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ABSTRACT: The role of nonlinearity in the behaviour of musical instruments is discussed, with particular reference
to the clarinet, the trumpet, the flute, the violin, and certain percussion instruments.

Nearly all the acoustical theory to which we have all been
exposed over the years has been linear — twice the excitation
gives twice the response — though we probably recall that
at large amplitudes, as in shock waves, the situation is much
more complex and nonlinear equations are involved. But this
is too complicated for most of us to worry about, and surely
shock waves are restricted -to explosions and supersonic
aircraft anyway! i

Against this background it may come as something of a
shock to realise that the behaviour of musical instruments
such’ as the violin and the clarinet is dominated by nonlinearity
- and'we have no hope of understanding their behaviour without
considering it quite explicitly. In these few pages | would like
to give a gentle introduction to nonlinearity and its importance
in musical instruments. It is not a subject to which many
people have given explicit attention, and | apologise in advance
for the limited reférence list, but a recognition of its importance
is quite fundamental.

LINEAR AND NONLINEAR OSCILLATORS

All the instruments of music, and indeed almost all physicai
vibrating systems, behave as linear or harmonic oscillators if
their amplitude of vibration is small enough. There are a few
singular cases which we meet later, but this assertion really
derives from the mathematical process of neglecting all but the
most important terms or from the physical process of assuming
all elastic forces to be reasonably described by Hooke's law
provided the displacements are small.

Suppose that the coordinate x, represents in a general way
some oscillatory quantity. It could be the physical displacement,
as a function of time, of a mass hanging from a spiral spring,
or the displacement of a point on a vibrating string, or the
velocity of air flow in a wind instrument. Whatever it is, the
equation describing its behaviour can be written in the form

Kn + 2knXn + wpxn = Flt) + Glxp, %) )

where a dot implies differentiation with respect to time, and
on the right-hand side of (1) we have collected all the terms
not explicitly accounted for on the left side. k, and w, are
constants chosen so that there are no terms linear in x, or X,
on the right side. F{t) is a forcing function that represents the
external force on the system while G{x,, X, collects all the terms
in X, or X, of higher than first power [1].

The linear approximation arises from the observation that,
if X, is small compared with some characteristic dimension of
the system, then x?, is very small and we can neglect GXp, Xp)-

Further, if we are interested in the system only when it is not
being acted upon by external forces other than steady ones,
for example a piano string after the hammer impact or a
trumpet playing a steady note, then we can neglect F(t) or
incorporate it as a change of origin for x,. As we all know,
the solution to equation (1) then has the simple form

Xn = 8y, €08 {wpt + ¢,) exp (—kut) (2}

where the amplitude a,, and phase ¢, are determined from the
way in which the motion was started.

For an “extended’’ system, like a bell or a violin string or the
air column in a trumpet, which has several possible vibration
modes, we have a set of equations like (1) and solutions like
(2) for each mode x,. The mode frequencies w, for a real
system do not ever have exact integer ratios. The stiffness of

real strings makes

wp = nwq (1 + an?) (é)

for example in pianos, and there is a similar sharpening of
upper mode frequencies in simple open pipes, while bells and
gongs have mode frequencies distributed in a quite complex
way. All this, however, is still quite linear. iIf we excite a bell
with its clapper then each mode sounds out by itself and dies
away according to an expression like (2).

The complication begins to arise, for simpie systems like
plucked strings or hammered gongs, when the initial amplitude
a, becomes so large: that we can no longer neglect G{xp, Xy} in
(1). The simplest case is that of a plucked string. At large
amplitude the tension T of the string is increased, in proportion
to x2, every time the string moves away from equilibrium. The
restoring force is proportional t0 the product TV2x, and so
there is an extra term in G varying like x,®. Now x;? involves
alcos*{wnt + ¢,), which can be expressed as terms in
a 3cos{wnt + ¢,) and a*cos3lwnt + ¢p), and the first of these
is at the correct frequency to influence the left-hand side of the .
equation. The resulting solution [1] for x, has a frequency w
which varies like

w = wp + BaZ expl—2kat) (4)

so that the string emits a note with a descending ““twang”’.

in gongs, particularly those used in China, the shape:can be
arranged so that the pitch glides either downward (for a flat-
faced gong) or upward (for a slightly domed gong), the glide
being as much as several semitones [2].
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SELF-EXCITED OSCILLATORS

Of far more interest than the free oscillators discussed above,
from both physical and musical points of view, are the self-
excited oscillators which can produce a steady sound when
supplied with a constant source of power. Such oscillators are,
of course, common in the communications industry as well,
but,the design objectives in the two fields are completely
different. The woodwind, brass and bowed-string instruments
all belong to this category and for all of them nonlinearity is
vital rather than merely incidental.

