air flows. This information is less readily available, but some relevant 
data have been measured by Brackenbury (1977) and by Gaunt et  al. (1982). 
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The next phase involves the postulation of  a mechanism by which the observed 
sounds might reasonably be p roduced- -a  qualitative model. To be reasonably 
acceptable a model must be adequate in terms of  physical principles and inherently 
plausible. It is possible for several competing models to provide equally reasonable 
explanations at this level, but sometimes crucial experiments can be devised to rule 
out some of  the contenders. This is the level at which most discussion of  avian 
vocalization mechanisms is carried out in the literature. Some particular models 
will be considered in the next section. 

As a final test of  any qualitative model, it is necessary to make it quantitative and 
to show that it is able to account for the observed acoustic output in terms of  the 
known anatomical details and physiological variables. Specifically it must account 
for the acoustic power level, waveform and frequency spectrum of the song, using 
the observed values of  internal air pressure and air flow. Only when we can construct 
a quantitative model with reasonable success can we claim to understand the sound 
production mechanism--unti l  this stage is reached, we are still in the realm of  
" informed supposition". 

It is the purpose of the present paper to present such a quantitative model for 
voiced avian sounds. Before doing so, however, it is important to set out the 
philosophical basis on which it is constructed and the criteria that should be used 
in assessing its success. 

The first principle is economy of  hypothesis--Occam's razor. The model should 
be as simple as possible, consistent with explaining the observed facts, and non- 
essential details of  anatomy or physiology shou ld  be omitted. The model should 
also be free from undetermined parameters--al l  its quantities should be accessible 
(at least in principle) to physical measurement, though we may have to make do at 
this stage with reasonable estimates for some of  them. The second principle is 
physical and mathematical consistency, which is a matter of physical insight and 
technical proficiency. As we shall see, the model is necessarily non-linear, so that 
no analytical solution is possible, but the approximations and assumptions made 
must be clear at every step. 

Finally, since the anatomical and physiological input data to the model are all 
approximate, it is important to realize that we must be content with predictions 
which are in approximate agreement with observation. This means that the model 
must reproduce the main observed features of  the acoustical output,  and must give 
quantitative values which are correct to within a factor of  order unity (i.e. between 
about 0.3 and 3). We shall return to this point when considering the behavior of  
our model. 

2. Models for Voiced Song 

The essential features of  the avian vocal system are shown in Fig. 1, which is 
abstracted from the detailed anatomical work referred to above. Air from the lungs 
is expelled through the bronchi, trachea and mouth, passing on its way through the 
syrinx, or vocal organ, at the junction of  the two bronchi with the trachea. One wall 
of  each bronchus has a thin membranous section which lies nearly flat during normal 
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FIG. 1. Schematic view of  the vocal system of  a typical bird. Details of  the implied ana tomy are not 
important.  

respiration and does not impede the air flow. In singing, the pressure in the 
interclavicular air sac is raised and the muscles of  the syrinx are adjusted so that 
the membrane and its opposing cartilage protrude into the airway and interact with 
the air flow. It is this configuration that is shown in the figure. There are some 
variations in this basic anatomy (Gaunt  & Gaunt  1985), but this model will suffice 
for our present purposes. 

In voiced song the membranes are set into motion by the air flow and vibrate at 
a frequency which is determined by their mass and tension and by the nature of  
their interaction with the airstream. Some birds appear  to be able to control the two 
membranes separately to produce two notes simultaneously (Greenewalt,  1968, 
pp. 55-78), but much song seems to employ only one source, or the two sources 
acting in unison. The radiated sound power is typically in the range 0-1 to 10 mW, 
but some birds can produce short calls with radiated acoustic power as high as 
200 mW (Brackenbury, 1979a). Leaving aside those songs or parts of  songs that are 
generally described as "'whistled" and which have a nearly pure-tone character, 
most voiced sounds exhibit a series of  harmonically related partials based on a 
fundamental whose frequency lies between about 100 Hz and 1 kHz for different 
species. The relative amplitudes of  the partials are described by an envelope function 
which may emphasize one or more bands of  frequencies, or formants. In song, the 
bird can adjust the fundamental frequency over a wide range, and may also embellish 
the sound with amplitude and /o r  frequency modulation at a rapid rate. 

Several models have been proposed to describe the means by which the membranes 
of  the syrinx are excited into motion and produce sound. Greenewalt  (1968) has 
reviewed some of  the earlier literature, and a definitive recent review has been given 
by Gaunt  & Gaunt (1985). We will be concerned here only with recent models. 

Greenewalt  (1968) himself proposed that both "whistled" and voiced songs are 
produced by vibration of  the membranes of the syrinx. In whistled sounds the 
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vibrational amplitude of  the membrane is assumed to be small compared with its 
distance from the opposite wall of  the trachea, so that its vibrations are nearly 
sinusoidal, giving an acoustic output with only a single frequency component.  In 
voiced sounds, on the other hand, the vibration amplitude of  the membrane is 
assumed to be large so that it approaches closely, or even contacts, the opposing 
tracheal wall, giving an inharmonic air flow with a multitude of  harmonically related 
components. The frequency of  vibration of  the membrane is assumed to be controlled 
by its thickness and tension in a straightforward manner, while the motion itself is 
generated by Bernoulli forces in a manner  which was not explored in detail. 
Greenewalt  (1968) further showed that the trachea can act as an acoustic filter to 
emphasize or attenuate certain frequency ranges, the precise action depending on 
the relation between the acoustic impedance of  the trachea and that of  the syrinx. 
He found difficulty, however, in accounting for all features of  the song spectrum 
in this way. Recent work by Nowicki (1987), who examined the change in spectral 
envelope of  bird song in the transition between normal and helium-based 
atmosphere, confirms the importance of  tracheal resonance in at least some bird 
songs. 

More recently Brackenbury (1979b) has examined the aerodynamics of  the sound 
production mechanism in greater detail, based upon a theoretical discussion, by 
Ffowcs Williams & Lovely (1975), of  the behavior of  a vibrating surface panel 
exposed to a uniform tangential air flow. This discussion was an attempt to add 
some quantitative detail to the general model of  Greenewalt (1968), but in our view 
it did not succeed in this aim. The analysis of  Ffowcs Williams & Lovely (1975) 
showed that a circular panel of  radius a secured by a spring of  strength K and 
exposed to an airflow of  velocity v becomes unstable if Apav2/K > 1, where p is 
the density of air and A is a constant of  order unity. This effect, which is essentially 
the Bernoulli force, must certainly be taken into account in any model of  the behavior 
of  the syrinx, but modifications are necessary because the membrane is acted upon 
by a flow constrained to lie in a tube, rather than by a semi-infinite flow field. 

Brackenbury (1979b) then went on to elaborate the model by assuming a non-linear 
term in the elasticity of  the membrane in order to limit its static deflection. This is 
a reasonable assumption but is not necessary, as we shall see later. Finally he 
calculated the acoustic power radiated from the vibrating piston-like membrane, 
again using the results of  Ffowcs Williams & Lovely (1975). The vibration amplitudes 
required to produce typical measured power levels were found to be unreasonably 
large, but the reason for this is clear. The model used refers to a piston radiating 
into a semi-infinite uniformly flowing medium, and the effect of the piston motion 
on the flow is small. In the syrinx, on the other hand, motion of  the membrane 
constricts the windway significantly and has a major effect upon the flow. Clearly 
this effect must be included in any realistic model. 

