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jntroduction
Introduct.ion

The behaviour of plucked strings is, generally
speaking, of comparatively little intercst to the
players of bowed-string instruments, though it is, of
course, of direct concern to the makers and players of
guitars and harpsichords. Despite the truth of this
statement, it is worthwhile for all of us to have a
good understanding of the physics of plucked strings
for several reasonms - the phenomena involved are all
relevant to the more complex case of bowed strings,
the physical conditions are more easily specified and
studied, and the mathematical analvsis is nearly linear
and therefore comparatively simple to carry out.

It is not the purpose of this paper to set out a
conplete analysis of the plucked string, for that is
not yet available, but rather to discuss socme of the
more important points which are of use in other
contexts. Most of the analysis is available in variocus
places in the literature, to which references are given,
but I have not tried to be complete about this - my
survey is meant to be informative rather than scholariy.

Simple Strings

Let us begin our discussion with the simplest
possible case -~ a 'perfect' string - and then add in
features until we approach the behaviour of a real
string on a musical instrument. In this way we will
appreciate the relative importance and effect of each
physical addition. I will necessarily use a little

© nathemnatics to make the discussion wore precise but

this need not be followed in detail to understand the
conclusions,

Suppose we have a string of length L made from wire
of radius r and density p and fixed with tension T
tetween rigid supports. If we take the x-axis along
the string and concern ourselves with transverse
vibrations in the y and z directious, then the equation

governing thesel is
2 2
2 3%y 3%y
mr2p L = £y (1)
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with a similar equation for the z displacement, It
actually makes sense to use the elastic stress S in the
String rather than the tension T, since this is more
closely related to the physical state of the string
matecrial, and

s = T/rr? @
This stress can be related to the natural length L,
and stretched length L of the string by
S = Y(L-Lgy)/Lg (3

i Where Y is the Young's modulus of the string material.

The condition that the string supports must be
rigid means that y=0 and z=0 at x=0 and L and, with
these boundary conditions, the possible modes of
Vibration of the string (its 'normal modes') can be
found. These have frequencies v, which are integer
Mltiples of the fundamental frequency vy

- . n/s
Vo= omv1o= op/y “
[ and the general form
Yn = ansin(nnx/L)cos(Zwvnt-+¢n) (5)
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It will later be convenient to inmtroduce exponential
notation to write this as

Yo apsin(mmx/LYexp (-2rivpt + id,) (6)

and consider only the rcal part.

Because all these vibrations can coexist on the
string without interference, a general vibration of the
string has the form

vy = I n
n

where the amplitudes a, and phases ¢n of cach string

mode are determined by the way in which the string is

set into vibration.

In our case, suppose that the string is plucked at
a distance £ from one end and released at time t=0,
Then all the phases ¢y are zero and a Fourier analysis
shows that the amplitudes a, are given by
2a_ 12 . [ong
(amy? ZTE-E) L
the initial pluck deflection.

(&)

an
where a is

It is useful to uote several things about this
result. The first is the occurrence of 92 in the
denominator, so that the amplitudes of the upper modes
are smali compared with the fundamental. The second
is the form of the sine term which shows that if
£/L =1/X, where M is an integer, then ay, a2y, asy,...
are all zero.

In a later section we shall see that the string
does not radiate much sound itself, but that the
radiation is accomplished by transmission through the
end supports to the soundboard. It is therefore
useful to know the form of the deflecting force on
these supports. In the y direction it is simply

¥ T dy/dx

)]

and, since y is given in components by (7), (6) and (8),
we can write the nth component of F as

2aT L . {nrd

Fn nn £ (L-L) 31n[ L ] (10
Again if £/L =1/N the corresponding harmonics are
missing, and the height of the intervening maxima,
where the sine term is near unity, decrease as 1/n.
Well below the first missing harmonic, however, the
sine can be expanded to nearly cancel some of the
other factors and this gives

Fn = 2aT/L , n << N (11)

This behaviour is illustrated in fig. 1. The
sideways force on the bridge actually has the
asymmetric square-wave form shown (very different from
the triangular-wave deflecting force produced by a
bowed string), the ratio of the durations of the
positive and negative segments being as £: (L-£).
spectrum of the deflecting force shows the
characteristics that we have discussed above.