From a mathematical point of view F{t) in (1) is still constant,
so can be neglected, but the physical system has been so
arranged that Gix,,X,) now feeds back part of the acoustic
output as a driving force, so that the system oscillates of its
own accord. We examine a few typical systems in turn. In all
of them we have a very nearly linear system — the air column
or the string — coupled to a highly nonlinear feedback-
controlled generator — a reed, an air jet, or a friction-regulated
bow.

In (1) we can now suppose that the damping coefficient k,
is that which refers to the resonant system alone, without its
generator, and that G may now contain terms in x, and in Xn
contributed by the generator. From (2), the condition for an
oscillation to begin and build up is clearly that G should contain
a term in-phase with X, and larger than 2k,x,. Conversely if
this term in G is smaller than 2k,x,, the oscillation will decay,
while if equality prevails it will remain steady in amplitude.

THE CLARINET
One of the simplest systems to analyse is the clarinet [3, 4.
it has a light, responsive elastic reed closing one end of a
-cylindrical tube as shown in Figure 1(a). The player's mouth
provides a blowing pressure p, tending to close the reed,
while the acoustic pressure p inside the mouthpiece (which we
take as our variable x,) tends to force it open. Since the
resonant frequency of the reed is arranged to be much higher
than the playing frequency w, the reed position responds like
a simple spring valve and lets more or less air into the mouth-
piece from the player's mouth. It is this flow of air, U, which
drives the instrument oscillation.
The actual form of Ulp), which is the same as that of Glx,)
except for a phase shift of 90°, is shown in Figure 1(b). If the
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Figure 1: (a) Schematic diagram of a clarinet mouthpiece and tube.
The reed is blown closed by the blowing pressure py in the player’s
mouth but this is resisted by the acoustic pressure p inside the
instrument. The volume flow is U. (b} The static nonlinear relation
between U and p. The normal operating point is close to A.

internal pressure p is equal to the blowing pressure p,, which
is typically about 3 kPa above atmospheric (i.e. 30 cm water
gauge), then there is no air flow into the mouthpiece and we
are at point D. As p is decreased the flow increases by
Bernoulli’s law as (p, — p)” but soon this begins to be balanced
by the fact that the pressure difference p,—p is forcing the
reed closed. This closing effect dominates to the left of C and
at B the reed is forced completely closed. The normal operating
point is near A with the acoustic pressure swinging back and
forth along the curve BC. This actually represents a negative
resistance because the flow U is measured towards the driving
pressure rather than away from it. In the region BC, Gixy) is in
phase with x,, and the clarinet sounds.

It is clear that the very functioning of the clarinet and similar
reed instruments depends upon the nonlinearity of the flow
relation U{p) for the reed but this nonlinearity also has other
effects. The curve in Figure 1(b) is invariant if we change the
blowing pressure p, — it simply slides along the axis — while
the operating point always oscillates about atmospheric
pressure. Clearly if p, is too small then A will lie on the curve
between C and D, and G will be dissipative rather than
generating, while if p, is too large A will be to the left of B
and G will be zero. k

If the operating pressure makes small excursions about A
the coefficient of x that it contributes is essentially the slope of
the curve at A. If this is greater than 2k the instrument will
play — if not then we must remake the reed. As the pressure
excursion increases, however, the curvature of the section BC
begins to introduce harmonics of w, — precisely phase locked
— into the fiow U. These appear in drive terms not only for x,
but also for other modes X, through equations like (1) and,
since the cylindrical air column has nearly harmonic resonances
at about (2n—1)w; the odd harmonics are preferentially
reinforced. Quite generally, since the nonlinearity can be
expanded as a power series in p, the amplitude of the sth
harmonic of mode n will vary initially as a,8.

As the pressure amplitude grows larger and swings from X
to Y say, the effective value of the coefficient of x in G decreases
to roughly the slope of the line XZ, and growth stops when
this is equal to the tube loss coefficient 2k. For a loudly blown
reed — the amplitude is controlled by changing the geometry
of. the reed with the lips — the pressure excursion is typically
like XY in the figure and the flow waveform is something like’
a square wave. This produces many harmonics, no longer with
the simple a, amplitude relation, and the sound is rich and
reedy.

THE TRUMPET .