Finally we mention the model, or rather models, proposed by Casey & Gaunt 
(1985). These authors consider the pure-tone sounds of  many bird songs, which we 
have described as whistles, to be produced by an entirely different mechanism from 
that used for voiced sounds. The mechanism proposed is a genuine whistle effect 
without the intervention of  any vibrating surfaces. The production of  such whistle 
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sounds can be described in terms of  the unstable motion of  jets of  either varicose 
or sinuous form, or in terms of  vortices (Chanaud, 1970), but an associated acoustic 
resonator is generally required to amplify the instability and stabilize the frequency. 
These details are not discussed by Casey & Gaunt  (1985), but the mechanism is 
worthy of  detailed investigation. 

For the case of  voiced song, Casey & Gaunt  (1985) propose a variant of  the 
mechanism put forward by Greenewalt (1968), with modifications to take account 
o f  what they perceive to be difficulties with this classic model. Specifically they 
express concern that the natural modes of a membrane with fixed boundaries do 
not constitute a harmonic series, and they propose this as a barrier to acceptance 
of the model as accounting for the harmonically related overtones observed in most 
voiced song. To overcome this problem they propose that the membrane is supported 
so that the two pairs of  opposite boundaries (assuming the membrane to be rec- 
tangular) have different boundary conditions, so chosen that the resulting normal 
modes have harmonically related frequencies. This is their so-called "vibrating-string 
model"  or VSM. There are two objections to the arguments of  these authors. In the 
first place, as we shall show later, the spectrum of natural frequencies of the 
membrane is of  relatively little importance for a non-linearly driven system. One 
dominant modewusual ly  the lowest mode---determines the vibrational frequency, 
all other modes are suppressed, and non-linear effects generate a precise and 
phase-locked series of  harmonic overtones. There is therefore no need for concern 
about the classic model,  at least on this ground. The second objection is more 
technical and refers to the mathematical assumptions underlying the VSM, which 
cannot in fact be realized as proposed. Since the VSM is, in any case, an unnecessary 
complication, it is not appropriate to discuss these objections in detail. 

3. A Quantitative Acoustical Model 

3.1. A N A T O M I C A L  M O D E L  

The simplified physical model upon which our acoustical model is based is shown 
in Fig. 2. We have simplified matters by considering only a single branch of  the 
system, with a single syringeal membrane, but we shall return later to discuss the 

Air cavity 
(Volume V) Trachea 

_ ~ ~ ~ n x  (Length L, Radius a) 

Steady == ~X~ , ~ /  
Pressure ~ i ~ FIow/J 

Acoustic Pressurepo - Pressurepl Horn 
Resistance (Mouth Radius b) 

FIG. 2. Simplified acoustical model of the vocal system. The steady pressure PG is the pressure in the 
air sacs which communicate with the bronchus through tubes with acoustic impedance ZG. The volume 
V below the syrinx is essentially the volume of  the primary bronchi.  
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behavior of  the dual system. Other essential features of  the physical model are as 
follows. 

The air sacs in the body of  the bird are assumed to contain air at a steady pressure 
PG to provide the pneumatic power driving the whole system. All pressures mentioned 
in this connection are "gauge pressures" referred to normal atmospheric pressure 
as zero. The pressure unit is the pascal (100 Pa = 1 cm water gauge). More technically, 
we have a pressure generator pG in series with an acoustic impedance ZG representing 
the effective flow resistance between the air sacs and the primary bronchus. This 
impedance is small compared with the impedance of the syrinx and trachea, as is 
demonstrated by low tracheal air pressures during normal respiration, and its precise 
value turns out not to be important. 

The bronchus provides a small free volume V below the syrinx, while the trachea 
is a gently flaring tube leading to the mouth, which is assumed to be open for 
singing. The volume of  the bronchus and dimensions of  the trachea are readily 
estimated for anatomical studies, though these quantities clearly vary widely from 
one species to another. In the interests of  simplification we replace the flaring trachea 
by a cylindrical pipe of  the same average cross section. Since the change in diameter 
is small over the tracheal length, the acoustical effect of this substitution is small, 
but the true shape could be used in a more sophisticated model. We take the length 
of  the trachea to be fixed, since only small adjustments seem possible and these 
will have little acoustic effect. 

The geometry of  the month is obviously complicated, and may change during 
singing in birds of  some species. We shall return to consider this in more detail 
later, but the simplest assumption is to regard the month and beak as acoustically 
equivalent to a short flaring horn, the equivalent dimensions of  which can be 
estimated with adequate accuracy for our purpose. 

The syrinx itself is clearly the most critical part of the vocal system. During singing 
we assume it to have the geometry and dimensions illustrated in Fig. 3. A membrane 
of  thickness d and width 2h is assumed to protrude into the bronchus under the 
combined influence of  muscular tension and the pressure in the external inter- 
clavicular air sac, as is described in more detail in Appendix A. During singing this 
external sac pressure will be largely counterbalanced by the internal pressure in the 

r 
(Thickness d) l x  2a 

/ Cor,,,o . \ 
Pressure Po Pressure Pl 

FIG. 3. Simplified model of the syrinx. Anatomical details are not important, but specific dimensions 
are required for the calculations of Appendix A, 
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bronchus, and this effect will be included automatically in our model. There is 
generally a ridge of  cartilage on the opposing face of  the bronchus. The shape and 
location of  this ridge may be of  some significance, as we discuss later, but for the 
present this refinement is not included in the model. All that is required for 
definiteness is that it should be possible for the membrane to touch the opposing 
cartilage in such a way as to close the air passage off completely. The co-ordinate 
x then measures the height of  the free airway, assumed to extend completely across 
the bronchus. None of  these details are essential, as we shall see presently, but we 
require that the model be explicit since we wish to write down explicit equations 
to describe it. 

3.2.  A I R  F L O W  T H R O U G H  T H E  S Y R I N X  

Now let us consider the volume flow U of  air through the syrinx. It is driven by 
the difference in pressure P o - P l ,  where P0 is the pressure on the bronchial side of  
the constriction and Pl the pressure on the tracheal side. The bronchial pressure Po 
is not equal to the pressure PG supplied by the air sacs because of  the finite impedance 
Zc  of  the supply reservoir and the time variation in the flow. In fact the bronchus 
acts as an acoustic compliance of  magnitude V / p c  2, where V is its volume, p is the 
density of  air, and c is the velocity of  sound in air (Beranek, 1954, pp. 128-129). 
The inflow is just (PG--P0)/ZG and the outflow is U(t ) ,  so that we can write 

dpo/ d t  = (pc2~ V)[(pG - po)/ Z G - U]. (1) 

When the flow varies with time, as is the case during singing, we must allow for 
the force used to accelerate air through the syrinx as well as for the steady flow 
(Backus, 1961; Fletcher, 1979a, b). This involves the acoustic inertance of  the 
constriction (Beranek, 1954, pp. 131-132). We write therefore 

po( t) - p , (  t) = C U  2 + D(d U / d t )  (2) 

where, as is shown in the Appendix A, 

C = p / 8 a E x  2, D ~ p / 2 ( a x )  1/2. (3) 

These results are correct to within a factor of  order unity for different syrinx 
geometries. In using them, however, we must restrict x to be positive or zero. 