The

The plucking situation we have assumed above is
one in which the plectrum is ideally sharp and hard.
This is approximately true of a quill plectrum in a
harpsichord and of a plastic or ivory plectrum for an
instrument like the guitar. Often, however, a string
may be plucked by a leather plectrum or simply with
the fingers and this modifies the plucking condition
considerably.

The essential difference in the case of a soft
broad plectrum is that the initial shape of the string,
before it is released, is not two straight segments
meeting at a sharp angle, but rather two straight
segments joined by a smooth curve. If the width of
the soft plectrum is &, then modes with wavelengths
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Fig. 1 The form of the transverse force on the

bridge and the frequency spectrum of this force
for the case of a string plucked at (a) one-
fifth and (b) one-twentieth of its length from
one end.

shorter than about 2§ are very little excited. This

is equivalent to a high-frequency cut-off in the string
spectrum at a mode number n=L/§. In typical cases of
finger-plucked instruments this might limit the
spectrum to n< 50 which will greatly modify the sound
compared with that from a sharp plectrum.

String Stiffness

Real strings, particularly rather thick strings
made of metal, have stiffness in addition to their
tension. It is fairly easy to include this in our
original equation (1) which then has the more
complicated form?

2 ‘ 2 b
2,8%y o gp2y @oLod) 3%y g w3
LE s TreY T, P Lorty 5;% (12)

where we have used (2) and (3) to re-express the
tension in terms of the string extension and the
elastic modulus Y. The last term is the restoring
force due to stiffness.

There does not seem to be any way to solve this
equation exactly, but it is quite easy to find an
approximate solution if the string is not too stiff?,
The mode frequencies are

2.2
vo = nvi[l+ 6+ 82 + 20 p2] (13)
where v? is the fundamental frequency (4) of the same
string without stiffness, and
2
= L Lo
B = IZ * L) (14)

The first terms B and B2 in (13) simply increase
the fundamental frequency, and with it the frequencies
of all the overtores, because of the added stiffness.
The final term in (13) depends on n? and so increases
the frequencies of higher overtones much more than
lower overtones., The string is thus inharmonic, since
V, is no longer an integer multiple of v, and this
gives the sound a slightly bell-like character.

This effect is well known in piano strings and
causes the octaves to be stretched slightly more than
their normal 2: 1 ratio to bring the intervals to a
minimum-beat condition of in-tuneness3.

From (14) it is clear that, if we want to make the
overtones as nearly harmonic as possible, which is
generally desirable if we are to make an instrument to
play in consort with sustained-tone instruments whose

overtones are generally in exact harmonic relation,
then we should make r/L as small as possible (i.e. usg
very thin strings) and make (L-Lg) /Ly as large as
possible (i.e. use a string material which will strety
a lot without breaking — this is generally the same ag
possessing a low Young's modulus).

These considerations would lead us to select
fine-gauge strings made from gut or nylon for all our
plucked-string instruments but, as we see presently,
other criteria may lead us to modify this choice in
many cases.

Non-linearity

All our treatment so far has been linear, in that
the string displacement y in equations like (12) occur
only. to the first power. It is this linearity which
allows us to treat all the normal mecdes Yy, as
independent, and to add them together as in (7) to
obtain a general solutionm.

In reality there is a complication, for the string
length L in (12) is greater than the distance between
the supports because the vibrations themselves stretch
the string“. In fact we should replace L by

L » L1+ %-Z aﬁ + % ) aﬁ cos (4w t+2¢,) ] (1
n n

so that not only is L increased, which raises the
frequencies of all the modes, but new driving terms
are produced at twice the mode freyuencies>.

These effects couple all the modes together at sur
and difference frequencies and, if the modes are not
exactly harmonic, beat-like effects can be produced.
The interactions also tend to generate components to
£i11 in the spectral gaps predicted by the plucking-
point relation (8).

Agaiﬁ the effect is reduced for given amplitudes ap
if (L-Ly,)/L is large suggesting the use of a string
material with low Young's modulus.

Bridge and Soundboard

In our treatment so far we have assumed the end
supports of the string to be rigid. Vibrational
energy is therefore confined to the string and the
solutions (5) of their more complex forms show no
decay in time. We have not yet considered energy
radiation from the string, apart from stating that it
is an ipefficient process, nor have we considered
other. loss mechanisms. As the next steﬁ in our
development we recognise that the end supports are
not rigid® and one at least generally consists of
a light bridge attached to a soundboard, the prime
purpose of which is to take vibrational energy from
the string and impart it to the soundboard, from
which it can be more efficiently radiated.

