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The large-amplitude vibrational behavior of a shallow spherical-cap shell is investigated 
theoretically using simple arguments. The results of this approximate analysis are expressed in the 
form of appealingly simple nondimensional quantities. It is shown that the frequency of the 
fundamental mode of such a shell falls by as much as 50% as the vibration amplitude is increased 
to approximately the sl•ell depth. For even larger amplitudes the frequency rises, and it exceeds 
the small-amplitude frequency when the amplitude is more than about twice the shell depth. The 
influence of shell thickness is considered and increasing thickness is shown to decrease the 
frequency shift. This analysis is shown to account for the pitch glide behavior of certain Chinese 
opera gongs. 

PACS numbers: 43.40.Ey, 43.40.Cra, 43.75.Kk 

INTRODUCTION 

In a recent paper in this Journal, Rossing and Fletcher • 
reported an experimental study of the small-amplitude and 
large-amplitude behavior of the vibration of Chinese opera 
gongs. These gongs, which are circular and have the sort of 
cross section shown in Fig. 1, are acoustically interesting 
because they exhibit contrary pitch glides. The larger gongs, 
the central striking surface of which is fiat, glide downward 
in pitch by as much as three semitones after being struck. 
The smaller gongs, which have a very slightly domed strik- 
ing surface, glide upward in pitch by as much as two semi- 
tones. 

The experimental study investigated several possibilities 
and concluded that the glide direction was probably deter- 
mined by a combination of the effects of curvature and of 
internal stress. Only a qualitative discussion was given. 

In retrospect, it tums out to be quite simple to give a 
quantitative analysis of the large-amplitude behavior of 
gongs such as these and, since the phenomena are aurafly 
striking, easily demonstrated, and applicable to a variety of 
related structures, it seems worthwhile to present the discus- 
sion briefly here. While the analysis glosses over many of the 
details in the interests of simplicity, this is in many ways an 
advantage, and the treatment does represent a significant 
extension of more rigorous developments published in the 
literature. 2.3 

body, 4 at least for the lower vibrational modes, and contrib- 
utes significantly to the sound radiation, rather as does the 
soundboard of a piano. The mass of this outer section is typi- 
cally five to ten times that of the central section, and consi- 
deration of its motion has a small effect on the calculated 

mode frequencies. Referred to axes fixed in the flange sec- 
tion, however, the mode shapes on the central part of the 
gong are very nearly the same as if the flange were of intinite 
mass. 

We, therefore, simplify our discussion by considering 
the active part of the gong to consist of a quasispherical 
domed shell with its edge rigidly clamped. The nonzero me- 
chanical admittance of the conical flange need not concern 
us since we will not be concerned with calculating precise 
resonance frequencies. The case of a gong with a fiat central 
section is clearly included as a limiting case in the derivation. 

In the simplest treatment, we can neglect the flexural 
stiffness of the shell and consider its elastic rigidity to be 
provided by the membrane forces arising from the geometri- 

I. ANALYSIS 

Even for quite large vibration amplitudes the motion of 
the gong is confined largely to the central circular section.• 
This is not unexpected since, for axisymmetric vibrations 
such as are excited by a central blow from a soft hammer, the 
conical shell surrounding the striking surface is rather stiff? 
The function of the conical flange and the outer cylindrical 
rim is thus largely to support the central vibrating section 
with its edge nearly rigidly clamped. For a freely suspended 
gong, the outer flange section moves nearly like a rigid 

FIO. I. The profile of a Chinese opera gong in cross •cfion. Gongs range 
from 20 to •0 cm in diameter. Some of the gongs, typically the larger ooes, 
have a fiat central section and glide downwards in pitch after being struck. 
The smaller gongs have a domed central section and glide upwards in pitch. 
Below is shown the coordinate system used to analyze the behavior of a 
domed gong. 
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eel constraint of its curvature. If we consider just the funda- 
mental vibration mode, with no nodal lines or circles, then 
we can associate with this a generalized coordinate x which 
measures the normal displacement away from equilibrium of 
the central point of the shell. In this coordinate system, 
shown in Fig. 1, the plane through the rim of the shell lies at 
x ---- -- Xo, and if the displacement is such that x = -- Xo, 
then the motion of the shell has brought it to a plane configu- 
ration. 

