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Summary

A general analysis is given of the behaviour of musical instruments driven by a reed mechanism.
Attention is concentrated on the reed mechanism itself and a clear distinction is drawn between
the behaviour of reeds striking inwards (as in the clarinet, oboe and organ pipe) and reeds striking
outwards (as in the trumpet and other brass instruments). Impedance curves are calculated for
reed generators of each type and it is shown that sounding of the instrument requires that the
acoustic admittance of the reed, as seen from inside the mouthpiece, should have a negative real
part of larger magnitude than the real part of the pipe admittance. This implies that there is a
minimum perniissible blowing pressure for each reed configuration. A reed striking inwards must
operate at a frequency below the reed resonance and below but close to the frequency of an impe-
dance maximum for the pipe. A reed striking outwards must operate at a frequency above and
close to the reed resonance and above and close to an impedance maximum for the pipe. Brief
consideration is given to other matters, including non-linearities and th&ir role'in Himiting-oseilla- -
tion amplitude and in generating harmonics. )

Anrequngsmechanismen in Holzblas- und Blechblasinstrumenten

Zusammenfassung

Das Verhalten von Musikinstrumenten, die durch einen Zungenmechanismus angeregt werden,
wird in allgemeiner Form analysiert. Dabei wird dem Zungenmechanismus selbst besondere Auf-
merksamkeit gewidmet. Es wird streng zwischen dem Verhalten nach innen arbeitender Zungen
(wie bei der Klarinette, Oboe und Orgelpfeife) und dem nach auBen arbeitender (wie bei der
Trompete und anderen Blechblasinstrumenten) unterschieden. Fiir Zungengeneratoren beider Ty-
pen werden Impedanzkurven berechnet und es wird gezeigt, daB zur Schallabstrahlung des In-
struments die vom Innern des Mundstiicks aus gesehene Zungenadmittanz einen negativen Real-
teil haben muB, der betragsmiBig groBer als der Realteil der Rohrimpedanz sein sollte. Dies im-
pliziert einen minimalen zuldssigen Blasdruck fiir jede Zungenkonfiguration. Eine nach innen
arbeitende Zunge muB bei Frequenzen unterhalb der Zungenresonanz und kurz unterhalb einer
Frequenz, fir die die Rohrimpedanz ein Maximum aufweist, betricben werden, eine nach
auBen arbeitende Zunge bei Frequenzen kurz oberhalb der Zungenresonanz und lkurz oberhalb
eines Impedanzmaximums des Rohrs. In kurzer Form werden auch andere Probleme,\z. B. Nicht-
linearitdten und ihre Rolle bei der Begrenzung der Schwingungsamplitude und bei\fler Erzeu-
gung von Harmonischen betrachtet.

Les mécanismes d’excitation du son dons les instruments & vent (bois et cutvres)

Sommaire
On a procédé & une analyse générale du fonctionnement des instruments de musique & anche, en
centrant I'attention sur le mécanisme de I’anche elle-méme. Une claire distinction est établie entre
le comportement des anches travaillant vers 'intérieur, comme dansla clarinette, le hautbois et le
tuyau d’orgue, et celui des anches travaillant vers 'extérieur, comme dans la trompette et les
autres cuivres. On a calculé les courbes d’impédance pour des générateurs & anches de chaque
T T T type et montré que I’émission sonore ne peut avoir lieu que si Padmittance acoustique de Panche,
vue de l'intérieur de I’embouchure, posséde une partie réelle négative d’amplitude absolue supé-
rieure & la partie réelle de I’admittance du tuyau. Cette condition implique qu’il existe une valeur
minimale admissible pour la pression_du souffle sur chaque configuration d’anche. Une anche
travaillant vers I'intérieur doit fonctionner & une fréquence inférieure 4 celle de sa résonance et
inférieure également, mais de peu, & la fréquence du maximum d’impédance du tuyau. Une anche
travaillant vers 'extérieur doit opérer & une fréquence un peu supérieure & celle de sa résonance
et un peu supérieure également & celle du maximum d’impédance du tuyau. D’autres questions
sont examinées plus briévement, comme celle des non-linéarités et de leur rdle dans la limitation
des oscillations et dans la génération des harmoniques.