3.3. M O T I O N  O F  T H E  S Y R I N G E A L M E M B R A N E  

The next part of  the model involves description of  the motion of  the syringeal 
membrane under the influence of  the aerodynamic forces in the constriction. It is 
a reasonable approximation to neglect tangential forces due to air viscosity and to 
consider only pressure forces, which include of  course the influence of  the Bernoulli 
term. On the upstream or bronchial half  of  the membrane the Bernoulli equation 
applies and we can write, for y < 0, 

P(Y) = P o -  p U 2 / 2 S ( y )  2 (4) 
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where 

S ( y )  ~- 2a[x  + ( a - x ) ( y /  h ) 2] (5) 

is the cross section of  the airway at position y and we have omitted the small term 
corresponding to d U / d t  in (2) in the interests of  simplicity. Downstream from the 
constriction, where y > 0, it seems likely that the airflow forms a jet, so that the 
effective pressure acting on the downstream half  of  the membrane is just p~. 

To evaluate the effective force driving the fundamental mode of  the membrane 
we must integrate the pressure, weighted by the membrane mode shape, over the 
entire membrane surface. Again, provided the membrane is nearly isometric, the 
result depends little upon shape and, as shown in Appendix A, has the magnitude 

F(  t) ~- 2A~ah{[ (po + pO/2]  - f l U 2 / [ 7 (  ax3) l /2]}  (6) 

where A~ is a constant of  order unity. Because the flow-derived part of  the force is 
concentrated near the center of  the membrane where the airway is narrowest, it will 
tend to drive higher modes as well as the fundamental.  The upstream-downstream 
pressure difference, on the other hand, has a broad distribution and will tend to 
drive most efficiently the lower modes, both symmetric and antisymmetric, of  the 
membrane. As we shall see presently, it is the nature of  the non-linear mechanism 
that one single mode will rapidly dominate the motion. 

The shape and displacement law for the membrane are investigated briefly in 
Appendix A. Clearly the anatomy of  the syrinx varies significantly from one bird 
species to another, and all that has been attempted is construction of  a model for 
a sort of  generic syrinx structure. To a good approximation, the syrinx membrane 
behaves like a simple taut membrane, irrespective of the fact that its shape is 
determined by the combined influence of  membrane tension and air pressure in the 
interclavicular sac. This assumption has, indeed, also been made in all previous 
discussions of  syringeal action. 

The free vibration frequencies and damping coefficients of the membrane can be 
calculated once  its dimensions, density pM and effective tension T (which includes 
allowance for the pressure in the interclavicular sac) are known. Most important is 
the fundamental  or lowest vibration frequency f~, which we express more con- 
veniently as the angular frequency to~ = 27rf~. For any nearly isometric membrane 
shape, we can see (Morse, 1948, pp. 172-208) that 

T = (A2/5)pMahdto~ (7) 

where A2 is another constant of  order unity. We shall use constants of  order unity 
(by which we mean, of course, that they lie between about 0.3 and 3) frequently in 
our analysis to emphasize the fact that the results do not depend upon details of 
the assumptions of the model, such as the precise shape of  the membrane. In 
performing illustrative calculations we shall set all these constants equal to unity 
for definiteness. The frequency of  the second mode for such a nearly isometric 
membrane is about 1.6tot and that of  the third mode about 2to~. Higher modes are 
even more closely spaced. 
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The behavior of  the membrane itself can be described in terms of  these normal 
modes. Suppose we concentrate on one mode, say the fundamental,  and represent 
the central displacement associated with it by xl.  Other modes are treated in just 
the same manner. Then the equation of  motion of that mode can be written as 

l'd2x! 
+2K-~--dxl + - x o ) J  etF(t)  (8) m,L-dV = 

where to~ is the mode frequency, K = tol/2Q~ is the damping coefficient and Xo is 
the equilibrium position of  the membrane in the absence of  any pressure internal 
to the bronchus. The parameter e~, which we shall normally take equal to unity, 
measures the coupling between the forcing term F(t)  and the mode in question, 
and depends both on the mode shape and on the position of  the membrane in 
relation to the ridge of  cartilage normally found on the opposite wall of  the bronchial 
passage. The quantity m~ is an effective mass associated with the mode. It is less 
than the total mass of  the membrane because we have chosen the coordinate xl to 
measure the maximum displacement rather than the average displacement associated 
with the mode. To an adequate approximation we can write 

ml = A3pM1rahd / 4 (9) 

where A3 is a constant of  order unity which differs slightly from one mode to 
another. The damping coefficient K has its origin in viscous losses within the cellular 
material of  the membrane itself, but these are supplemented by viscous losses within 
the flowing airstream. The actual value of  K for the syrinx membrane is not known, 
but by analogy with other biological material it is probably not less than about 300 
giving a Q value of  about  10 at 1 kHz, or proportionally less at lower resonance 
frequencies. In the presence of  the airstream the damping could well be increased 
(Ffowcs Williams & Lovely, 1975), and the Q value decreased, by a factor 2 or more. 

As it stands, the left hand side o f eqn  (8) is linear, but there is reason for including 
at least some non-linearity to allow for the sharp change in behavior if the membrane 
strikes the opposite wall of  the bronchus. This is most easily represented by requiring 
that 

K~EK if  X<--0. (10) 

The factor E is simply a large number of  order  10 to 100 to allow for the damping 
effect of  contact with the wall. Its real value is not known, since it depends on the 
"'stickiness" of  the contact between the membrane and the wall, but it is easy to 
vary this and see its effect. 

It would be simple to add an elastic non-linearity of  the type proposed by 
Brackenbury (1979b). This involves only the insertion of  a factor of  the form 
[ 1 + y(x~ -:Co) 2] in front of  to~ in eqn (9). The coefficient y then measures the strength 
of  the non-linearity. It turns out, however, that inclusion of  appreciable non-linearity 
of  this type has other undesirable effects, so we shall omit it, or equivalently take 
y = 0 .  

It is clear, however, that some non-linear effects must enter if the vibration 
amplitude of  the membrane becomes large. The most likely such effect seems to be 
that the surrounding tissue, including the muscles tensioning the membrane, should 
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begin to participate in the motion. This would increase the effective vibrating mass 
m of  eqn (9) in a way that can reasonably be described by an equation of  the form 

m ~ m{1 + r/[(x -Xo)/h] 2} (11) 

where 77 is a constant. If  77 ~ 10, the effect of  the increase in mass will become 
significant when the displacement of  the membrane is more than about one third 
of  its radius, which is physically reasonable. 

Clearly, for a complete treatment we should inc lude  a large number of  possible 
vibrational modes of the membrane. This was the problem seen by Casey & Gaunt 
(1985). However the driving term F(t) is given from eqns (3)-(7) as a function of 
the displacement variable x, which is essentially just the sum of the mode displace- 
ments xn. We should therefore really write 

F(t)~ F(x~, x2,. . .  ). (12) 

The right hand side of  eqn (12) does not depend explicitly upon time but is a 
complicated non-linear function of  the variables x, and their time derivatives. Such 
autonomous oscillating systems, albeit of  much less complexity, have been exten- 
sively studied in the literature (Mickens, 1981). In particular, it has been shown 
(Fletcher, 1978) that, while independent excitation of more than one mode is 
possible, the usual result of  strong non-linearity is that one mode becomes dominant 
and all others are effectively driven by it, resulting in an exactly harmonic and 
rigorously phase-locked vibration. This results in a complex but exactly repetitive 
wave form. 

