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Summary

The mechanical and acoustic behaviour of a plucked string coupled to a soundboard is in-
vestigated in relation to the principles underlying harpsichord design. Radiated sound energy,
acoustic spectrum and sound decay time are all considered in relation to string length, wire
gauge and soundboard properties, and simple scaling rules giving satisfactory musical balance
are derived. These ab initio design principles are related to a typical harpsichord and found
to be in general accord with building practice.

The measured musical properties, which show a neamly constant sound pressure level over
the whole compass, increased harmonic development in the bass, and a decay time varying
closely as the inverse 0.4 power of fundamental frequency, are close to what is expected from the
S " analysis.

Analyse des Entwurfs und des Betriebsverhaltens von Cembalos

Zusammenfassung )

Unter Bericksichtigung der dem Cembalo-Entwurf zugrundeliegenden Prinzipien wird das
mechanische und akustische Verhalten einer gezupften, an einen Resonanzboden angekoppelten
Saite untersucht. Die abgestrahlte Schallenergie, das akustische Spektram und die Schall-
Abklingzeit werden in ihrer Abhingigkeit von Saitenlinge, Drahtstirke und von den Eigen-
schaften des Resonanzbodens betrachtet und es werden einfache Skalierungsregeln abgeleitet,
die eine befriedigende musikalische Balance gewihrleisten. Diese Entwurfsprinzipien ab initio
werden zu einem typischen Cembalo in Beziehung gesetzt. Man findet, da8 sie genenell mit der
Praxis des Cembalo-Baus iibereinstimmen.

Die gemessenen musikalischen Eigenschaften, ndmlich ein iber den gesamten Bereié]; nahezu
konstanter Schalldruckpegel, ein verstirktes Anwachsen der Harmonischen im BafB und eine
ungefdhr mit der inversen 0,4. Potenz der Grundfrequenz sich dndernde Abklingzeit stimmen
eng mit dem nach der Analyse zu Erwartenden iiberein. -

L établissement de projets de clavecins et la performance de ceux-ci

Sommaire '

On étudie le comportement mécanique et acoustique d’une corde pincée couplée & une tahle
de résonance, en relation avec les principes d’établissement d’un projet de clavecin. On con-
sidére 1’énergie sonore rayonnée, le spectre acoustique et ’amortissement du son, en fonction
de la longueur des cordes, du diamétre des fils et des proportions de la table; on déduit des régles
simples pour les rapports qui donnent un équilibre musical satisfaisant. Ces principes d’établis-
sement ab initio sont appliqués & un clavecin type: on constate qu’ils sont en accord général
avec la pratique des facteurs. Les propriétés musicales mesurées sont voisines de ce & quoi on
s’attendait d’aprés la théorie: niveau de pression sonore quasi-constant dans toute la gamme,
augmentation du développement harmonique aux basses, et durée d’amortissement variant a
trés peu prés comme ’inverse de la puissance 0,4 de la fréquence fondamentale.

L. Introduction which each string is required to produce one note

only, it has a simple mechanism which excites each
string by plucking in an invariant manner, and it
has a well documented design history and widely
accepted tonal objectives. This is not to say that
there is in any sense a standard instrument, but

Several types of musical instruments, of which the
guitar, harpsichord and piano are representative
examples, employ as their basic element one or
more freely vibrating strings. In many respects
such instruments are much more easily accessible

to physical analysis than are their relatives the
bowed-string instruments, which have the addi-
tional complication of a }nghly non-linear exciting
force.

Among the free-string instruments the harpsi-
chord is particularly suitable for analysis for
Several reasons. It has a considerable compass over

variations are moderate and their effects can be
reasonably understood.

The freely vibrating string is itself one of the
most thoroughly studied systems in classical
physics and its detailed analysis is included in all
standard texts on vibrations [1]. When examined
in detail, however, it is very far from being a
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simple system; the string is appreciably non-linear
in its behaviour and its interaction with the
surrounding medium is complex [2], [3].