IfFo(x) is a generalized force upon the shell, distributed 
so as to distort it in the form of the fundamental vibration 

mode {this force is provided by acceleration during the vibra- 
tional motion), then we must be able to write, correct to 
order x 4, 

Fo(x) = alx + Xo} - t, {x + Xo} 3, {1) 

the form of this function following from the existence of a 
configuration of unstable equilibrium Fo( -- Xo) = 0 for the 
flat configuration of the shell, and the requirement that Fo(x) 
be antisymmetric about x ---- -- x, Since x = 0 is a configu- 
ration of stable equilibrium, Fo{0) = 0 and, hence, 

a = bx}. (21 
The general form of the force/displacement curve is thus as 
shown in Fig. 2. 

We should allow, however, for the fact that the shell has 
appreciable rigidity because of its thickness, and this con- 
tributes a further term to the restoring force so that 

Fix) = Fo{x } -- cx, (3) 

the curve for which is also shown in Fig. 2. The nonlinearity 
associated with the stiffness term is very much less than that 
arising from the membrane forces and it can reasonably be 
neglected. 

Using (1)-{3) then and assuming an effective mass m to 
be associated with this mode, the equation of motion is 

ra.• = - bx(x + Xo}lX + 2%1 -- cx. 14) 

If we consider just the linear terms on the right side, we can 
define the small-amplitude frequency limit too to be given by 

4 = (2bX•o + el/m, (5} 

F 

b 

-2x o -x o • 
FIG. 2. The relationship between force Fand displacement x for a spherical- 
cap shell. Curve a describes the behavior of an extremely thin shell which- 
can be everted, while curve b describes a shell of finite thickness which has 
only one equilibrium configuration. 

and Eq. (4) can then be written 

• + togx = - [ {o• - clm)12X•o ] {x 3 + 3Xo x 2} - 
(6) 

where we have included also a viscous damping term. 
We can easily develop an approximate solution to this 

nonlinear differential equation by a simple extension of the 
method of slowly varying parameters. s If we assume a solu- 
tion of the form 

x =A cos ½+B, (7) 
where 

½ = toot + • (8) 

and the displacement B, the amplitude A, and the phase •b are 
all regarded as slowly varying quantities constrained by the 
relation 

• = -- Atoo sin lb, (9) 

then it is readily shown that, to a first approximation and 
correcting an error of sign in the reference, 

(10) 

(11) 

(12) 

where g•t,B, lb) is the right-hand side of (6} written in the 
form 

g(A,B, lb) = -- [(too 2 -- c/m)/2X•o ] [(A cos lb + B )3 
+ 3xo(A cos tb + B )2] + 2kAtoo sin tb {13) 

and the angle brackets { ) in (10)-(12) signify that only 
terms varying slowly in comparison with the frequency too 
are to be retained. 

A. Thin shell approximation 

These equations can be solved quite generally, but we 
focus attention initially on the case of a very thin shell for 
which c,•rnto} so that the rigidity is provided essentially by 
the membrane forces. For this case, we find that, for A<(2/ 
3)•/ZXo•0. SXo, 

.B• -- Xo _ [Xo • -- (3/2)A 2] ,/:,, (14) 
• • - •, (IS) 
• - (1•/1•)H/•o)%o, (16) 

while for A) (2/3)1/2Xo, • is still given by (15) but 
B• -Xo, 07) 