To show that this mode locking does in fact occur in our model system, we include 
just two modes with inharmonically related frequencies f~ and f2. The addition of  
further modes of  higher frequency is then largely irrelevant, since their behavior is 
similar. 

3.4, THE TRACHEA 

Finally the model must describe the acoustic waves in the trachea--this  makes 
no prior judgement  about  the importance of  tracheal resonances. Suppose that a 
pulse of  air with volume flow U(t) enters the trachea from the syrinx at time t. 
Then, as shown in detail by Schumacher (1981), this pulse creates a pressure wave 
ZoU(t), where Z0 = pc/Tra 2 is the characteristic impedance and a the radius of the 
trachea. Upon this pressure must be superposed, however, the pressures due to all 
previous flows into the trachea, which have been reflected from its open mouth end 
or from other irregularities. If  the reflection behavior has the characteristic r( t) ,  
then we find that 

Xo p(t)=ZoU(t)+ r(t ')[ZoU(t-t ' )+p(t-t ' )]dt ' .  (13) 

In the simplest possible case there is perfect reflection from the mouth after a 
time delay ~- which is just the round-trip transit time 2L/c for a cylindrical pipe of  
length L. Because the termination is open there is a change in sign of  the reflected 
wave, and we should also allow for some attenuation caused by wall losses, which 
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generally dominates losses by radiation from the mouth. We therefore write 

r( t) = -/38(t - r) (14) 

where 8(t  - r)  is the Dirac delta function, which is zero except when t = r and has 
unit integral. The coefficient/3 has the approximate value 

/ 3 = l - 2 a L ;  a~-2xlO-Stol/2/a (15) 

where at is the propagation attenuation coefficient (Benade, 1968). 
In this approximation we have neglected the effect of  mouth resonances on the 

reflection coefficient. It is simple to modify the form of  r(t) to allow for these 
features, for example by replacing the delta function in eqn (14) by a sharply damped 
oscillation at the mouth resonance frequency, but at the present stage this only 
complicates the model unnecessarily. It turns out, however, to be desirable to 
broaden the delta function slightly to allow for increased attenuation in the trachea 
at high frequencies, according to eqn (15). We should also include an additive 
end-correction of  about 0.6b, where b is the radius of  the effective horn-like mouth 
opening, in the length L assumed for the trachea. 

3.5. SOUND RADIATION 

Rather surprisingly, sound radiation does not need to be included in the primary 
dynamics of  the vocal system, which is described to an adequate approximation by 
eqns (1)-(15). This is because, as we see later, the radiation of  sound energy 
represents only a very small damping effect, accounting for only about 1% of  the 
losses in the system. It is important, however, to show how the acoustic output can 
be calculated from the other variables. 

The primary acoustic quantity inside the system is the pressure pl(t) in the trachea 
near the syrinx. This variable is calculated as a function of time, and we need first 
to perform a Fourier transform to express it as a function of  frequency, p~(to). This 
is easily performed numerically using a Fast Fourier Transform (FFT) algorithm. 
As shown in Appendix B, we can then calculate the power dissipated by p~(w) in 
the radiation resistance at the mouth, transformed to the base of  the tracheal tube. 
The result is then summed over all frequency components  to give 

p~(w)~Rg 
P P(ta) (16) 

2Zo[cOS k L +  RR) 2 sin 2 kL] 

where k = w/c  and a is the attenuation coefficient in the trachea, given by eqn (15). 
RR is the resistive part of  the radiation load at the mouth end of  the trachea, after 
allowance has been made for the horn-like effect of  the open beak, and is given 
approximately by 

RR~Zo(kb/2)  2 for kb<2  

~Zo  for kb>2.  (17) 

The quantities P(to) give the power spectrum of the acoustic output and, when 
converted to acoustic levels L ( f )  in decibels by the familiar relation, 

L ( f )  = 10 log,o P ( f ) ,  f =  w/2ar (18) 
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yield a plot of level as a function of frequency similar to that of a standard Sonagram 
section. 

Because there is a phase change in each of the frequency components between 
the internal and external pressure waveforms, no simple waveform comparison can 
be made. If we require the radiated waveform, we must retain phase information 
in the FFT of the tracheal pressure and in the transformation to radiated pressure, 
and then perform an inverse FFT to recover the waveform. 

4. Numerical Evaluation of the Model 

4.1. I N T R O D U C T I O N  

Equations (1)-(18), when supplemented by numerical values of the anatomical 
and physiological quantities involved, provide a complete mathematical model from 
which the behavior of the vocal system can be determined. Clearly the equations 
describing the system are complicated, and some of them are strongly non-linear. 
Experience shows that the non-linearity is an essential ingredient--if the equations 
are linearized by omitting the non-linear terms then the vibrations have indeterminate 
amplitude and the spectral behavior is quite different from that of the true system. 
There is therefore no alternative but to integrate the equations of motion numerically. 
Because of the particular way in which we have formulated the model, the numerical 
problem is relatively simple and the equations can be integrated on a micro-computer 
of modest power. This integration yields directly the waveforms of the membrane 
motion, the pressure in the bronchus and trachea, and the flow through the syrinx. 
From these quantities, as we have seen, it is possible then to calculate the power 
and the frequency spectrum of the acoustic radiation. 

The values of anatomical and physical parameters used in an illustrative calcula- 
tion are given in Table 1. They correspond to a bird of moderate size, such as a 
crow or raven, known to produce voiced song. None of the parameters are critical-- 
they could be altered by as much as a factor 3 in either direction without affecting 
the qualitative behavior of the model, though clearly the quantitative behavior would 
change. This is in keeping with our general approach in which factors of order unity 
are neglected. 

4.2. I N T E R N A L  V A R I A B L E S  

The general behavior of the model is summarized in Fig. 4, in which the major 
physical variables in the syrinx region are plotted as functions of time. Clearly the 
waveform of each variable is exactly repetitive, which indicates a complete frequency 
and phase locking of all the motions, and consequently exactly harmonic spectra, 
irrespective of the inharmonic relation of the normal mode frequencies of the 
syringeal membrane. In fact the mode of lowest frequency controls the motion 
because it is more compliant than higher modes, though this situation could be 
changed by altering the configuration of the membrane relative to the opposing 
cartilage so as to decrease the value of the coupling coefficient eL for mode 1 in 
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FIG. 4. Calculated waveforms for tracheal pressure (p , ) ,  volume flow (U) ,  membrane  displacement  
(x) and sub-syrinx pressure (Po), using the parameters shown in Table 1 and an air-sac pressure o f  300 Pa. 

eqn (8) and increase the corresponding value for mode 2. It is straightforward to 
describe how this could be achieved physically once the mode shapes are defined. 

It is clear that the membrane, which we have taken to be in contact with the 
cartilage of  the opposite wall of  the bronchial tube in its equilibrium state, is forced 
open by the blowing pressure and then oscillates at a frequency somewhat greater 
than that of  its fundamental mode under the combined influence of  static and 
dynamic pressure forces. In the model the membrane closes against the wall once 
in each cycle of  its motion, and we shall see presently that this feature is important. 
The amplitude of  membrane motion depends on membrane thickness and blowing 
pressure, but is typically a few millimetres. There are obvious physical limits here, 
and a bird which uses a high blowing pressure cannot at the same time have a very 
thin membrane or it will be ruptured. 