1. Introduction century, and very considerable advances in under-

The behaviour of musical wind instruments in standing have been made. A recent informal book

which the sound is excited either by an air-driven by Benade [1], a more formal treatment by Neder-

reed or by an air-driven vibration of the player’s veen [2] and a collection of reprints edited by Kent
lips has been the subject of study for more than a  [3] serve to summarize the present situation.
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Somewhat surprisingly, though the theory of wave
propagation and resonance effects in the bores and
finger holes of such instruments has been examined
in detail, comparatively little attention has been
given to the actual mechanism by which the sound
is produced and coupled to the tube of the instru-
ment. There are, in fact, several notable papers on
reed mechanisms [4], [5], [6], [7] but the whole
picture is not entirely clear, particularly in relation
to the lip-driven brass instruments.

Tt is the purpose of the present paper to attempt
to remedy this situation to some extent, not by
treating a particular example in great detail but
rather by developing a amore general theory and
investigating its implications for particular classes
of instruments. Many of the results are not original,
but they do not appear to have been presented in
this form before. \

AY
2. Phase relations

The first explicit discussion of reed-driven wind
instruments seems to be that of Helmholtz [4], who
distinguished two cases as follows.

“The action of reeds differs essentially according
as the passage which they close is opened when the
reed moves against the wind towards the windchest,
or moves with the wind towards the pipe. I shall say
that the first strike inwards, and the second
strike outwards. The reeds of the clarinet, oboe,
bassoon, and organ all strike inwards. The human
lips in brass instruments, on the other hand, are
reeds striking outwar

Helmholtz then analyzes the two cases in some
detail. Because his results are a useful introduction
we repeat them here but employ a rather different
notation and method of development. The analysis
is correct, as far as it goes, but omits a number of
important features of the real problem.

Suppose the pressure in the mouthpiece of the
instrument is p exp (jw?) and that the coordinate
describing the reed opening towards the air supply
is £, so that the size of the opening varies like

Eo + Eexpj(wt + @) ()

where &, must be taken as positive for a reed strik-
ing inwards and negative for a reed striking out-
wards as shown in Fig. 1. Because the reed is a
damped mechanical resonator driven in the £
direction by the mouthpiece pressure, we can write

My (—w? 4+ jur wor 0 + 029 =sep (2)

where m; and s; are respectively the effective moving
mass and the area of the reed, w, is its resonance
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Fig. 1. Simple realizations of reed valves

(a) striking inwards with & > 0,

(b) striking outwards with & < 0.

All are assumed to be blown from the left and to communi-
cate with a musical horn on the right.

frequency and »x, its damping coefficient. From this
equation we immediately find for the phase angle ¢,

tan @ = #r w wrf(W? — wr?) (3)

and @ varies from 0 for w < wr to 7 for 0 > wr.
If we suppose the magnitude of the blowing
pressure to be much greater than p, then the phase
of the air flow into the instrument is ¢ for a reed
striking inwards and ¢ — s for a reed striking out-
wards.
Now the input 1mpedanoe of a cylindrical pipe of
length 7 and . cross-section § which is damped pre-
dominantly by wall effects has, as is shown in the
Appendix, the form

Z =(%c)<lﬂ+ 31?[ tan kl) @
~+j tan &l

over that part of the frequency range where the
height of the impedance maxima is H relative to the
reference level gc/S. g is the density of air, ¢ the
speed of sound in air and k = w/c. This form of the
result is useful since, by making both I and H to be
slowly-varying functions of w, it adequately repre-

sents the input impedance of a real musical instru-
ment. If we write Z as |Z| exp(j 0) then

tan 6 = [(H? — 1)/2H] sin 24 - 6)

and the phase of the acoustic flow relative to the
pressure is — 0. '

Now for the instrument to function in a steady
manner, the phase of the acoustic flow must be
constant throughout and therefore tan 6 = —tan 0,
which relation accommodates the requirements for

‘both reed geometries. Using eqgs. (3) and (5) this
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implies
Sin 2kl = 2%, [H|(H2—1)] oy of (w2 —w?) (6)

which is essentially the condition derived by Helm-
holtz. In order that the reed be a generator rather
than a load, it is necessary that both sides of eq. (6)
be positive for reeds striking inwards and negative
for reeds striking outwards. In the first case, there-
fore, which applies to woodwind instruments, we
must have w <C wy, while for brass instruments with
lip drive > w;. The necessary requirement that
the left side of eq. (4) be no greater than unity
implies only that the fractional shift from reed
resonance, (wr— w)/wy, be greater than about sr/H
which is typically of order 10-2.