The other acoustically important part of the
harpsichord, or indeed of any stringed instrument,
is the soundboard. This is a complicated mechanical
structure, sometimes associated with an air cavity,
and coupled to the vibrating string through a
relatively rigid bridge. Analysis of soundboard
behaviour must necessarily be much less complete
than that of string behaviour unless we are dealing
with a particular instrument.

The purpose of the present paper is to analyse
the elements of harpsichord design, particularly in
relation to the string choirs, to isolate the important
design parameters and to see how they were
manipulated, on the basis of tradition and intuition,
by the master craftsmen of the past.

2. String behaviour

The first-order equations describing the behaviour
of a plucked string are well known but we set them
out here for later reference. Suppose we have an
ideally flexible string of length L, radius r and
density gs stretched with tension 7' between rigid
supports as shown in Fig. 1. Then its normal mode.
frequencies are

n
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Fig. 1. Essential features of a string under tension 7' and
plucked with transverse force P as in a harpsichord; time
variation of the transverse force F' on the bridge and
spectral apalysis of F for I/L = 1/5 and 1/20.

where S is the elastic stress in the string materia]
Clearly the normal modes are in exact harmonig
relation in this approximation. '

If such a string is plucked by deflecting it with 5
sharp quill at a distance ! from one end, as shown
and then releasing it, the subsequent behaviour cay
readily be determined. What we are interested in
however, is not so much the behaviour of the string
but rather the force on the string supports, for one
of these will be a relatively rigid bridge whick
communicates the string motion to the soundboard
to which it is fixed. The string itself, being an
acoustic dipole source, is an inefficient radiator of
sound, and most of the acoustic energy is radiated
from the soundboard. -

Elementary considerations easily show that th
transverse force ' on the bridge has the form of’
rectangular wave, as shown in Fig. 1, the durations
of the positive and negative segments being
proportional to (L —1) and ! respectively. Spectra
analysis of this force gives

oo

Z(P/nrcvl ) sin (n /L) cos 2mmv1t (2

n=1

F(t) =

where P is the transverse plucking force. Typica
spectra for [/L=1/5 and 1/20 are shown in Fig. 1
The first zero in the spectrum occurs at frequency

p* = n*y; = (L) r1 3

and either »* or n* represents a convenient param
eter to characterize the sound. If L[l is an integer
the n* harmonic is absent in this approximation

The behaviour of a real string is more complicate
than this in several ways. The string has a certai
stiffness, depending on its radius r and Young
modulus Qs, so that the equation of motion contain:
a quartic term. As is well known [1], this introduces.
inharmonicity so that the normal mode frequencie
are raised to

"mEor

n2 n2
+@+'s »@Eﬂ

vy (1 + en?)

Qs 7'2}

where the inharmonicity parameter e, given by
w2 Qr2
88 L2

is small if the strings are thin and under high tensile -/
stress S. For practical strings the fundamental
frequency »; is only slightly greater than the idea.
string value »1. -

While the string behaviour remains linear this-
inharmonicity has little effect, except for introduc-

& =
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_ing a slightly bell-like quality into the sound [4].

.. ‘The same is true of the additional inharmonicity

introduced by the reactive component of the
" jmpedance of the supporting bridges, which will

" raise thga normal mode frequencies for a mass-like

- jmpedance and lower for a spring-like impedance [1].
/' These inharmonicities, particularly that due to
. gtring stiffness, are well known in the case of the
~piano. They are much less pronounced for the
. ‘thinner strings of the harpsichord.
* ' We must recognise also that the string is non-
" Tlinear, because a wave of any amplitude necessarily
Jengthens the string and increases its tension. This
* - causes coupling between longitudinal and transverse
string waves [2] and hence between transverse waves
of different frequencies and polarizations [4]. The
- effects of this coupling are twofold.

In the first place, because the tension term is
quadratic in the mode amplitudes, the major
coupling is between three modes, say v;, v, i,
giving a driving term with frequency close to the
mode ;7. This has the effect of filling in gaps in
the string spectrum so that the sharp minima shown
" in Fig. 1 do not occur..