The pressure in the bronchus below the syrinx rises to equal the blowing pressure 
when the membrane closes the airway, but falls significantly during that part of  the 
cycle during which the airway is open. The extent of  this fall is determined by the 
impedance of  the passages to the air sacs. 

Turning to the acoustical variables U, the flow through the syrinx, and p~, the 
pressure in the trachea just above the syrinx, we see the expected complex behavior. 
The flow is necessarily zero when the syrinx is closed, but is generally positive when 
the syrinx is open. During this latter part of  the cycle, the flow exhibits pulsations 
because of  reflections from the open mouth, the frequency of  the pulsations being 
at essentially the "open-p ipe"  resonance frequency of  the trachea, though lowered 
slightly by the loading of  the constriction and sub-syrinx impedance. 
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The tracheal pressure shows similar small oscillations at its open-pipe frequency 
when the syrinx is open, but their amplitude is small because this pressure is being 
evaluated near one end of  the pipe. When the syrinx is closed, on the other hand, 
the tracheal pressure shows oscillations at about half  this frequency, corresponding 
to the "closed-pipe" frequency of  the trachea. The amplitude of  these oscillations 
is large because the pressure is being evaluated near the closed end of  the pipe. 
These effects, it must be emphasized, arise naturally from the explicit physical 
assumptions of  the model, set out above, and have not been imposed by any 
additional hidden assumptions. 

It is also straightforward to evaluate power relations for the model. The first 
quantity of  interest is the mean volume flow U, which in this case has the reasonable 
value of 60 mi/sec. The pneumatic power expended by the bird in producing the 
vocal effect is now just the product of the air-sac pressure Pc, and the mean volume 
flow U. For the case shown in the figure it amounts to about 18 mW. The power 
input to the syrinx is the time average of  the product of the sub-syrinx pressure 
po(t) and the volume flow U(t). In this case it amounts to about 11 mW, the balance 
of the original power having been expended in overcoming the flow resistance from 
the air sacs. This estimate is not unreasonable, but it would be reduced if the air-sac 
impedance were reduced. Finally the acoustic output from the syrinx is the time 
average of  the product  p~(t)U(t), which amounts to only about 2 mW. 

4.3. S O U N D  O U T P U T  

Once we have the tracheal pressure waveform shown in the top line of  Fig. 4, we 
can calculate the frequency distribution of the radiated acoustic power by making 
a Fourier transformation and applying eqns (16)-(18). Since the tracheal pressure 
waveform repeats at the membrane oscillation frequency, near 200 Hz in this case, 
the frequency spectrum will necessarily consist of a series of harmonics of this 
fundamental. Within each period, however, the pressure waveform shows that there 
is clearly a large amount  of energy concentrated near the frequency of  the closed-pipe 
resonances, in this case 1.2 kHz and its odd multiples. Finally, though the amount 
of  pressure variation contributed by the lowered open-pipe resonances at multiples 
of  2.2 kHz is small, the transformation in eqn (17) increases the importance of  these 
components. 

The calculated power spectrum, shown in Fig. 5, clearly exhibits all these features. 
The whole spectrum consists of  regularly spaced harmonic components based upon 
a fundamental near 200 Hz. There are broad formant bands (so called by analogy 
with bands produced in the same way in human speech) centered on the closed-pipe 
resonances 1.2, 3.6 and 6.0 kHz (marked A) and sharper formant bands (marked 
B) centered on 2.2, 4.4 and 6.6 kHz. These features of the spectrum are in excellent 
agreement with measurements reported by White (personal communication) for the 
Australian raven Corvus mellori. Details are given in Appendix C. In particular he 
remarks on the harmonic components and the formant bands corresponding to both 
closed and open-pipe tracheal resonances. The dimensions adopted in Table 1 
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FIG, 5. Calculated power spect rum of  the acoustic radiation from the model under  the condit ions of  
Fig, 4. The 0 dB reference is arbitrary, but  the total radiated power is about 0.5 mW. Note the regularly 
spaced harmonics  of  the membrane  vibration frequency, the " 'closed-pipe" tracheal formants  (marked 
A) and the "'open-pipe'" tracheal formants  (marked B). The open-pipe formant  frequencies are lowered 
by the acoustic loading of  the open syrinx. 

T A B L E  1 

Assumed Values of Anatomical and Physiological 
Parameters 

Length o f  trachea 
Diameter o f  trachea 
Diameter o f  membrane  
Thickness o f  membrane  
Equilibrium open ing t  
Membrane  resonance f requencies t  

Membrane  damping  coefficient 
Membrane  Q at f t  
Membrane  nonl inear  coefficient 
Bronchial volume 
Effective mouth  horn diameter 
Blowing pressure t  

L 70 mm 
2a 7 mm 
2h 7 mm 
d 100 ~m 
Xo 0 m m  
f ,  150 Hz 
f2 250 Hz 
K 300 see-  t 
Q 2 

10 
V 1 ml 
2b 20 mm 
Pc 0.3 kPa 

(Quantit ies marked t  are varied in the discussion) 
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correspond closely to those for one of the birds studied by White (personal 
communication).  This perhaps represents the low-frequency limit for song funda- 
mental, but the model is equally applicable to other cases if appropriate  parameter  
values are used. 

The 0 dB origin in Fig. 5 has no significance, but the total radiated power can be 
calculated by adding the contributions of  all the components  as specified in eqn 
(16). The result, for the specific case calculated, is about 0.5 mW. It is significant 
that this amounts  to only about  1% of  the total power expended by the bird in 
producing its song, a figure which is comparable  with that reached by human players 
on musical wind instruments (Bouhuys, 1965), and in general agreement with the 
measurements of  Brackenbury (1977, 1979a). The balance of the 2 mW of acoustic 
power output from the syrinx is expended in overcoming boundary-layer  losses to 
the walls of  the trachea. 

It must be conceded, however, that the acoustic output of  the model has an 
overemphasis on high-frequency components.  This arises from the fact that all 
components  of  the vocal system were taken to be acoustically "hard"  and the closure 
of the membrane  against the opposing wall to be exact. Relaxation of both these 
assumptions,  which were made in the interests of  simplicity, would introduce a 
roll-off of  high frequencies of  at least 6 dB/octave,  and perhaps as much as 
t2 dB/octave,  above some cross-over point of  a few kilohertz. This would improve 
the overall agreement between calculated and measured spectral envelopes. 

4,4, E X P L O R A T I O N  O F  T H E  M O D E L  

The model can be explored by varying its physical parameters within bounds 
limited by physical reality. Clearly the model can be scaled physically to represent 
larger or smaller birds and the properties of  the syringeal membrane can be varied, 
but it is more interesting to leave the physical scale constant and to explore variations 
in vocal pitch and loudness. Leaving aside "whist led" song, it is known (Greenewalt,  
1968) that many birds have a fundamental  song frequency that can be varied over 
2 to 3 octaves (a factor 4 to 8 in f requency) - -a  range very similar to that of  an 
individual human singing voice. The model suggests this can be achieved by varying 
membrane tension and hence fundamental  frequency, but we need to ensure that 
driving conditions remain reasonable over this range. Different species may, of  
course, have very different membrane  thicknesses corresponding to different vocal 
r anges - -and  we must bear  in mind that we need to know the thickness of  the moist 
membrane  before any drying out has occurred. The thickness chosen for our present 
version of  the model probably represents a maximum for this size of  bird. It is also 
interesting to calculate the range of acoustic output power available from a single 
version of the model when blowing pressure is varied. 