If we define the mechanical impedance of a support
to be the ratio between the force applied to it and
the velocity with which it moves, then we will always
be dealing with supports with high impedance. The
impedance is generally a complex quantity, in that the
support does not move exactly in phase with the force,
and its real and imaginary parts have different
significance.

If the support has an impedance whose imaginary
part is mass-like, so that the velocity lags behind
the applied force, then its effect.is to raise
slightly the frequencies of the normal modes. On the
other hand, if the imaginary part is spring-like, the
normal mode frequencies are lowered. For strings and
bridges of normal construction the shifts will only be
small, but they will generally be slightly different
for vibrations in the y and z directions, leading to
further complications of the typé discussed in the



previous section. The impedance of the support will
generally change with frequency so that the shifts for
different modes may also be different.

We will be concerned, however, primarily with the
real part of the impedance, or rather with the real
part of its reciprocal, the admittance. This we call
the conductance and denote by G, a quantity which is
always positive, representing energy transfer from the
string through the bridge to the soundboard.
Contributions to G come partly from unavoidable losses
in the bridge and soundboard material, similar to
those which we discuss presently for string material,
and partly from losses by sound radiation. This latter
useful cemponent is maximized, relative to the
non-usaful losses, by careful selection of soundboard
material and by making the bridge and soundboard
structure as light as possible. On the other hand
the soundboard must be mechanically strong and must
have its resonances so distributed that G is fairly
smooth (and perhaps nearly constant) over the range
of frequencies generated by the strings. We shall
not go into soundboard design here but simply
assume G to have some coustant small value independent
of frequency. The bridge design will generally be
such that G is a maximum for either the y or z
polarization of string vibrations, depending on the
normal playing method for the instrument, and we shall
conslder only this mode, denoting it by y.

In real instruments strifnigs are often terminated
at one end in a rigid bridge, the nut, and the
impedancé of this is effectively infinite (G=0).
The same approximation is also aprropriate for an
instrument like the guitar in which the string is
stopped against a rigid metal fret. In the case
of a string stopped by the finger, however, as in a
violin playing pizzicato, the conductance of the soft
fingar tip material is large and losses here may
dominate over the smaller losses through the bridge.
In vhat follows we deal predominantly with the first
cose for which G= 0 at the inactive support.

For a given string mode a, the force component Fj
is given by (10). The velocity cowponent imparted to
the bridge and thence to the scundboard is then

aGFy (16)

vy =
where o is a constant allowing for any impedance

change due to lever-like action of the bridge, as in
the violin.

We are here basically concerned with string
material, so let us suppose the length L of the
String and its fundamental frequency vj to be
determined by instrument design. The plucking ratio
2/ may also be taken to have been determined by
design or by the tone quality desired. Using (4)
to eliminate T we find velocity amplitudes which
vary as
an

where r and p refer to string radius and density and
8 to pluck displacement.

v = const x G a rzp Vi

Because radiated intensity varies as v2, we see
from (17) that, if a is fixed at some constant value
determined by mechanical clearances or by the
Musically acceptable limit to the 'twang' caused by
increased string tension, the intemsity of the
fadiated sound is increased by using thick strings
of dense material. If, on the other hand, it is the
total Plucking force which is fixed by other
tonsiderations, then ar?p is fixed so no freedom is
@vailable, Within reasonable limits the former
8ituation applies to many instruments.
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In a plucked-string instrument, of course, all
the energy is suppiied to the string by the initial
plucking action and thereafter the vibrational
energy decays. If the pluck displacement is a, then
the initial energy is

Eq, = a?T[r/22(L- £)]
or
Eo « rzpa2 (18)

if L, £ and vy are fixed. Now the rate of energy loss

to the bridge is

-dE/dt = v2/G « Gazr”pzv%
or

dE/dt « —cr2pv§E (19)
so that the energy, and hence the radiated intensity,
falls as exp(-t/t1) with a characteristic decay time

T} = const/Grzpv§ (20)

where the constant depends on string length and on
frequency.