Because eq. (6) contains none of the dynamics of
the problem, it is necessary to appeal to other
arguments to proceed further. If the reed is not very
heavy, so that it is influenced by the pipe, and  is
not nearly equal to wr, then eq. (6) implies that sin
2kl = 4- ¢ where ¢ is a small positive quantity
and the plus sign applies to woodwind and the minus
to brass instruments. The solutions to this are o A
nwef2lorl ~ nlj4, n=1,2,3, ..., but those with
even values of » must be ruled out because they
correspond to situations with a pressure node at the
reed so that no drive can take place. When the non-
zero value of ¢ is included we find

=21+ 1)7c/2lF 6 = wp F ¢

(7)

where ¢ is a small quantity determined by ¢ and now
the minus sign applies to woodwind and the positive
sign to brass instruments. The wp are resonance
frequencies for a pipe stopped at the end where the
reed is fitted.

3. Flow dynamics

The next extension of the theory is due to Backus
[5] who included a treatment of air low dynamics in
a clarinet-like system but simplified matters, con-
sistently with the conclusions drawn from eq. (6),
by taking wr = oo, which is equivalent to neglect-
ing the mass of the reed. This is largely justified for
the actual case of a clarinet but restricts the gene-
rality of the results. This particular assumption was
relaxed in later treatments, also for a clarinet-like
system, by Worman [6] and by Wilson and Beavers
[7]. All these workers, except Worman, were con-
cerned with small-amplitude oscillations just above
the self-excitation threshold so that the theories are
essentially linear. They do however, give some infor-
mation about excitation of the various pipe modes
and, as for the predictions of Helmholtz’s theory,
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. viscous losses in the
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agree with experiment when -checked against
appropriately circumscribed cases.

The primary innovation of these treatments re-
lates to the dynamics of flow past the reed and in
particular to inclusion of the effect of mouthpiece
pressure on this flow. We shall develop this rather
more generally so that it applies to reeds striking in
either direction.

Suppose that the blowing pressure applied to the
reed: is po and the pressure in the mouthpiece is P.
Then in a mechanically static situation the volume
flow U through the reed will be given by the
Bernoulli result

U= |£[b[2(po — p)/e]2 (8)

where || and b define the dimensions of the reed
opening and p is the air density. While this result
is adequate for simple reed geometry, many practical
situations are more complex, so we write

U = D|§|*(po — p)# 9)

where x ~ 1 and 8 ~ % In fact Bacus [5] has showﬂ
empirically that for a typical clarinet reed and
mouthpiece & ~~ 4/3, f ~ 2/3.

The total equation of flow must take into account
the fact that £ depends on p and also that there is a
mass-like load

M (&) = oaf|élb

associated with the air in the reed tip channel (or
lip aperture) whose length we take as a. We can
therefore write, using eq. (9),

po—p = D'|§-~/8 T8
+ M(§) (2U/o1)

where we have written D’ for D-1/8. We might also
add a small resistive term R(&)U to account for
ed tip channel but, since the
effect of such a term is obvious, we omit it in the
interests of simplicity. Because eq. (11) is clearly
non-linear we can no longer simply add complex
exponeritials as in eq. (1) but must take

& = &o + > &n cos (nwt + @)

(10)

(11)

(12)

where the sums here and subsequently are over
n=1,2,3, ... Again & > 0 for an inward striking
and & << 0 for an outward striking reed. Similarly
we write

. U —=U, —}—z Uy cos (nwt + pp) (18)

and, taking atmospheric pressure as reference,

P = > Pacos (nwt + Lp). (14)
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The equation obeyed by ¢ is, by analogy with eq. (2),
S;lz My d_z"*‘%rwrii“ + 602:,5 X
m de? d¢ . (15)
X €os (newt + @n) = Pn cos (nwt + Iz)
7
and the mean reed opening &p is given in terms of the
“unblown” opening &’ by
S0 = o’ — (Sx/mr :®)po. (16)

We have neglected non-linear terms in eq. (15),
which is a reasonable approximation unless the reed
opening actually closes. We then immediately have
the results

tan (¢ — L) = % orno/(nio? — o) (17)
where 0 < gn— [n = 7, and

Pn = 8;1mr§n[(wr2 —nw?)? +
+ ("‘rwrnw)z]llz = Knén.

\

(18)

Clearly the reed deflection is essentially pysy/my w2
for nw < wr, peaks to 1/x, times this value at the
resonance frequency wr, and then decreases as
PnSe/mrn2w? for higher frequencies. my w /sy is just
the static stiffness of the reed.