The second effect relates to inharmonicity.
Because v, is not' exactly ny;, the various non-
linear driving terms differ slightly in frequency and
produce beat-like effects among the upper partials
of the string and, indeed, sometimes for the
- fundamental as well. These effects, which have been

discussed by Lieber [3], are easily examined if the

individual partials of a plucked string are isolated
by use of filters. It is worthy of note, in passing,
that non-linear effects should be much less apparent
for gut strings, which have a relatively small

Young’s modulus, than for steel strings under the

same tension, because the change in string tension

for a given vibration amplitude is clearly - pro-
portional to this modulus.

" The final effect which must be considered is the
damping of the string vibration by internal friction,

air viscosity, sound radiation, and energy transfer

to the soundboard through the bridge. The most
important of these for simple thin metal strings is
usually viscous loss to the air. For gut strings
interrial friction may also be important, specially
for high-frequency modes. Only a small fraction of
the string energy is generally passed on to the

Soundboard and either dissipated in its losses or

radiated as sound, while the direct sound radiation

from the string is usually negligible.

The complex problem of viscous loss from a
Vibrating string was solved long agd by Stokes [5]
In connection with his study of pendulums. He
showed that, for the range of wire diameters and
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vibration frequencies encountered in musical
instruments, the retarding force R (i.e. the com-
ponent of the total force which is m out of phase
with the velocity) experienced by a cylinder of
length I and radius r moving with frequency v and
velocity v is given by

2 1
RanzgavrzL<Vﬂ+m)v (6)

Where' Qa is the density of air (p,=20.0012 g cm~3)

and
r1/27w

=3 V ta @
s being the kinematic viscosity of air (Ua==0.15
cm? s71). For typical harpsichord: strings 0.3<M
< 1.0, which is within the range of validity of
eq. (6), namely M >0.3. For smaller values of M
Stokes gives a different approximation.

From eq. (6) we see that R ocv so that the rate of
energy loss varies as v2, which is proportional to the
kinetic energy. For a simple oscillation at a single
frequency, therefore, we expect an exponential
decay of amplitude. If we write the energy decay
factor as exp(—t/7;), then we readily deduce that

_ \ a1
710) = (es/27 0a.%) <§+$) .®

The decay time is thus proportional to the wire
density, as we should expect from simple consider-
ations, and depends in a rather more complicated
way on wire radius and on vibration frequency.
Because of the non-linear coupling between the
modes of a string and because the mode frequencies
are nob in exact harmonic relationship; we should
not be surprised to find much more complex decay
behaviour for the individual modes of a real string
than is suggested by this discussion. Qur results
should provide, however, a reasonable approxima-
tion to the average behaviour. '

3. Soundboard behaviour

Analysis of soundboard behaviour is complicated,
as we have mentioned before, by the complex
soundboard geometry. A mnormal harpsichord
soundboard consists of a sheet of wood, perhaps
2 to 3 mm thick and of roughly triangular shape,
clamped at its edges and divided into smaller
panels by ribs glued to its under side. It behaves
therefore essentially like a series of four to eight
coupled flexible plates with areas typically ranging
from- about 0.04 m2 to 1 m?2, though in a small
instrument the largest area might not exceed
0.3 m2 The bridge usually couples the strings to
the largest of these panels and the smaller panels




142

are coupled to this across the main rib as shown in
Fig. 2.

Soundboard

nut-

Fig. 2. General arrangement of mechanical featu‘res in a
typical harpsichord. The dashed lines show soundboard
ribs.

Precise analysis of such a system is clearly out of
the question unless we confine ourselves to a
specific instrument. Instedd of doing this we shall
be content with a more sullerﬁeial but more general
discussion. l

The vibrations of a regular elastic plate are well
understood [6]. For a peripherally clamped circular
plate of radius @ and thickness d, constructed from
material with Young’s modulus ¢y, Poisson’s ratio
op and density pp, the normal mode frequencies
are, to a sufficient approximation for our present

purpose,
@p m\2
Voaizal+s) o

These frequencies are not harmonically related but
are, none the - less, approximately uniformly
distributed in frequency.