Generally speaking, long decay times are desirable,
which at this stage argues for thin strings of light
material., However, as we shall see later, energy loss
to the soundboard is not the major damping mechanism
in most practical cases, so we need not pursue this
conclusion.

Air Damping

As mentioned before, a vibrating string is not a
good sound radiator. The reason for this is that the
string is a dipole source, producing a compression in
front and a rarefaction behind, as it moves, and its
radius is very small compared with the sound wavelength
involved so that these effectively cancel each other.
This does not meaun, however, that the string has little
interaction with the air. Indeed viscous flow of air
around the moving string is often the major cause of
damping of its vibrations.

The rather difficult problem of viscous drag on a
vibrating string was solved long ago by Stokes’ who
showed that the force on the wire has two components.
One is an additional mass-like load which is of little
importance except for a small lowering of the mode
frequencies; the second produces a simple exponential
damping.

The analysis is complicated and the results depend
both on wire radius and on frequency. Combining the
damping terms with an expression for initial energy
however we are led to the decay time T, for this
mechanism as®»

21
(22)

prz | v << r?
1
pIVv & ?

T2 <«
T, o« v >> 2

for r in millimetres and v in Hertz. In this case
clearly a long decay time requires a thick wire of
dense material.

Internal Damping

Our string material has so far been characterized
by its radius, its density and ites Young's modulus,
but more can be said than this. All real materials
show an elastic behaviour in which, when a stress is
applied, an instantaneous strain occurs and then,
over some characteristic time 7, the strain increases
slightly. This second elongation may be moderately
large or extremely small and the time T may be
anything from less than a millisecond to many seconds.
In visco-elastic materials the second elengation
increases slowly but without limit,



Such behaviour can be represented, when we use
the exponential form of equaticm (&), by making the
Young's modulus for the material complex

Y = Y + 1Y, (23)

According to a relaxation fermula due to Debye, Yo
has a peak at the relaxation frequency w=1/t.
Equation (23) can however be used in the more

general case where many relaxationtimes comtribute,
both Y; and Y, varying with frequency. This
behaviour is simple to understand, Y; being
contributed by normal elastic bond distortions and Y,
by relaxation processes like dislocation motion or
the movement of kinks in polymer chains. Typically
Y,/Y; may be less than 10™% in hard crystals, rather
larger in metals, and perhaps as large as 107! in
some polymer materials, though in such cases it may
also depend oun temperature. One elastic constant is
really inadequate to describe even isotropic
materials but we shall neglect this added complication
here,

Lf the complex form (23) is substituted into (12),
neglecting any other losses, we find that the major
contribution comes from the second term. We can in
fact solve this equation formally to obtain a set of
complex mode frequencies wy, the imaginary parts of
which represent damping of the vibrations. In this
way we easily find the decay time for this internal
damping

1Y
T3 o= ?'i“ (24)

Clearly internal damping is a material property
independent of. string radius, length or tension. It
is generally negligible for solid metal strings but
may become the prime damping mechanism for gut or
nylon strings or, even more particularly, for strings
of nylon overspun with metal. The decay time due to
this mechanism is clearly shortest at high frequencies
1f, as is often the case, Y; is nearly independent of
frequency.

Decay Time

When, as will generally be the case in practice,
all these energy-loss mechanisms occur simultaneously,
the resultant cecay time T is given by

o= g7l 4 gt o+ o3l (25)

This relation is indicated schematically in fig. 2 on
the assuvmption that G and Y, are independent of
frequency. The curves show the behaviour of the various
T4 as functions of frequency on the assumption that we
are dealing with a single string whose pitch is raised
by reducing its length. Also indicated are the
directions in which the various curves would move in
response to increases in various string parameters.

The curve for the resultant decay time T is a smoothed
lower envelope to the individual decay-time curves Tj.

Overspun Strings

Compound strings consisting of a metal or nylon
core overspur with heavy wire or metal tape are common
in the lower range of many instruments, The functions
of this construction are wall-known - the overspinning
adds extra mass to the string without appreciably
increasing its stiffness, thus keeping its length,
tension and inharmonicity within reasonable bounds.

In terms of our discussion, the overspinning can
be treated simply as an addition to the mass and hence
to the effective density of the core material (unless,
as in the lower strings of a piano, a large increase
in dizmeter is involved). From a practical point of
view it should be noted that overspun strings in poor
condition may have relatively large internal damping
(effective Yo) while from the point of view of theory
certain other minor modifications are also necessary.