•m [(3/16)(A/Xo) 2 -- 3/4]to o. (18) 
In either case, the value of B gives the location of the effective 
centroid of the oscillation. Equation {15) shows that the mo- 
tion is exponentially damped, while Fxl. {16} or {18} gives the 
effective frequency to through the relation 

to = too + •. (19) 
The behavior orb and to as functions of the amplitude.4 

is shown in Fig. 3. The frequency to decreases quite sharply. 
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FIG. 3. Calculated motion c. enter Band frequency to for vibrations of ampli- 
tude •4 on a thin spherical-cap shell of dome height Xo. The normal mode 
frequency for small-amplitude vibrations is • 

with increasing amplitude up to .4 = 0.Sxo, where co = 0.4(.oo, 
and then rises for larger amplitudes, reaching coo again when 
•4 =2x o. Note that the curves depend on simple nondimen- 
sional variables and so are quite universal within the approx- 
imation of this treatment. It is the delightful simplicity of 
this result that makes the present discussion worthwhile. 

B. Finite shell correction 

When the shell is not ideally thin, the flexural rigidity 
term c/m cannot be ignored in the expression for g in (13). It 
would be possible to carry this term through as a parameter, 
but for physical interpretation of the results it is necessary to 
relate it explicitly to the geometry of the shell. Fortunately, 
this requires consideration only of the small-amplitude lin- 
ear limit (5) and for this case the solution is well known. 

Reissner s has discussed the vibrations of a shallow 

spherical shell with its edges clamped and has used a vari- 
ational method to derive an approximate closed expression 
for the frequency of the lowest mode. In terms of our nota- 
tion, his result is 

COo = 2.98 • p(1 _ v2 ) [1 +(1 +v} 
x 10.90 - 0.20(1 + 2)] ,/2, 

where r is the radius of the segment comprising the shell, Xo is 
its central height as before, and h is its thickness. The quanti- 
ties E, p, and v refer respectively to the Young's modulus, 
density, and Poisson's ratio of the shell material. 

Rewriting (20) in a form similar to (5), we have 

coo=8.9 
X[0.90--0.20(1 + v)]X•o +/• 2], (21) 

where the first term in brackets is derived from membrane 

stresses and the second is derived from the bending stiffness. 
Clearly, the second term can be neglected if, and only if, 
h•,x o. Comparing (21) with (5), we drive the result 

c/m = acoo •, (22) 
where 

a----- [1 +(1 + v){0.90-- 0.20(1 +v)](xo•/h2)] -'. (23) 
All the material properties except for the Poisson ratio v 
have now been collected into the mode frequency coo and, 
since v is rarely very different from 0.35, we have the nearly 
universal result 

a= [ 1 + 0.85(Xo: /h 2)] -,, (24) 
which depends solely upon geometrical variables. 

Substituting (22) in (13) and using (10), we find that the 
equation determining B is now the cubic 

B3+3Xo82+ + 2 B + -•-xe4 =0, (25) 
and this is more easily solved numerically than analytically. 
The physically signi0. cant root is that for B closest to zero. 
The frequency shift • is then found from the equation 

•= [3coo(l --a}/4x•](Id2 + B2 + 2Xo 8 } (26} 
and the amplitude change is, as before, 

These equations lead to exactly the same results as before in 
the limit h--,0. For finite values of the shell thickness, the 
results have the form shown in Fig. 4, where a value of 0.35 

0 2.0 - 

-• ~1 - 11o 
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,.4 1.0 
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0.4 I • I , I 
o 1 2 

A/Xo 
FIG. 4. Calculated motion centerB and frequency o) for vibrations of ampli- 
tude d on a spherical-cap shell of dome height x o when the normalized shell 
thickness h/xo has the value shown • a parameter. The normal mode fie- 
quency for small-amplitude vibrations is •o. The broken curve shows the 
limited-range behavior of a moderately thin everted shell. 
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has been assumed for v. With this assumption, the curves are 
once more universal when expressed in terms of the dimen- 
sionless variables o/o o and A/Xo, with h/x o as parameter. 