The individual panels in a harpsichord sound-
board are not circular in shape, but it will be an
adequate approximation here to neglect this and
perform a calculation for circles of equivalent area.
For a typical panel 2 mm in thickness and with
area a2m?2, we find for the fundamental mode

(10)

nd

VYmn =
202

vo1 == 50 a2

so that we may expect to find fundamental panel
resonances ranging from 4 kHz down to perhaps
150 Hz in a large instrument. Because of the large
damping associated with individual resonances and
the coupling between them, they will overlap very
considerably in frequency and should produce a
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smooth frequency response. The differences betweey
different instruments, as far as soundboard T880.
nances are concerned, may often be subtle, by
there will generally be a clear difference betweey
large and small instruments as far as the frequencieg
of the lowest few resonances are concerned, the
low-frequency cut-off being approximately inversely.
proportional to soundboard area.
Most harpsichord soundboards are built with the
ribs not extending completely to the case walls,
This leaves the soundboard free to vibrate also ag s
complete unit, stiffened and loaded by the ribs. The-
frequency of this vibration mode depends on desigﬁ
details but it is probably below the lowest pane]’
resonance and thus extends the bass résponse.
In most harpsichords of classical design th
soundboard forms the top of a box which commy.
nicates with the outside air through a rose opening :
In other designs there may be additional holes in th
base or the base plate may be omitted entirely. :
A closed, vented box acts as a Helmholt
resonator at low frequencies and has a simpl
resonance at .
c 1/ 4
=5 /17 (11

vo LV

where ¢ is' the velocity of sound in air, V the
enclosed volume, 4 the area of the opening an
le the equivalent length of the opening port
generally approximately equal to 0.8 /4 for th
geometry found here. This air cavity resonance wi
generally lie below 100 Hz for simple rose-ventec
designs and the fret-work of the rose will ad
resistance and broaden the resonance. '

4. String-soundboard eoupling

In a harpsichord the string is coupled to th
soundboard by passing tightly beside a pin set in
the bridge which is fixed to the soundboard. Th
angle of the string in relation to pin and bridg
ensures tight coupling for any polarization of the
string vibration. The string vibrations are, however
initially perpendicular to the plane of the sound:
board so that no directional change, such as is
achieved by the rocking of a violin bridge on its
soundpost, is required.

The mechanical impedance presented to the
strings by the bridge has a complex character
determined largely by the properties of the sound-
board. The impedance presented by a single pane
can be calculated for simple geometries [7] and its
inverse, the admittance, has a form like

iy Ay

Y(») = — (12)

2 2 i
a?opd o Vi — Y2 — 19 S
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where the Ay, are constants of order 101 or less,

" getermined by the driving-point geometry. dpy, is

the damping coefficient for the (m, n) resonance,

‘" and the other symbols have their previous mean-
ings. In a soundboard 3, is contributed to both
. by internal friction in the panel material and by
. Josses to acoustic radiation. It seems likely, though
‘the question deserves closer study, that in most

" cases the internal friction will dominate, though

clearly the builder will attempt to minimize its

‘magnitude. ]
‘ As we have said, the harpsichord soundboard
.+ gonsists’ of a set of panels with different resonant
frequencies more or less closely coupled together.
' An equivalent-circuit analysis suggests that Y(y)
" will be dominated by the behaviour of the large
b» -panel on which the bridge is supported and from

the form of eq. (9) there is always a resonance of
. this panel reasonably close to any given string

frequency ». If this resonance is heavily enough

damped, as seems likely to be the case, then the

‘where
conductance should be approximately constant

real part of the admittance Y () will be approxi-
~ mately

G(v) = (a2 dgp dpp)? (13)

(m,n) is the resonance involved. This

with changing frequency and radiation should

- contribute an approximately constant fraction to it.

The radiated sound spectrum should thus have the

same form as the bridge force spectrum (2) over

the whole range above the lowest resonance

3 frequency.