In Fig. 6 only the blowing pressure is varied, other parameters  of  the model being 
held at the values shown in Table 1, and both air volume flow and radiated acoustic 
power are calculated. Clearly these two quantities both increase as blowing pressure 
is raised, and the values are reasonable in terms of the measurements of  Brackenbury 
(1979a), when it is realized that the power output from the model also varies as 
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FIG, 6. Calculated radiated acoustic power and volume flow through the syrinx for the model 
parameters of  Table 1, with the air-sac pressure varied between 50 and 2000 Pa (0.5-20 cm water gauge). 

the square of  the linear dimensions if the air sac pressure is constant. It is important  
to note that the fundamental  frequency of  the song produced by the model changes 
very little as the air-sac pressure is increased. This is a consequence of  the fact that 
we have taken the membrane  frequencies fl  and fz to be constants. This assumption 
could be modified to account for the variation of fundamental  frequency with 
loudness observed in some species (Gaunt  & Gaunt ,  1985), but construction of  any 
realistic model would require much more specific information on the anatomy and 
muscular  response of  the system in question. The mean pressure in the trachea near 
the syrinx, incidentally, is about  one tenth of  the air sac pressure, though the r.m.s. 
pressure is very much higher. 

Anatomical parameters for a domestic fowl of  the species Gallus domesticus 
measured by Brackenbury (1977) are not immediately available, but it is clear that 
it is a good deal larger than the bird in our model. A peak acoustic power output 
of  200 mW for an air-sac pressure of  5-6 kPa and an air flow of  350 mi/sec  is a 
reasonable order-of-magnitude extrapolation from the curve in Fig. 6, after a 
correction has been made for size. 

Variation of the tension, and hence the resonance frequencies, of  the syringeal 
membrane  simply shifts the frequencies of  the harmonic components  shown in 
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Fig. 6 without changing greatly the formant envelope. The model produces sound 
over a fundamental  frequency range up to around 2 kHz without difficulty, though 
the power output is reduced at the higher frequencies. It is also possible to use the 
model to account for shifts in formant frequencies when the bird sings in a helium- 
oxygen atmosphere,  as in the experiments of  Nowicki (1987), by simply changing 
the sound velocity c in the trachea. There seems, therefore, to be no difficulty in 
reproducing the main features of a typical voiced bird song. 

4.5. " W H I S T L E D "  A N D  " S C R E E C H E D "  S O N G  

It is of  interest to vary the operating parameters,  as distinct from those specifying 
the anatomy, in an at tempt to produce an acoustic output of  a nearly sinusoidal 
character. I f  this could be achieved, then this would provide a reasonable model 
for the so-called whistled song, as suggested by Greenewalt  (1968). 

The obvious parameter  to vary is the static position of the syringeal membrane 
relative to the opposing wall, as specified by the parameter  xo. Trials with this 
parameter  set to give an equilibrium gap of  1 to 2 mm between the membrane  and 
the wall showed a marked change of behavior when the blowing pressure was 
carefully adjusted so as to be insufficient to make the membrane  meet the wall of  
the air passage, but still adequate to maintain it in motion. The whole system is 
then much more nearly linear, the sound output has only a few harmonics of  the 
fundamental ,  and the radiated power level is quite low. However,  because of the 
weakness of  the non-linearity the second membrane mode is only partly suppressed, 
and frequency components  arising from it are present in the song. It is difficult to 
regard this as even partial success in demonstrat ing the validity of  the mechanism 
proposed by Greenewalt  (1968, pp. 176-178) as the origin of  "'whistled" song. The 
bird clearly has detailed control over the anatomical and physiological parameters 
determining the behavior  of  its vocal system, and may be able therefore to produce 
a nearly pure-tone song more easily than has proved possible with the model. On 
the other hand, the low radiated sound power and the strength of the upper  partials 
might well be taken to rule out this explanation and to give support  to the view 
that this type of  song is produced by an entirely different mechanism. 

It is easier to achieve success in reproducing the raucous inharmonic screech 
characteristic of  the song of  birds such as cockatoos. For high air-sac pressure and 
high membrane  tension the behavior  of  the model sometimes becomes non-periodic, 
quite irrespective of  the existence of inharmonic modes on the membrane.  In these 
circumstances the acoustic output consists of  broad-band noise. 

A word of  caution should be said at this point about  interpretation of  all song 
showing harmonic components  and formant bands as being necessarily voiced song 
of  the type we have modelled. In particular, a song based on a single "whist led" 
tone, which is then subject to rapid and rather large-amplitude frequency modulat ion 
or non-sinusoidal ampli tude modulation,  will appear  in a Sonagram as a set of  
equally spaced components  grouped within a single band about the carrier frequency. 
Such a song could perhaps be produced by a "whistle" that is modulated by a 
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vibrating membrane, and the frequency of  the supposed formant band would have 
no relation to any tracheal resonances. 

4.6. E L A B O R A T I O N S  O F  T H E  M O D E L  

While it is not reasonable to examine extensions of  the model until its general 
correctness is accepted, it is appropriate to mention several elaborations or 
refinements that can reasonably be included and to outline the effects they could 
produce. 

We might note in the first place that the trachea is not cylindrical, but increases 
in diameter from the syrinx to the mouth. It may also not be circular in cross section, 
but this has no significant acoustic effect provided the shape varies smoothly along 
the trachea. Treatment of  wave reflections in flaring tubes is straightforward in 
principle but complex in practice (Schumacher, 1981; Morse, 1948, pp. 283-288). 
The overall acoustic effect is that the "closed-pipe" formant resonances are shifted 
upwards in frequency relative to the resonances of  a cylindrical pipe of  the same 
length, with the lower resonance frequencies increasing by a larger fraction than 
the upper ones. The "open-pipe"  resonances, on the other hand, are unaffected by 
a simple tube flare. The fractional shifts for a flare rate typical of  that of avian 
tracheae are quite small, however, and inclusion of  this complication is not warran- 
ted. A flared trachea would, however, join more smoothly to the mouth horn, with 
a likely increase in radiative efficiency. 

Similar remarks can be made about other modifications of  the geometry of the 
trachea and mouth. Since the trachea is flexible, the bird may be able to stretch it 
to some extent by muscular tension. It seems most unlikely, however, that this 
stretching could exceed about 10% of the tracheal length, giving a similar uniform 
decrease in the frequencies of  the formant bands. This may contribute to lack of 
constancy in the observed band frequencies during extended song, but it seems 
likely that other effects are more important. 

The most effective way to modify tracheal resonance frequencies is by modification 
of  the shape of  the mouth. This is likely to be much less effective in birds than in 
mammals, however, for obvious anatomical reasons. In some birds with long hollow 
beaks, such as the Australian kookaburra Dacelo gigas, the mouth may, however, 
provide significant modification to the end-correction to the trachea and may possess 
cavity modes which affect different tracheal resonances differently. These effects 
would depend upon the extent of  opening of  the beak during singing, and could 
lead to significant relative shifts in formant frequencies. Subjective judgment of  the 
song of  the kookaburra suggests that these formant shifts do occur, but there does 
not appear  to be any quantitative study in the literature. Such adjustments are, 
however, unlikely to be able to account for the very low formant frequencies observed 
in the vocal utterances of  "talking birds" (Greenewalt,  1968, pp. 166-175), and 
some other explanation must be sought in this case (Gaunt  & Gaunt,  1985). 