Egs. (14) to (16) are in fact not complete and it is
worthwhile pointing out what has been omitted in
addition to the resistive term referred to in eq. (11).
In eq. (14) we have assumed that the static compo-
nent of the mouthpiece pressure p is simply atmo-
spheric pressure whereas we should really make
allowance for the finite resistance offered by the
mouthpiece and instrument bore to steady flow. The
only effect is a small reduction in the effective blow-
ing pressure po which could easily be included but
which we neglect for simplicity. The second simpli-
fication is that we have omitted from the right hand
side of eq. (15) a small term of the form —¢(U/[&)2
which describes the action of the flow in producing
a Bernoulli pressure in the smallest constriction of
the reed opening. The significance of this term
depends on the reed geometry but is usually very
small compared with the direct effect of mouth-
piece pressure. In the interests of simplicity and to
avoid introduction of the extra parameter ¢ we omit
this term from the subsequent discussion. Thirdly
we have assumed the impedance of the wind channel
leading to the reed to be zero, so that the blowing
pressure is always po. Neglect of these effects means
that the reed will not oscillate in the absence of a
resonator, which is not strictly true of real reeds.

Substituting egs. (12), (13) and (14) in eq. (11),
and assuming > &z < |&o| and > Un < Uo, we
can collect up terms for various Fourier components.
The zero-frequency equation differs only in second
order from eq. (9) with p = 0. The general equation
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for the nth harmonic can be expressed as

cos {p = ——(\En CO! ———1 = +
P - P S
n n 0‘ /350 Pn ‘3 To coS Py

—{—ﬂ—annsinwn—fB(oi—i— l)x

b|&ol B
mEn—m
X %—————5 7 cos (@m + Pn-m) +
SmEm:!:n :! :
+ g m—— Pmtn) | —
% Eg cos (@ Pmtn) (19)

1/1 Um Un—m
__ZB<—B— 1) [%T cos (...) + ]

& Em Un—m
—_ 2—’3‘2' [z ___(So UO cos

m

SR

paw MUmEn—m . 3
2b|fol[ % sm(...)—l,—...]—{-

-+ higher terms

together with a similar expression with cos — sin
and sin —-—cos throughout. These expressions
are written out only to second order and only the
first of the second order terms is given-explicitly,
the others following a similar pattern. Clearly the
non-linearity of the flow couples together all the
partials of the oscillation, and it is this coupling
which justifies our original assumption that these
partials are all harmonically related [8].

First of all let us consider just the linear terms,
which will be the most important under conditions
of small excitation. These give, using eq. (18),

Pn[(Pocx/B Eo K p) cos pn — 08 {n] =
= Un[(po/B Uo) cos yn —
— (pa/b|&o])nw sin py]

(20)

together with a similar equation with cos — sin
and sin —— cos. These are generalizations of the
corresponding equations of Backus [5], with allow-
ance made for the finite resonance frequency of the
reed, as was done by Worman [6] and by Wilson
and Beavers [7], and with the sign of &, taken
explicitly into account.

Since the modes are uncoupled in the linear
approximation, we can take the phase {, = 0. If
necessary this phase can be restored later. We also
drop the multiplier » and write simply w for the
frequency. '

From eq. (20) we then find

 (molBU) 4 + w(oafbléal) (B—1)

80V = olBTo) (I — B)— w(afbléo) 4 )
where

A = mr(pox/B &o) w wrxr|(K2s;) (22)

B = mr(pocx/f o) (w:® — w?) K2s; (23)
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and we take y to lie between — /2 and /2. We
can also define the reed generator admittance Yy,
as measured from inside the mouthpiece, as

Y = —Ujp. (24)
We shall later find this to be a more useful quantity
than the generator impedance Z, = Y-1. At fre-
quency o this admittance has phase angle v and
magnitude

1—B
[¥:] — 1= 5)

(20/B Uo) cos yp — w (gafb |&|) sin v

where, because of the restriction placed on v, [ Y]
is allowed to be negative. Note that Y. does not
become zero when B = 1 because of a balancing
zero in the denominator. Note also that egs. (21)
and (25) cease to be valid in the limit py — 0,
because the Bernoulli-like flow law (8) or (9) then
no longer applies.

(25)

4. Instrument performance

We can see the implications of these results with-
out great difficulty. Suppose that there is an
acoustic pressure p with frequency w in the mouth-
‘piece cavity. This causes an acoustic flow

Ur=PYr

through the reed into the instrument and supplies
acoustic energy to it at a rate p2 Re (—Y;) where p2
is the real mean-square value of p. At the same
time p causes an acoustic flow Uy = p Y, in the
pipe which dissipates energy at the rate p2 Re (Y p).

Clearly if more energy is supplied than is dissipated,

that is if
Re (Yr 4+ Yp) <0

then the oscillations will grow and the instrument
will sound, the loudness of the sound being deter-
mined, to a first approximation, by the extent to
which-the inequality is satisfied. Thus ¥; must have
a negative real part which is as large as possible and
Yy a positive real part which is as small as possible,
implying that the instrument should operate near
a pipe impedance maximum. .