If now we calculate the total energy stored in a

' string of radius 7, length L and density gs, vibrat-

ing at its n-th harmonic, and the rate of loss of this
energy to the soundboard, we find an exponential
decay of stored energy with time constant

T2 (nvi) = [87r2 os Lyl G (nvy)]1. (14)

. We have now discussed the time constants

associated with energy loss from the string by the
two principal mechanisms — viscous loss from the

“string to the air and loss through the bridge to the

soundboard. The resultant combined time constant

718 given by

71l = 77t 73t (15)

5. Instrument design

The classical harpsichord design: [8] combines
all the varjables we have discussed.to produce an
Instrument with satisfying tonal balance, adequate
loudness and good mechanical properties. In this
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section we now make use of our earlier analysis to
see how this is accomplished.

The compass of the fundamental frequencies for
an “8-foot” (normal pitch) string choir on a harpsi-
chord is from about 50 Hz to 1.5 kHz. A 4-foot
string choir would extend the upper range to 8 kHz,
while the unusual and non-classical 16-foot choir
would extend the lower range to 25 Hz. When
overtones are considered, there is no strict upper
Limit to the frequency range radiated but there is
considerable energy up to 5 kHz and audible
components occur up to 10 kHz or more.

6. Soundboard

Because the soundboard is the fundamental
radiator for the instrument, it is necessary that it
should be efficient at least over the range 5 Hz to
3 kHz and this can be achieved by dividing it into
panels whose fundamental resonances evenly span
this range. The fundamental resonances are
important here because they radiate more efficiently
than do the higher panel modes.

The difficulties of soundboard design involve, by
egs. (9) and (12), the achievement of a sufficiently
low fundamental resonance for the' largest panel
and of a smooth distribution of ade}iuately broad
resonances over the remainder of the range. By
eq. (9) the first objective is achieved by using a
main panel as large and as thin as possible, made
from wood or other material with a small value of
@p/op- A thin panel also has broad resonance peaks
since the reactances decrease with decreasing mass
and stiffness while the resistive losses due to
constant. An even
distribution of resonance frequencies can be
achieved by arranging that the soundboard panels
decrease in area by a constant factor from one to
the next and cover the whole frequency range. The
smaller panels might also be made thinner to
further broaden their resonances. '

This is almost exactly the solution adopted in
soundboard design. Panel resonances from about
150 Hz to 4 kHz are fairly readily obtainable in a
reasonably large instrument and, by not carrying
the dividing ribs quite to the edge, an additional
whole-board resonance of low frequency can also
be introduced. If the quality factor (Q-value) for
individual resonancés does not exceed about 3,
then five or six panels should provide an adequately
smooth response.

There is, however, considerable difficulty in
extending the fundamental resonance much below
100 Hz, because of the sheer size of soundboard
required, though large instruments will clearly have
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more extended bass response than small ones.
Below the lowest soundboard resonance the spring-
like reactance at the bridge will become important
and response will fall at an ultimate rate of 12 dB
per -octave. Because of the great extent of the
harmonic development in harpsichord sound,

particularly in the bass, this intensity loss in the.

low components of bass sounds will affect tone
colour more significantly than total loudness.

7. Strings

In a harpsichord the energy input to each string '

is fixed by the nature of the plucking mechanism.
The loudness of the note is therefore determined by
the efficiency with which string energy is trans-
ferred to the soundboard. Because sound radiation
contributes a constant fraction of 73!, this
efficiency is proportional to 73! and so, by eq. (14),
other things being equal, loud sound is favoured by
using long thick strings of dense material. The
length of string for a given frequency is, by eq. (1),
limited by the stress which its material can support,
independent of its thickness, but in practice
harpsichords have alfvays been built with their
strings stressed to /12(6341‘ their elastic limit. Metal
strings are clearly indicated.

Thickening the strings to increase loudness
brings with it difficulties because of the large total
stress exerted on the wooden case by the whole
string choir. In addition, the use of very thick
strings is ultimately self-defeating, for the tensioned
string becomes so stiff that the amount of energy
that can be given to it by the harpsichord plucking
mechanism falls. Indeed if the plucking force rather
than the maximum string deflection becomes the
limitation, then initial loudness becomes indepen-
dent of string length or radius.