We have remarked in passing that it is possible to excite either of  the two modes 
assumed to be available to the syringeal membrane by adjustment of  its position in 
relation to the opposing ridge of  cartilage so as to make one of  the coupling 
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coefficients el of  eqn (9), or its companion e2 for the second mode, much smaller 
than the other. Our model shows this effect, which may well assist the bird in 
achieving sudden pitch changes in its song. Excitation of the second mode, which 
is approximately antisymmetric about the transverse axis of  the membrane, essen- 
tially reproduces the "compression" or "r ipple"  model of  Gaunt & Gaunt  (1985). 
We should note, however, that the "travelling-wave" model that they suggest lacks, 
for the present, any physical basis. 

Finally we return to the fact that our model differs from the actual bird in having 
only a single bronchus and syringeal membrane. It is important to enquire the effect 
of including the second sound source, and particularly the coupling to be expected 
between the two sources. It is, in fact, straightforward to generalize the model to 
include this second source, and the coupling between the two sources is readily 
seen to arise only from the fact that the tracheal pressure p~ acts on both membranes. 
They are otherwise independent. This coupling is actually quite weak, as we have 
seen for our single-source model, because the frequency of  the tracheal pressure 
variations arising from pipe resonances is very much higher than that of the 
membrane motion. The only significant coupling will, in fact, come from the rather 
weak pressure components at the frequency of  the membrane motion itself. This 
coupling may be adequate to lock the motion of the two sources in frequency and 
phase if they have been adjusted by the bird to nominal coincidence, but will impose 
little restriction on the independence of  the two voices if their fundamental frequen- 
cies are well separated (Fletcher, 1978). 

It is interesting to speculate that the bird may in fact adjust the membrane 
configuration of  its two voices so that a different mode is excited on each, giving a 
considerable frequency separation without a great imbalance of  muscular tension. 

5. Conclusions 

Reviewing the previous section, it is clear that the model we have presented is 
able to simulate many aspects of the observed and measured vocal achievements 
of  at least certain species of  birds. In particular, it shows that the radiated power 
spectrum of  voiced song will generally exhibit a large number of  precise harmonics 
of  a low fundamental frequency associated with the motion of the syringeal mem- 
brane, irrespective of  the fact that the natural modes of  that membrane may 
themselves be very far from having a harmonic relationship. In addition, it gives a 
good account of  the nature and frequencies of the formant bands reported by 
Greenewalt  (1968) and many other workers, and produces quite detailed agreement 
with the acoustical and anatomical results reported by White (1988). It shows in 
detail how these formant bands arise, and demonstrates their relation to the "open- 
pipe" and "closed-pipe" resonances of  the trachea. 

More than this, the model produces quantitative predictions for the radiated 
acoustic power and air flow through the vocal system which are in acceptably good 
agreement with the measurements of  Brackenbury (1977, 1979a). It is not meaningful 
to vary the parameters of  the model in search of  precise agreement in the absence 
of  detailed anatomical and physiological data with which to compare the values of  
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the p a r a m e t e r s  used  to ach ieve  bes t  fit. The  m o d e l  does ,  however ,  a l low these  
pa r ame te r s  to be  inser ted ,  when  they b e c o m e  ava i l ab le  from fu ture  research,  in 
o rde r  to test  the level o f  de t a i l ed  p red ic t ion  achieved .  

By vary ing  the pa r ame te r s  o f  the  mode l  wi th in  r ea sonab le  b o u n d s ,  it has also 
p r o v e d  poss ib l e  to  r e p r o d u c e  the  w i d e - b a n d  n o n - h a r m o n i c  " s c r e e c h e d "  s o u n d  m a d e  
by  some  b i rds ,  conf i rming  tha t  we have ach ieved  a r e a sona b l e  u n d e r s t a n d i n g  o f  this  
m o d e  o f  u t t e rance  as well.  Efforts to p r o d u c e  near ly  pu re - tone  sounds ,  genera l ly  
desc r ibed  as "whi s t l e s " ,  have been  unsuccessfu l ,  though  a ra ther  low- in tens i ty  song 
with much  less h a r m o n i c  d e v e l o p m e n t  is cer ta in ly  p r o d u c e d  if  the  conf igura t ion  o f  
the  syr inx  is ad ju s t ed  so tha t  the  v ib ra t ing  m e m b r a n e  is p r even t ed  f rom con tac t ing  
the o p p o s i t e  wall  o f  the  a i rway.  Whi le  this  does  not  c o m p l e t e l y  rule out  this  
m e c h a n i s m  for the p r o d u c t i o n  o f  " w h i s t l e d "  sounds ,  it does  suggest  that  de t a i l ed  
cons ide ra t i on  shou ld  be given to o ther  poss ib i l i t ies ,  such as those  p r o p o s e d  by 
G a u n t  et  al. (1982). 

In  s u m m a r y ,  it can  be  c l a imed  that  this  m o d e l  p laces  on a firm f o u n d a t i o n  o f  
phys ica l  unde r s t and ing ,  for  the  first t ime,  one  o f  the p r ime  me c ha n i sms  o f  av ian  
voca l iza t ion .  It is h o p e d  that ,  in due  course ,  o the r  me c ha n i sms  tha t  have been  
sugges ted  for  different  types  o f  av ian  s o u n d  p r o d u c t i o n  can be sub jec ted  to s imi la r  
quan t i t a t ive  analys is ,  for  it is only  by such ana lys i s  tha t  such hypo the se s  can be  
tes ted  aga ins t  real i ty.  

I am most grateful to Sir Frederick White for bringing this interesting problem to my 
attention, and for educating me in aspects of ornithology. My thanks are also due to one of 
the reviewers for this Journal who pointed out several significant pieces of work in the 
literature, of whose existence I was ignorant. 
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APPENDIX A 

Referr ing to Fig. 3, we approx imate  the shape of  the m e m b r a n e  by a quadra t ic  
form, so that  the height of  the open ing  is 

z = x + ( 2 a - x ) ( y / h ) 2  (A1) 

where y is measured  a long  the length of  the tube. We assume the open ing  between 
the m e m b r a n e  and  oppos ing  cartilage to be approx imate ly  rectangular ,  with a width 
2a when  viewed along the tube axis. 

Cons ide r  a state in which there is a pressure PG in the in terc lavicular  sac and  
pressure Po in the in ter ior  o f  the syrinx. The m e m b r a n e  will then have a smooth  
curvature  as shown,  and  we may take the curvature  radius to be R (the two pr incipal  
curvatures  may in fact be different, but  we neglect this compl ica t ion  as un impor tan t ) .  
The height of  the bulge in the m e m b r a n e  is b = 2 a - x - z ,  where z is the height of  
the cartilage. Now from s imple  geometry 

b ( 2 R  - b) = h 2 (A2) 

and  pressure equ i l ib r ium requires that 

PG - P o  = A T /  R (A3) 

where T is the tens ion  in the m e m b r a n e  and  A is a cons tan t  of order  unity.  Provided 
b << 2R, then  

b ~ h 2(pG - P o ) / A  T. ( A 4 )  

The m e m b r a n e  tens ion  will have two componen t s ,  a static c o m p o n e n t  suppl ied  by 

muscle  tens ion ,  and  a d y n a m i c  c o m p o n e n t  caused  by the slight s tretching of  the 
m e m b r a n e  as the d is tance  b changes.  If  the muscle  tens ion  c o m p o n e n t  is domi na n t ,  
as is very likely, then eqn (A4) shows that the deflect ion b, or equiva lent ly  x, varies 
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linearly with the tracheal pressure Po- The membrane  can therefore be treated in 
essentially the same way as a simple taut membrane.  For convenience we take as 
a reference state one in which the tracheal pressure Po = 0 and the displacement 
coordinate x = Xo. 