Of course for a steady sound U, must equal U,
in magnitude and phase and this can, in general, be
achieved only through the agency of non-linear
effects which reduce Y at large amplitudes. In the
steady state then, we must have

Re (Yr + Yp) =0
Im (Y; + ¥p) = 0

(26)

27)
(28)

the first condition being reached: largely through
adjustment of the amplitude of the oscillation and
the second through adjustment of its frequency.
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The behaviour of Y is given by eqs. (21) and (25)
and is most easily appreciated if we neglect the small
terms describing the inductive loading contributed
by the small mass of air in the reed or lip channel.
These are the final terms in the numerator and
denominator of eq. (21) and in the denominator of
eq. (25). Clearly the sign of the real part of Y, is
determined by the sign of (1 — B) and, if this is $o
be negative, we must have, from eq. (23) either

§0 >0, w > wr, po® > po > po* (29)
or

§0 <0, w < wr, po > po*. (30).

These are exactly the frequency conditions found
before but it is now required in addition that the
blowing pressure py must be greater than a critical
value po* given by

Po* = (mr/sr) (B &ofex) [(cwr® — %)% +
+ (@ wrr)?] /(w2 — w?2).

The existence of this critical pressure has been well
proven in the case of woodwind instruments for
which the reed strikes inwards. It is less well known
for the case of lip-driven brass instruments. We also
see that, if we start from a condition of fixed un-
blown lip or reed opening &y’ then, from eq. (16),
there is an upper limit :

(31)

Po¢ = &o'my wrz/sr (32)

in the case of the inward-striking reed, above which
it is completely closed and no sound generation can
take place. There is no such upper limit for lip-
driven brass instruments.

It is useful now to plot polar diagrams for the reed
admittance Yy as a function of blowing pressure pq.
This is done in Fig. 2, using the physical parameters
given in Table I and restoring the small terms
neglected in the discussion immediately above. It
is clear that a lip driven tube can always be made
to sound, irrespective of the quality of its resonances,
provided a sufﬁcien‘%r high blowing pressure is used.

Table I.
Assumed values of parameters.

Unblown reed opening &’ = 4+0.5mm

Effective reed mass my =01g

Effective reed area s = 0.5 cm?2

Reed resonance frequency  wr = 3140 rad s~! — 500 Hz
Reed parameters o« =1,8=05

Effective reed channel width & = 5mm

Effective reed channel length @ = 2 mm

Reed damping parameter xe =0.1.

Blowing pressure " po =5kPa

Closing pressure (£o” > 0)

Do = 10 kPa

Pressure Conversion: 1 kPa = 10 cm water gauge.
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Fig. 2. The real part (Re) and imaginary part (Im) of the
reed admittance Yy, with blowing pressure po in kilopascals
(1 kPa = 10 cm water gauge) as parameter, for the cases
(a) £0> 0, v = 0.9 wr and

(b) &6 <0, v = 1.1 wr.

In case (a) the reed closes for po = po¢ and in each case po*
is the critical blowing pressure for generator action. Assum-
ed values of other parameters are given in Table I. The units
for Y are reciprocal S. I. acoustic ohms (i.e. m3 Pa—1 s71) X
x10-6,

For a normal reed driven tube with & > 0, the
imaginary part of Y, is positive so that, from eq.
(28), the imaginary part of ¥, must be negative.
From eqs. (4) and (5) this implies that § and sin 2k
must be positive which in turn implies that the
oscillation frequency o must be less than the neigh-
bouring pipe resonance frequency wp. The opposite
is true for an outward-striking lip reed.

We can go a little further and plot the way in
which the real part of the admittance Y varies with
frequency for a blowing pressure greater than the
critical value po*. This is done in Fig. 3 for several
different values of the reed damping »;. Remember-
ing that we are still treating the system in the linear
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approximation only, we can now make some addi-
tional assertions.

Considering first the normal reed drive for which
& > 0 we see from Fig. 3a confirmation that
must be less than the resonant frequency w, if
Re (Y:) is to be negative. If the reed damping is
small then Re (Y;) has its greatest negative magni-
tude just below the resonance so that, if the tube
has impedance peaks of reasonable height near this
frequency, this near-resonant mode will be favoured.
This is the situation in the reed pipes of pipe organs.
It is not, however, the playing mode desired in wood-
wind instruments, for which w; is generally chosen
to be well above the frequency of the first few tube
modes. If the reed is highly dampefd. by the pfd&éfs»
lips, the negative reed admittance is nearly constant
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Fig. 3. The real part (Re) of the reed admittance Y: as'a
function of frequency w for po = 5 kPa (about 3 po*) and
(a') 'SO > Oa

(b) &0 << 0.