We note that for all plate thicknesses h less than about 
2Xo, the frequency falls with increasing amplitude and then 
rises again to exceed the original value co o for.8 greater than 
about about 2.x o. The extent of this frequency shift decreases 
for increasing shell thickness and, for h >• 2Xo, there is a sim- 
ple slow increase of to with .8. 

For very thin shells (h •< 0.3Xo), there is a second equilib- 
rium position with B < -- Xo but this is stable only for small 
amplitude vibrations, and for these its mode frequency is 
below •o o. Shells capable of such eversion are not musically 
useful since their final state and, hence, final vibration fre- 
quency is not reliably controllable. 

In the limit when Xo--,0 and the dome becomes flat, we 
find from (23), (25), and (26) that 

/A \• /A \• 

i0.90 - 0.20o. 16 

(281 

so that the frequency rises as the square of the amplitude. 
This result also has a universal form, though scaled in terms 
of h rather than Xo. It is hardly necessa• to plot this simple 
expression. The apparent anomaly that • oo as h--•0 is ac- 
counted for by the fact that, in the absence of any membrane 
tension, the resonance frequency falls to zero as the stiffness 
vanishes. It would be relatively simple to include the effect of 
residual tension by adding a further linear term to (4) and 
consequently to (21}. 

C. Harmonics and higher modes 

In our discussion, we have used a simple harmonic ap- 
proximation (7) for the time variation of the motion for the 
fundamental mode although the force function on the right- 
hand side of (6} i s clearly nonlinear. It is a conceptually sim- 
ple matter to refine this approximation by including har- 
monics of the fundamental mode. These harmonics have the 

same spatial pattern as does the fundamental itself and have 
no connection with the higher normal modes of the vibra- 
tion, which we shall discuss later. Because of this geometri- 
cal similarity, these harmonics are described by the same 
generalized coordinate x as is the fundamental but we must 
generalize the time variation (7) and (8) by writing 

x = B + A • cos(cOot + 

q- A3 coS(3oot q- •3). (29) 
Inclusion of both the second and third harmonics is dictated 

by the physics of the problem. 
Application of the procedure leading to Eqs. (10)-(13) 

then yields not three but rather seven coupled nonlinear 
equations for the seven quantities B, •l i, •i. However, a little 
thought shows that .82 and .83 are generated nonlinearly 
from.8 • so that it is simplest to solve the governing equations 
by successive approximation using the physically imposed 
constraints 

= = (3o) 
The first approximation, neglecting .82 and .43, yields simply 

the analysis and results already set out in this paper. The 
second approximation gives.82 and.83 as functions of.81 and 
hence of time. It is quite easy to see that, for small amplitudes 
.814,Xo, .8: varies as .8 • and .8• as A 3•. For .81 •> Xo however, 
the motion becomes more nearly symmetric and .82 de- 
creases with increasing A•. Indeed, in the thin-shell approxi- 
mation, .82 is zero for.81 •> 0.8x o. In the third approximation, 
the smaller influence of A• and A• on .81 is taken into ac- 
count. Clearly, the harmonic structure of each modal vibra- 
tion changes in a rather complex way with time after a vigor- 
ous blow to the gong. 

Higher normal modes of the gong are another matter 
altogether. They differ from one another in geometry•in- 
deed they are orthogonal•and their frequencies are in no 
simple relationship. The interaction between membrane 
forces and stiffness forces for these modes should be similar 

to that for the fundamental mode, but a correspondingly 
simple analysis does not seem possible because the plane 
configuration does not occur as an intermediate state in the 
motion. Because of their orthogonality, the modes do not 
couple appreciably to one another and it is reasonable to 
treat them independently. 

Because of the limited importance of the Chinese gong 
problem, it is hardly worthwhile to pursue these elaborations 
of the theory in detail here. 

D. Validity 

Our concern here has been to develop a set of rather 
generally applicable approximate formulas rather than to 
investigate a well-defined situation with precision. It is im- 
portant therefore to consider briefly the major assumptions 
and approximations to see how these might limit the accura- 
cy and generality of the results. 