I f  the general case, suppose the volume flow in the tube is U, then the flow velocity 
at position y is U/2az.  By Bernoulli 's theorem, the quantity p +fly2~2 is constant 
in the flow, so that ifpo is the static pressure in the bronchus,  then the static pressure 
at the point y where the height of  the opening is z is 

P(Y) = Po + ½P U2[(1/zra2) 2 - (1/2az) 2] ~- Po - P U2/8aez2 (A5) 

where the last form of  writing applies if  z<< a. 
The force acting on the upstream half  of  the membrane  can be evaluated by 

integrating p(y)  over this part of  its area. I f  the flow is assumed to separate from 
the membrane  downstream from the constriction, then the pressure over this half 
of  the membrane  is simply p~, the pressure at the base of  the trachea. The integral 
is a little complicated,  

pU2h r (  x ~ ',2 (-~.-~)l/"+ x} (A6, 
F = 4 x 2 ( 2 a - x )  L \ \ ]  t an - '  ~ a  

but it reduces to the form given in eqn (3) of  the main text if x << 2a. I f  this condition 
is not fulfilled, then the dynamic pressure is small and the total expression is still 
approximately correct. 

The acoustic inertance of  the constriction is evaluated similarly as 

I" D =  p dy 
-h 2az" (A7) 

Evaluation is straightforward and the result 

O ~ ~ \ 2 - ~ ' x -  x /  tan-  (A8) 

can be reduced to that given in eqn (3) o f  the main text in the limit x<< a or can 
be ignored if this condition is not fulfilled. 

APPENDIX B 

The trachea is a lossy tube of  length L, terminated with a radiation impedance 

ZR = RR +jXg  (B1) 

where, as usual, j = - x / S ' ]  . We can incorporate the reactive part jXR a s  a correction 
to the length L, and we then find (Olson, 1957) that the impedance presented at 
the syrinx end of  the trachea at frequency to is 

_ [ R g cos kL+jZo  sin kL]  
z ( t o )  = Z o  . . . . . .  (B2) 

LjRR sin kL + Zo cos kL J 
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where Zo = pc/~ra'- is the characteristic impedance of  the tracheal tube. Because the 
trachea has viscous and thermal losses at its walls, expressed by the attenuation 
coelficient ~ given by eqn (15) of the main text, the propagation constant k is 
complex and is given by 

k = to/c - j a .  (B3) 

If  we express the pressure p~ (t) at the base of  the trachea in the frequency domain 
by its Fourier transform p~ (to), and similarly express the radiation resistance RR (to) 
as a function of frequency, then the power dissipated in the radiation resistance, 
and hence the radiated acoustic power, is given by 

l f o~  P 2 p,(to)- Re [Z( to ) - ' ]  dto (B4) 

where Re[Z --~] is the real part of  the admittance Z -~. Using eqns (B2) and (B3), 
we find 

1 'fo ~ p~(to)2RR(to) 
- , . 2  . . . . .  ( B 5 )  

P ~ 2  Z ; s l n  ( toL/c)+[R2+Z?~(aL)-]-cos'( toL/c) 

If we use a discrete rather than a continuous Fourier transform, this integral should 
be re-expressed as a sum over the spectral components. 

Finally we need to know the form of RR(to), allowing for the effect of the mouth 
horn, which increases the effective radius of  the trachea from a to b over a short 
distance. The transformation is somewhat complex (Olson, 1957) and depends upon 
the shape of  the horn. The mouth horn has very little effect on the total radiated 
power at frequencies for which it is short compared with the wavelength; it serves 
rather to increase the directionality of the radiation. When its length is an appreciable 
fraction of  a wavelength, however, it acts as an acoustic transformer and raises the 
resistive part of  the impedance as its throat. It is an adequate approximation for 
our present purpose to take 

RR(to) -~ (pc/zra~-)(kb/2) "- for kb < 2 

~- (pc/~ra 2) for kb> 2 (B6) 

where k=to/c .  This approximation overestimates the power radiated at low 
frequencies, but the error is not important here. 

APPENDIX C 

White (personal communication) has made an acoustical and anatomical study 
of  several species of  Australian ravens. These birds produce a simple cry, consisting 
of short sounds repreated about once a second. The repetition rate is regular and 
the individual sound segments are nearly identical. A Sonagraph analysis of the cry 
of  the little raven Corvus mellori, reported by White, is shown in Fig. 7. The upper 
part of  the figure uses a wide-band filter to optimise time resolution, while the lower 
part uses a narrow-band filter to optimise frequency resolution. Fig. 7(b) shows that 
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the song segments have a frequency spectrum consisting of harmonics based upon 
a fundamental  of  frequency about 200 Hz. This fundamental  frequency is approxi- 
mately constant but rises at the beginning of  each segment and falls at the end. 
These features are also apparent  in Fig. 7(a), in which the separate air pulses through 
the vocal tract are resolved. 

Figure 7 also shows that the song has a series of  format  bands with center 
frequencies around 1-4, 2-3, 3.7 and 5-0 kHz. These frequencies are close to integral 
multiples of  a fundamental  of  about  1.3 kHz, though the deviations from this simple 
relationship appear  to be real. 

Anatomical study of  an individual of  the species, which was of average size, 
showed that its trachea is about  70 mm in length and elliptical in cross section, with 
an effective diameter  which increases from about  6 mm at the syrinx to about 8 mm 
at the mouth. If  the trachea were to be approximated  by a cylindrical tube, then its 
"c losed-pipe"  resonances, corresponding to a pressure maximum at the syrinx, 
would be odd multiples of  a fundamental  of  about  1.2 kHz, and its "open-p ipe"  
resonances even multiples of  the same fundamental .  The effect of  the slight flare in 
the trachea is to raise the frequencies of  the odd resonances by a small amount,  
while leaving the even resonances unaffected. These frequencies, simplistically 
calculated, are thus in quite good agreement with those of  the measured formant 
bands. More importantly,  the whole spectrum of  the song is in very good agreement 
with the spectrum calculated from our detailed model,  as can be seen from a 
comparison of  Fig. 5 with Fig. 7(b). As well as being slightly influenced by tracheal 
taper, the resonance frequencies are modified by matching conditions below the 
syrinx. 

White also studied several other species of  corvids. They all showed similar call 
spectra, with harmonic components  and formant bands. All the other species studied, 
however, had voice fundamental  higher in frequency than that of  C. mellori, even 
though some of  them were larger birds, which made the clear identification of  
formant  bands in their song less striking. 

FIG. 7. Sonagraph analysis of the song of the Australian raven Corvus mellori (White, personal 
communication) using (a) a wide-band filter for optimal time resolution, and (b) a narrow-band filter 
for optimal frequency resolution. The record length is 2.2 sec, and the frequency span is 0 to 8 kHz in 
each case. The spectrum consists of harmonics of the syrinx frequency (about 200 Hz) with a formant 
envelope determined by vocal-tract resonances. 