The parameter is s, the damping coefficient of the reed.
Other parameters have the values given in Table I. Units
are as in Fig. 2.
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for w < wr and it is the lowest pipe modes which
are excited, as is desired. Little adjustment of lip
position on the reed is then required to produce
different notes, these being determined by the fre-

quency of the most prominent pipe resonance for

each fingering.

In the case of the lip-driven instruments the situ-
ation is quite different, as shown in Fig. 3b. The
playing frequency w is now greater than wy, the
frequency shift being close to %y wr. There is thus
a strong tendency for any modé lying about s, w,
above the frequency of the lip resonance to be pré-
ferentially excited. If %, is of order 0.1, the small
width of this response region gives adequate dis-
crimination between pipe resonances only one semi-
tone apart in pitch (6 percent different in frequency)
in the case of a skilled player, while not being unduly
restrictive to the execution of rapid passages in the
low register of modern instruments using valves.
- The x, value of dry cane material from which

woodwind reeds are made is probably less than 0.1,
but it is likely that the method by which two canes
are tied together in instruments like the crumhorn
and bagpipes substantially increases this value.
When the reed is wet and further loaded by the soft
tissue of the players lips, as in modern woodwind
instruments, it is easy to see that s, may lie in the
range 0.3 to 1 as suggested by our discussion.

For thelip drive of brass instruments the situation
is very different, for the x; value for the players lips,
even under muscular tension, may well exceed the
value 0.1 required for proper performance on instru-
ments like the French Horn. The explanation of this
apparent difficulty seems to lie in some of the terms
omitted from our simple theory, in particular the
terms representing the finite volume and flow impe-
dance of the airway through the player’s mouth.
If the mouth cavity is regarded as an acoustic
capacitance fed through an air channel of finite
resistance, then the air pressure po within it will
vary slightly because of flow through the lips. This
can be accounted for by adding a term proportional
to f U dt to the right hand side of eq. (15). Since
U is nearly n out of phase with & for a lip reed
(£ < 0), [U dt is nearly in phase with d&/d¢ and
50 reduces the effective value of %, on the left hand
side. This also accounts for the fact that the lips
can be made to “buzz’’ in the absence of any musical
instrument resonator.

5. Non-linearities
Provided the excitation levelis not too large, so
that expansions like (12), (13) and (14) are fairly
rapidly convergent, the system behaviour can be
described by the set of egs. (19), carried if necessary
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to a larger number of terms. This small-signal
approach is the one usually employed and its impli-
cations have been carefully explored by Benade and
Gans (9], Worman [7], Benade [1] and Fletcher [8].

Because the resonances of a musical horn are
never exactly harmonic, a strictly linear excitation
mechanism would lead to a sound the frequencies of
whose partials were not exact multiples of a common
fundamental frequency, giving at best a quaint.and
at worst a musically unpleasant sound. If the driv-
ing mechanism is sufficiently non-linear, however,
all the partials of the sound become locked into.
exact harmonic relationship [8], [10], as is known to
be the case for virtually all non-electronic musical
instruments producing steady sounds. The expan-
sions leading to eq. (19) have already assumed this
to be so.

Investigating this situation, Benade [1], [9] has
shown that, rather than considering the regenerative
behaviour only at the fundamental frequency, as
we have done, we should really take into account
the weighted impedance of the drive mechanism,
and particularly of the musical horn, over all
harmonic components of the sound being produced.
We have, at present, nothing to add to Benade’s
discussion.

Worman [7] has shown that, in the small-signal
regime-in which the fundamental is dominant, the
amplitude of the nth harmonic varies as the nth
power of the amplitude of the fundamental. This
conclusion is also implied by our eq. (19), as follows.
From eqs. (18) and (20), if the fundamental fre-
quency o is fixed, the quantities p,, U, and &, for
the nth harmonic are simply proportional to each
other. Using this conclusion to determine successive-
ly the scond, third, ... harmonic amplitudes p,
from eq. (19), on the assumption that p, > ppi1
for all », leads immediately to the conclusion that
Pn o< p1?. We must remember, however, that this
conclusion applies to the pressure amplitudes within
the instrument mouthpiece, rather than to the
radiated sound. Benade[1]has discussed, and indeed
in simple cases it follows from standard acoustical
theory, that each musical instrument horn has a
characteristic cut-off frequency w,. above which the
radiated acoustic pressure amplitude is simply
proportional to the internal pressure amplitude Pn
but below which it is proportional to pg(w/we)2.
Since wc is typically 104 rad s—1, corresponding to
about 1.5 kHz, there is thus a very large amount
of high-frequency emphasis in the radiated sound
spectrum compared with the internal spectrum.