The shell we discussed was assumed to be sufficiently 
shallow that it was able to pass through an intermediate 
plane configuration without buckling. This is an important 
consideration and at the same time difficult to quantify with- 
out elaborate investigation. We shall not consider this 
further except to note its importance in defining a limit to the 
shell aspect ratio r/x o to which the theory is applicable. 

We also assumed the shell to be a spherical cap though 
the word "quasispherical" is used in the title. The behavior 
of all shells of nearly spherical shape should be similar, since 
the range of shape variation possible in a very shallow shell is 
not large. The shell shape will, however, influence the mode 
shape and with it the exact scaling of the amplitude param- 
eter A/Xo. For small shape variations, the rescaling should 
not be significant. 

It is relevant to inquire the limit of validity of the results 
in range of the amplitude parameter.8/Xo. The next nonlin- 
ear term in the membrane force (1) involves (x + Xo) • and it is 
the magnitude of this term which must be considered in com- 
parison with the cubic term. The form (1) for the restoring 
force is exact, in an energy average sense, provided the shape 
of the cap remains spherical as it vibrates. In fact, the radial 
parts of the eigenfunctions are combinations of Bessel func- 
tions and modified Bessel functions of order zero, as is taken 
into account explicitly in derivation of the mode frequency 
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•o o in (20). While it is not expected that the fifth power terms 
would influence the results significantly over the amplitude 
range depicted in Fig. 4, it is difficult to make an estimate 
other than by an explicit solution retaining terms to this or- 
der. Such a solution does not appear to be available in the 
literature, but it is relevant to remark that our results agree 
almost exactly with those plotted over a more limited range 
by Grossman et al. 2 for the two cases xo-= 0, 0,,//h•2 and 
h/x o -- 0.5, 0•4/Xo• 1 (in our notation), which are the only 
explicit results given. The general behavior illustrated in Fig. 
4 is also similar to that calculated by Leissa and Kadi 3 for 
rectangular shells. 

II. CONCLUSIONS 

For the small gong discussed in our earlier paper,• the 
stdldng shell is about 10 cm in diameter, the material thick- 
ness of the shell is about 0.7 mm• and the cap height xo is 
about I ram, though the curvature departs from spherical in 
such a way that the equivalent spherical x o may be somewhat 
less than this. Ass,mirig a value ofh/x o near 0.7, the curves 
of Fig. 4 predict a maximum frequency depression of about 
20% for an amplitude,/somewhat greater than xo. Since one 
semitone corresponds to a frequency change of approxi- 
mately 6%, this implies a maximum pitch glide of around 
three semitones, which is rather more than the aurally 
judged glide but in acceptable agreement with experiment in 
view of the uncertainty of the observation and the deviation 
from spherical curvature. 

It is interesting to note that the shape of the curves in 
Fig. 4 implies that the total pitch glide is fairly stable for 
amplitudes in the range 0. Sx o to 1.Sx o, with a smaller glide 
for less energetic excitation. This too agrees with experience. 
It does not appear possible, with the rather light soft stick 
provided with these gongs, to achieve an amplitude suffi- 

ciently large to exhibit the reversing glide predicted by the 
theory. 

In the case of the larger gong, the diameter of the central 
section is about 15 cm and the material thickness is about 1 

mm. A vigorous blow can give a vibration amplitude ap- 
proaching ! rnm so that, by {28), a downward pitch glide of 
several semitones is predicted, in agreement with observa- 
tion. 

In summary, this discussion reveals clearly the design 
parameters upon which the pitch glide phenomenon de- 
pends. Apart from the excitation amplitude, these are purely 
geometric and reduce essentially to the ratio of the shell 
thickness h to the shell center offset x o. The fundamental 
frequency of the gong also depends upon h, x• and the gong 
central radius r, together with the elastic constants of the 
gong metal, as set out in Eq. (20}. It is the remarkable simpli- 
city of these results that makes the approximate treatment 
set out in this paper worthwhile. 
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