In the case of lip-blown instruments such as the trumpet, the
situation is rather different because the blowing pressure forces
the lip valve open rather than closed [4-8]. This reversal in sign
requires a compensating phase change of 180° somewhere else
in the system, and this is introduced by adjusting muscle
tension so that the resonant frequency for buzzing of the lips is
just below the sounding frequency rather than well above as in
the case of the clarinet reed. It turns out that the exact lip
resonance frequency is critical to ‘the operation of the system,
so the player can (and must) adjust his lips to select just the
pipe mode required. There is no blowing pressure limit for
brass instruments as there is with reeds, and the dynamic

_nonlinearity is of the form shown in Figure 2. The limit to the

sound pewer output is set only by the blowing pressure and
volume flow that can be applied by the player.

FLUTES AND ORGAN PIPES

Among the gentler-toned instruments the flue organ pipe,
flute and recorder are alike in that their sound generating
mechanism relies upon a nearly plane jet of air emerging from
a flue (or-from the lips), traversing a mouth-hole cut in the pipe
near one end, and then impinging on a more or less sharp
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Figure 2: The static nonlinear relationship between airflow U and
mouthpiece pressure p for a lip-excited (brass) instrument blown
with pressure po. The dynamic flow relationship (dotted curve) is
changed in sign because the operating frequency is above the lip
resonance. The normal operating point is near A.

.upper lip as shown in Figure 3(a). The jet can be defiected by
the acoustic flow through the pipe mouth so that either more
or less of it enters the pipe at the lip to drive increased pipe
flow. The whole situation is complicated by the fact that the
interaction between the mouth flow and the jet takes place at
the flue where it induces transverse waves on the jet which
take an appreciable time to reach the-lip. Detailed study [7-9]
shows that the phase relations are appropriate for regeneration
when this wave transit time, which is close to twice the jet
flow transit time, is very nearly half a period of the oscillation
in the pipe.

Assuming now that this phase shift has been appropriately
adjusted by varying blowing pressure and flue-to-lip distance,
it is clear that the flow into the pipe at the lip, and hence the
interaction function G, has the general form shown in Figure
3(b). Here U,, is the acoustic flow in the mouth and Uj is the
jet flow into the pipe. The curve saturates for large positive or
negative values of Uy, when the jet is flowing entirely into or
entirely out of the pipe. The operating point A is generally set
asymmetrically so that the jet flows predominantly outside the
pipe in its undeflected state. If the slope at A (allowing for
other factors in G} is greater than 2k, then the oscillation will
grow, to stabilise eventually (in fact after 20-40 cycles) to a
sweep such as XY for which the slope of XZ is equal to 2k
{again allowing for any deviation of the phase shift from the
optimal value).

This nonlinearity both limits the amplitude and generates
harmonics which can interact with the higher modes of the
pipe. The relative strengths of even and odd harmonics depend
critically upon the placing of the operating point A on the curve,
and this is one of the operations carried out in pipe voicing,
or one of the performance variables available to flute players
[9, 101. The relatively gentle nature of the nonlinearity gives a
much smaller degree of harmonic development to the tone
than is the case for reed pipes or lip-blown instruments.

STRINGS

As a quite different form of nonlinearity we consider now the
bowed-string instruments. The string is itself a nearly linear
vibrator and the interaction at the bow involves a stick-slip
motion derived from the fact that static friction is greater than
dynamic friction, which is itself velocity dependent. The
speed v, of the bow is constant and, if we take the oscillatory
variable x to be the velocity v of the string at the bow position,
then the curve relating the transverse force F on the string to
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Figure 3: (a) Schematic diagram of an organ flue pipe. The air jet
emerges from the flue, crosses the mouth, and strikes the upper lip.
The jet has waves induced upon it by acoustic flow through the
mouth and these deflect it into or out of the pipe at the lip. (b} The
nonlinear relationship between jet flow Uj into the pipe at the upper
lip and acoustic flow Up, through the mouth.
The normal operating point is near A.

the velocity v has the form shown in Figure 4. The nonlinearity
is obviously pathological, with a discontinuity at v = v,,.

The nonlinearity of the frictional characteristic implies that
we couid have self-sustained nearly sinusoidal vibrations about
an operating point such as A, but in reality this can occur only
for the case of a large oscillating mass driven by a small
frictional force. The case of the bowed string is at the opposite
extreme — the string mass is small and the rosined bow
exerts a large frictional force. The motion then turns out to be
one in which the string moves for a large part of each cycle”
in the sticking position B and then makes a switching transition
for a small part of the cycle to the slipping position C. This
stick-slip motion is so highly, and indeed essentially, nonlinear
that it is quite inappropriate to attempt to analyse it by
considering growth from the nearly linear situation. The string
motion has however been analysed in detail, beginning with
the studies of Helmholtz and Raman, and we now have a very
good appreciation of most of the subtleties of its behaviour
[11,12].
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Figure 4: The relation between frictional force F and string velocity v
for a.bow drawn with velocity v across the string.
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Figure 5: A thin bar (or plate) kinked (or creased) at a small angle ¢.