Finally we should note that, even in this low-
excitation regime, it is the non-linearity of the
excitation mechanism which determines the total
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amplitude and power of the oscillation. This limita-
tion depends primarily upon the relative magnitudes
of the linear and cubic terms in eq. (19), as has been
discussed elsewhere for the related case of organ pipe
excitation by an air jet [10]. Since the cubic terms
vary.as &3 and the linear terms only as 1, large
oscillation amplitude is favoured by a large value
&', and hence of &, provided pg is constant and
po > po*.

When we come to consider the behaviour at high
excitation levels we find that non-linearity plays a
dominant part in determining the shape of the
internal pressure waveform. We define a high exci-
tation level in this connection to be either one giving
sufficient amplitude & to the reed vibration so that
& = &o and the reed closes, or else one giving suffi-
cient ampﬁtude&p to the mouthpiece pressure so
that p = po — pg* and the instantaneous operating
point for the reed generator is forced back into the
dissipative region, giving a reversal in the sign of
the real part of the flow U at the frequency consider-
ed.. These two non-linearities are to some extent
independent and under the control of the player but
they are also partly determined by the nature of the
reed system and of the instrument horn.

The clarinet has been extensively studied [1], [6],
[11] and shows this behaviour well. The optimum
blowing pressure for the clarinet is midway between
the threshold pressure p¢* and the pressure po°
which closes the reed. Not only does this maximize
the dynamic range below the threshold of extreme
non-linearity but also it ensures that, when non-
linear behaviour begins, it does so nearly sym-
metrically, giving & flow waveform which approxi-
mates a square wave. This is important since the
clarinet horn, being nearly cylindrical, has impe-
dance maxima near w1, 3wi, ... and impedance
minima near 2 w1, 4 w1, .. .. If the pressure waveform
contains significant even-harmonic components,
then the weighted impedance of the horn will be
lower than optimal and it will not couple well to
the reed generator.

Assuming operation in this symmetrical fashion,
the horn has a linear resonant response so that the
mouthpiece pressure is also of square waveform.
Since the reed is a compliant system of high re-
sonant frequency, its displacement follows the
pressure waveform quite closely and indeed this is
what was observed in the pioneering work of
Backus [11].

Instruments such as the oboe, bassoon and saxo-
phone have nearly conical horns which show impe-
dance maxima at the throat at frequencies w1, 2 w1,
3w1, . . . SO that it is no longer a condition for effi-
cient operation that the non-linear clipping be sym-
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metrical. Indeed the relative heights of the second
and third resonance peaks suggest possible advan-
tages from asym\inetric clipping. In the case of the
oboe, the smaller initial reed opening (<<0.5) mm
and higher blowing pressure (av4.5 kPa) compared
with the clarinet (~1 mm and 3.5 kPa) suggest
that the major non-linearity may be that associated
with closing of the reed. This may also apply to the
bassoon; the situation with the saxophone is less
clear. These conjectures, however, require experi-

- mental confirmation.

The situation with the lip-driven brass instru-
ments is rather different because of the resonant

po and &¢’. The resonant behaviour of the lip reed
means that it responds only weakly to driving-pres-
sures at upper-harmonic frequencies and tends to ad-
just its motion so as to just close during each cycle.
This behaviour was recognised long ago through
the elegant photographic studies of Martin [12].

The horns of brass instruments are designed to
produce a harmonic series which is well tuned
except for the horn fundamental (typically 0.8 w1,
2w1, 3wi, . . ) and only modes based on the higher
horn resonances are used in normal playing. For each
of these modes the upper resonances provide a well-
aligned complete harmonic series so that there is
no obstacle to prevent, and perhaps some advantage
to be gained from, asymmetric clipping. The design
of a typical brass instrument mouth cup, together
with the high dynamic level possible, leads to a
high mouthpiece pressure and thus to waveform
clipping when the lip opening is wide. The  asym-
metric flow waveform contains harmonics of all
orders, which may be further intensified by the non-
linearity of the flow through the constriction joining
the mouth cup to the main horn. There is, as we
have already discussed, a further emphasis of the
upper harmonics in the radiated sound.