Developments in the direction of thicker strings
ultimately led to the iron-framed pianoforte with
its more efficient percussive method of transferring
energy to the string from the keyboard.

Fairly clearly an optimum harpsichord design is
likely to involve graded string diameters and it is
reasonable to examine a scaling rule of the form

(16)

where we expect 2 to be positive, leading to thicker
strings in the bass. We expect that the value of x
may affect the balance of both loudness and decay
time, and this we now examine. We write the
plucking distance ratio as

g =1L

and defer consideration of possible variation of this
ratio to later.

7 = 97"

(17)
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If the plucking force P is constant over thy
keyboard, which it must nearly be to make the
instrument playable, then it is easy to show thay |
the total energy given to a string varies as ‘

E(v1) c Br2 L1972 P2, (18)
Now this energy is transferred to the soundboarg |
at a rate 73! and a roughly constant fraction of the
soundboard energy is radiated as sound. The |
initial sound intensity from a string with funds. |
mental »; is then, using eq. (14), :

T I(n) o E(v1) 53t (v1) oc fG g P2 (19) |
the string do not enter. R

Subjective loudness, however, also depends';;f
upon decay time, since the brain tends to integrate
sensation to some extent. Decay time also deter..:

can be played, so it is of independent musical
importance. Most serious music requires a decay |
time which is longer in the bass than in the treble, ‘|
and a harpsichord is designed with this sort of |
repertoire in mind, rather than the reversed situa. *
tion often found in contemporary popular music.

It will help with our discussion to simplify
eq. (8) and consider only its asymptotic behaviour .
for small and large M, the dividing point occurring
for M ~20.4. For a string vibration of frequency »
the appropriate forms are, for r in centimetres, v

v £ 10-29-2 (20a) :
Y > 10-‘2 =2, (20D)

71 oC 72,

T1 oC rp-1/2 B

Similarly from relations (13) and (14) we have, for |
a vibration of frequency » on a string of fundamental
frequency »1,
79 oc 72 L1972, @1
From egs. (8) and (14) applied to a typical mid-";
compass metal string of length 50 cm and radius
0.1 mm sounding a fundamental of 300 Hz and
coupled to a typical soundboard of area 0.5 m2, we
find 71 ~ 1 s while 72 ~ 10 s. We therefore conclude’
that viscous damping is the major loss mechanism
for this string and probably for most harpsichord
strings. (The opposite conclusion applies to the
uppermost strings of a piano.)
Using these simplified forms (20) and (21), Fig. 3.
shows the results of three plausible string scaling
rules. 72 is shown as a broken line for the upper
part of the compass in which Lccyt and as &
dotted line for the low range in which L~ constant-
The resulting curve for 7 in the two cases is esse
tially a smoothed lower envelope to appropriate
T1, T2 curves.
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Fig. 3. Decay times 71, due to viscous damping, and 7g,
//due to losses to the soundboard, for three possible string
: scalmg laws: (a) constant radius, (b) 7 cc v1~1/2, (¢) r oc »171,
i ‘where »1 is the fundamental frequency of the string. The
'dashed curves for 7o are based on the assumption that
“‘string length varies as »1~1 and the dotted curves on the
o,ssumptlon that string length is constant. The net decay

time, 7 is a smoothed lower envelope to these a,symptotlc
“- gurves.

From Fig. 3a, it is clear that a given string radius
_will be satisfactory, as far as decay time is con-
cerned, over only a limited range. At both ends of
“this range 7 is decreased and the range can only be
~extended towards higher frequencies by using
,'f.thmner wire and towards lower frequencies by
‘using thicker wire. This is, in fact, the practical
“solution but we can approximate it for theoretical
“discussion by a rule of the form (16) with >0 as
-expected.

From relations (20b) and (21) the high frequency
eut-off due. to intersection of 7o with 71 can be
avoided by taking x=1/6, giving a gradual
reduction in wire radius towards the treble. The
low frequency cut-off, as shown in Fig. 3a, is
/initially due to the change in behaviour of 71 and,
from the inequalities in (20), this can be eliminated
by taking x=1/2 in the bass, giving a behaviour
like Fig. 3b. In the bass 7a now appears to become
the limiting factor if the string lengths are still in
the proportional range. Once the string length
becomes constant however this limitation no longer
o¢eurs and an x value approaching 1 could be used.