EPILOGUE

As a final pathological nonlinearity let me return to consider a
passive vibrating system consisting of either a very lightly
creased thin plate or a slightly kinked thin bar held between
clamps as shown in Figure 5. If the oscillation amplitude is
very small, then simple analysis shows that the point A must
remain fixed to first order so that the first and second modes
will be respectively the antisymmetric and symmetric vibrations
of the two half-bars of iength L. However, as the vibration
amplitude increases, nonlinear effects of the kind we have
discussed before will move the point A downwards by an
amount proportional to ap?(1 + cos 2w,t) where wy is the
frequency and a,, the amplitude of the mode involved. When
a, becomes large enough, the point A will approach the line
BC and the bar will then be able to sustain an additional mode
in which it vibrates as a whole as a bar of length 2L. The
frequency of this mode is only about one quarter of that of the
previous fundamental.

All this is not surprising when the angle ¢ is reasonably
large. What does give cause for wonder is that this transition
behaviour is confined to an amplitude range of order L sin ¢,
which clearly approaches zero as ¢ approaches zero, giving us
- another pathological or essential nonlinearity. This effect — a

jump of nearly two octaves in the vibration pitch — can, in fact,
be heard in the decaying vibrations of some dented flat-sided
tin cans. It is saved from physical unreality as ¢ — 0 by the fact
that thickness can no longer be neglected if it is comparable
with L sin ¢.

Nonlinearities are real, nonlinearities are often extremely
important and, if we treat them right, they do not get out of
hand.
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Terminal 4 — Heathrow

The opening of Terminal Four (T4) at Heathrow
Airport in April 1986 will have been treated by regular
air travellers with a great sigh of relief, as it will no
doubt decrease the congestion experienced in the
othér terminals during the past few years. The presti-
gious new building on the south-eastern perimeter of
the airport will cater for up to eight million passengers
per annum right from the start, and will service all
. British Airways overseas flights as well as their Paris
and Amsterdam routes, and all KLM and Air Malta
flights. The opening of the terminal may, however,
have been greeted with rather less enthusiasm by the
residents in nearby Bedfont and Stanwell, except in
so far as it meant the completion of several years
major construction work.

During the Public Inquiry on the planning application
for T4, held between May and December 1979, the
most important single issue related to noise. There
was concern firstly, about any increase in air traffic
which might result, and secondly, about ground move-
ments and activities around T4, which unlike the exist-

ing terminals was to be situated at the edge of the.
airport and close to a built-up area. The Inspector .

recognised the potential problem as presented to him
in the evidence given by the GLC and other local
authorities, and made a number of recommendations,
most of which were accepted, some in a modified
form, by the Secretary of State and included in the
planning conditions.

Regarding total air traffic he recommended that

annual  Air Transport Movements (ATMS) should be
limited to 260,000 once T4 was opened. The Secretary
of State changed this to 275,000 but following the
inquiry on Terminal Five the government decided in
the White Paper on Airport Policy to scrap the limit
altogether. The latest figures indicate over 285,000
ATMS per annum at Heathrow.

Many positive steps have however been taken to
implement the Inspector’'s recommendations. These
include the construction of 7m high concrete noise
barriers, with a total length of 1.2km, covering the two
aprons on the ‘land’ side of the airport, and some of
the taxiways. Furthermore all maintenance work in-
volving the running of aircraft engines at T4 throughout
the day was prohibited. On the operational side con-
ditions were set for T4 banning aircraft movements, the
running of aircraft engines, and the use of APUs (aux-
iliary power units) between 23.30 and 6.30 hours. Sub-
sequently however, following an appeal by the British
Airports Authority and a further local inquiry, these
conditions were relaxed to exclude aircraft on or taxing
to and from the apron on the airport side of the ter-
minal building. This relaxation was agreed on the
basis of a three year experiment during which time the
BAA and local authorities would monitor night time
aircraft noise in the residential area. Continuous
monitoring of aircraft noise is now taking place at sites
in East and West Bedfont, and this is supported by
occasional sampling at other locations in that area.
(Extracted from “T4 Up and Running” by George Vulkan,
published in London Environmental Bulletin, Vol 3, No 4,
1986.)
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