This discussion of harmonic generation in brass
instruments follows that given by Backus and
Hundley [13], who showed that mouthpiece pressure
waveforms calculated on this basis for a trumpet are
in good agreement with measured waveforms pro-
duced using a mechanically operated valve to
simulate the lip opening. In each case the pressure
waveform approached the shape of a half-wave-
rectified sinusoid.

Finally we can use this discussion and the pre-
vious analysis to estimate the maximum peak-to-
peak value of the mouthpiece pressure waveform
that can be produced in a wind instrument. We
assume that the wall and radiation damping in the
horn is- sufficiently small that the mouthpiece
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pressure is driven to the clipping point in each
direction and that the playing conditions are those
previously discussed: &)’ > 0 and o < w; for a
woodwind instrument and &y’ <0, o a cor (1 - $5r)
for a brass instrument.

For a woodwind instrument, from eq. (31), one
cut-off point is essentially given by '

(Po — P)* = (mrco:?[sr) (B/x) &o (33)

where, since we are considering large signal condi-
tions for the mouthpiece pressure p, eq. (16) must
be written

Eo =& — (Sx/mr wr?) (po — py*. (34)

Also from eq. (16), when &y = 0 and the reed closes,
we have

(Po — P)° = (mrwr?[sr)&o’. (35)

Combining these equations, we find for the maxi-
mum peak-to-peak excursion P of the mouthpiece
pressure

P = p*—p® = (mrw:?[s) [/ (o + )] &0’ (36)

The factor x/(x + ) is about 2/3 and the value of P
issimply proportional to the product of the effective
reed stiffness mywr?/sy and the unblown reed open-
ing &', and is independent of blowing pressure
provided po* < po < po°. Reed instrument players
generally control loudness by altering lip-tension to
change the value of &'

In the case of brass instruments the resonant
behaviour of the lips makes the situation rather
different. The lip motion does not respond instant-
aneously to pressure variations as in a woodwind
reed but executes a sinusoidal motion, the ampli-
tude of which is probably equal to the equilibrium
blown lip separation & given by eq. (16) with &’ <
<C 0. The lip oscillation is substantially out of phase
with the mouthpiece pressure as we have already
discussed. Provided the lip damping x, is small
enough that the. oscillation amplitude & given by
eq. (18).reaches the value &, then the maximum
pressure excursion P will approximate the blowing
pressure pg, the amount of clipping of the waveform
depending on the unblown lip opening &o’. Again
both &o’ and po are under the control of the player.

6. Conclusion

This analysis has served to identify those features
which are of primary importance to the under-
standing of the excitation mechanism in woodwind
and brass instruments. Such an analysis should
provide the necessary background for more sophisti-
cated studies of particular instruments or, perhaps
even more interestingly, of performance techni-
ques upon these instruments.
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Appendix

Standard theory for wave propagation in finite
cylindrical tubes shows that for the dimensions and
operating frequencies of most musical wind instru-
ments the dominant loss mechanisms are those to the
walls. Radiation losses from the open end are not
significant for the first few pipe modes and the open
end impedance behaves, to a good approximation,
like a small inductance giving an “‘end correction”
addition to the tube length which is just 0.6 times
the radius. If 7 is the length of the tube including
this correction, then the input impedance (defined
as the ratio of acoustic pressure to acoustic volume
flow) at its throat end is just

Zp = j(oc/8) tan [(k — jk')1] (A1)

where g is the density and ¢ the velocity of sound in
air, § is the cross-sectional area of the tube, k —
w/c is the real part of the propagation number and
j%" an imaginary component to take account of wall
losses.
The expression (A1) can easily be re-expressed in
the form
Zp = j(o¢/8) [tan kI — j tanh &7]/
[T1 + jtanh %1 tan k1]

and we see that, at the resonances corresponding to
impedance maxima, where kI = (2n + 1) 7/2,

785 = (90/8) coth k1.

(A2)

(A3)
If we suppose the height of these impedance peaks
to be H times the reference value pc/S, where H is
a slowly-varying function of frequency, since this is
also true of &’ and k7 < 1 in general, then we can
write eq. (A2) as

Zyp = (0¢/8) (1 -+ H tan k1)

[(H + j tan k).

This result will also be a reasonable approximation

for the horns of brass instruments for which the
effective length / increases with increasing frequency.

The phase 0 of Z, is given by
H2—1 tan &l
tane:( H )(1+tan2kz>= (A5)
Hz 1
. (—m—
The real and imaginary parts of Z; can easily be
found from egs. (A4) and (A5).
(Received February 9th, 1978.)

(A4)

)sin 2kl.
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