Thus we should expect, from linear acoustic
‘Oriteria, that harpsichord string radii should vary
toughly in accord with eq. (16), with < 1/6 in the
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extreme treble, x=1/2 in the lower range and
perhaps 1/2<C2<1 in the region of constant string
length:

Actually this scaling is also determined by non-
linear considerations, since unpleasant effects enter
if the vibration amplitude of any string is too large,
and it may be these considerations rather than our
simple linear ones which determine string gauge,
particularly in the extreme bass.

From this discussion and Fig. 3 it seems that we
should expect to find a decay time 7 varying
roughly as »; % over the middle and high range for
which « is small, and perhaps changing to a rather
steeper law like ;" in the bass where z>1/2.
Calculation of the actual behaviour is complicated

" by the large number of overtones and by the

variation of plucking point. |

8. Plueking point

Finally we examine the variation in plucking
point across the compass of the instrument. The
main reason for any variation at all is to achieve
tonal coherence for the string choir so that the tone
quality is matched across the compass. In part this
is achieved through the steady gradation in decay
time we have already discussed, and in part through
a similar coherence in attack time produced by use
of similar plectra. The plucking pomt is, however,
of prime importance.

Much of the characteristic qua41ty of a sound is
contained in those partials occupying the normal
speech range, say 300 Hz to 3kHz, the reasons
for this being physiological and psychological. Thus
a variety of male, female and juvenile voices singing
the same vowel sound are tonally coherent to some
extent for just this reason, while different vowels
are not. To maintain coherence it is therefore
necessary to increase the harmonic development of
the lower notes relative to those of higher pitch.
This can be achieved if the plucking ratio varies as

YL = ao¥ (22)

where y >0 and o determines the general timbre
of the string choir.

We noted before that the plucking ratio also
influences the energy Z (v1)-given to the string and,
through this.and the influence on #*, hence the
initial intensity I(»;). For ease of playing, the
keyboard force and key drop must be constant over
the whole compass and this generally leads to
constant plucking force P. It is then easily verified
that, rather than the simple form (18), the initial
string energy F (v1) now varies as

E(v1) ccr2 L1542 P2, (23)
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Thus the analog of relation (19) becomes

I(v1) oc G s P29Y (24)

which, as before, is independent of wire radius but
increases with wire density o5 and with soundboard
efficiency SG. A thicker wire, however, allows use
of a larger plucking force P before other difficulties
intervene.

To achieve a satisfactory tonal balance, as we
have already discussed, we require ¥ >0 and an
average value of y~1/2 might be reasonable. This
leads to an expected rise in peak sound intensity
of 1.5 dB per octave towards the treble. Subjective
loudness depends, however, both on frequency and
on decay time, if this latter is short. Because of the
increased harmonic development in the bass, the
change in sensitivity of the ear with frequency is
not greatly involved, but decay time certainly is.
We have already discussed the expectation that 7
should vary roughly as »7* with 1/2<<z2<C1 and
this leads to the conclusion that the effective
loudness I should vary as

I(v1) = I(»i) 7(v2) cc 4 (25)

which should show little apparent variation over
the ¢ompass of the instrument.

Of course a more [complete andalysis must involve
the behaviour of all the partials of the sound and
this is complicated by their interactions as we
discussed before. It is, however, unlikely that the
conclusions reached after such a more complete
analysis would differ much from those set out above.

9. Practieal example

Detailed comparison between theory and experi-
ment is beyond the scope of the present paper but
it is helpful to relate the discussion to reality by
reporting relevant measurements on a typical
harpsichord. That used was a modern single-
manual instrument constructed by the author to
the design of W, Zuckermann of New York.
Comparison of general design and wire gauges with
those for classical instruments [8] shows very
considerable similarity so that we have no reason
to be specially cautious about interpretation of the
results.

The instrument in question is of small dimensions
with a triangular soundboard of area 0.6 m?2
divided into six panels with areas ranging from
0.2 to 0.04 m2. The 8-foot bridge lies entirely on
the largest of these panels and the soundboard
forms the top of a totally enclosed box of volume
about 0.07 m3. (The design allows vents but these
were not included.)
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There are two choirs of strings of 8- and 4-foot,
pitch respectively, but our measurements refer
only to the 8-foot choir. Details of string lengthg
and radii are shown in Fig. 4, from which we can
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Fig. 4. Physical characteristics of string courses in the mea:
sured harpsichord. L is a string length, ! plucking distance,
7 wire radius and »; the fundamental frequency of the
string involved. 8 indicates steel and B brass strings.

see a general progression towards finer wire gauges
in the treble together with a steepening of the gauge ' |
variation in the bass where the strings are of less .
than proportional length. The general trend of "
gauge variation is between »7%% in the treble and
»7+0 in the bass. The mid-range and treble strings -
are of steel while the bass strings are of brass.
L varies as 97"% over the top half of the compass
and I/L as »}%. Both become constant in the
extreme bass. ’

Fig. 5 shows measurements of the most readily
accessible acoustic parameters: the peak A-weighted
and C-weighted sound pressure levels I, and I¢ at
ordinary listening distance, the damped (“slow™ .

inaudibility 7.

The sound pressure levels vary little across the -
compass of the instrument and the similarity of I *
and Ig reflects the fact that much of the energy of
even the extreme bass strings extends into the region
near 1000 Hz. All the I measurements rise slightly
towards the treble: I by about 1.5 dB(A)/octave,
In by about 0.5dB(A)/octave, reflecting the
influence of the fall in 7o with rising frequency, and



ACUSTICA
Vol. 37 (1977)

Frequency g —

75 50 100 200 500 Hz 1000
T T T T T
B %00 o °
g o ° ©006% ooomo °
6510 0w oooco° ooooooo ocoo°°°°o 0% ° o
A 4
80 o ©
70
dB B 00030 0. 00
o o0 o o
260 1© o °o°°oo°o°oo°o° 00P 6 © ooooo oo ° ® O°
Hgslo oo 0 ©

Ak by Ay A
Pitch —

Fig. 5. Measured acoustical properties of the experimental

- harpsichord:
I4 — measured A-weighted SPL at 2m with fast meter
response,

14 — same with slow response,

Ic — C-weighted SPL with fast response,

‘790 — estimated decay time to inaudibility in seconds;
the slope of the line is v;70-4,

~I¢ by perhaps 0.5 dB(C)/octave. These results are
in agreement with expectations” from a musical
point of view and our analysis shows that this
behaviour is to be expected from the acoustic
design.

The aural decay time 7o was determined as the
‘time for decay to inaudibility, representing a drop
in loudness from about 70 phons to the background
level near-30 phons. Thus 7 corresponds to a drop
in level of about 40 dB while our theoretical =
corresponds to a drop in level by a factor e or about
4 dB. We therefore conclude that 79210 7 so that
the mid-range value of 7 is about 1 s, in agreement
with our theoretical expectations. The measured
variation of 7o as »7%* is also very close to the

expected behaviour.
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10. Coneclusions

Our analysis of harpsichord design parameters
was admittedly based in part on a knowledge of
actual building practice, but it lends credibility to
our assumptions and analysis to find that the
actual design practices arise naturally from the
theory and that the quantitative behaviour of a
real instrument conforms well with our expectations.

The analysis as set out here is incomplete in many
of its details, and some major aspects of soundboard
behaviour require further investigation. Such studies
might well proceed simultaneously using experi-
mental and theoretical approaches and our analysis
leads us to expect that a relatively complete first-

~order study should be quite feasible. After that it

may be possible to examine some of the subtleties
which distinguish the work of master craftsmen of
the past and present. It may also be useful to
examine the relations between harpsichord design
objectives and the rather similar considerations
which apply to pipe organs [9].
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