én T

in v

Fig. 2 Schematic behaviour of the decay times
Ty caused by various mechonisms, as Functions of
t%e fundamental frequency vy of the siring, whid
ts assumed to be varied by changing only the
string length. v) is determined by loss through
the bridge to the soundboard, t, by air damping
and 13 by internal damping. Arrows indicate the
directions in which the curves would be shifted
by increase in string radius r, demsity p,
tension T and imaginary part of its Yowng's
modulus Y, and by the mechanical conductivity G
of the bridges.

Conclusions

Our analysis shows the various factors that can
influence the sound of a plucked string, as far as!
string itself is concerned. Designers of practical
musical instruments make use of this freedom to
achieve both their basic design and a high degree d
finesse in its realization. An example of the
application of this 8rocedure to the harpsichord ha
been given elsewhere”.

To summarize our discussion we begin with the
basic spectrum of a string plucked with a sharp hax
plectrum at a pre-determined point, a fraction 1/8
along its length. Spectral components are of nearly
constant amplitude out to the harmonic of number B/
after which the energy falls at an overall rate of

6dB/octave with, superposed on this, a succession ¢ ;
minima or zeros at harmonics numbered n8 (n=1,2,..

Use of a soft plectrum of width § on a string o |

length L introduces a rather sharp cut-off for
harmonics with numbers above L/8, with consequent
decrease in the brilliance of the tone.

Decay time affects the subjective loudness of

sound and the relative decay time of the different

overtones affects also the brilliance and general t

quality. For thin metal strings the decay time is
determined mostly by air viscosity and this giveg 4
decay time for upper partials which varies as v™72,

For instruments with gut or nylon strings, intel

damping in the string material becomes dominant for
most overtones and the decay time for upper partial
varies as v"l. Such strings therefore have a much

less brilliant sound than do metal strings.

If a finger tip is used to stop the string, 1if ¢
felt pad is used against it, or if the bridge is so0
light and the string so heavy that end losses
predominate, then the decay time for upper partials
varies as v72 giving a very pronounced decrease in
brilliance.
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Rules such as these, or more quantitative results
derived from the equations we have develcped, can
gerve as useful guides in the design or adjustment of
pusical instruments, but it must always be the educated
car that acts as the final arbiter of what is
appmpriate to a given musical need.
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MUSICAL OVERTONES AND THE ORIGINS OF VIBRATION THEORY

Sigalia Dostrovsky, Department of Physics, Barnard College, New York, N.Y.

Higher vibrational modes posed a perplexing problem
in the seventeenth century. Although they could be
heard, contemporary theory was unable to predict them;
in fact, it even seemed to deny their existence.Never-
theless,higher modes could be studied because they were
a musical phenomenon. In contrast with the situation
today, when the physics of music is a part of the gen-
eral subject of acoustics and vibration theory, most
seventeenth century studies of vibration were studies
of musical sound. Natural philosophers, many of whom
had musical experience, listened to pitch, loudness,
and timbre to do experiments on sound; they paid atten-
tion to the properties of musical instruments to learn
about vibration; and they used the traditional
Pythagorean ratios to obtain relative frequencies. I
have recently written about the ways in which music led
to the origins of vibration theory (''Early Vibration
Theory: Physics and Music in the Seventeenth Century, '
Archive for History of Exact Sciences 14 (1975),169-
218) " In this essay I shall summarize some of the main
ideas associated with the discovery of higher modes.

Almost all seventeenth century discoveries in the
physics of sound and vibration resulted from the real-
ization that the sensation of pitch is appropriately
quantified by vibrational frequency (that pitch cor-
responds to frequency). At least since the time of
ancient Greece musical intervals had been represented

Y ratios obtained from relative lengths of similar
Strings, at the same tension, sounding these intervals.
These length ratios formed the basis for the arithmeti-
cal music theories of antiquity and the middle ages.
Towards the end of the Renaissance, when arithmetical

gmatism in music was being criticized, the ratios

Secmed arbitrary: why, for example, length rather than
tension or thickness? To demonstrate this problem, a-
round 1590, Vincenzo Galilei (the father of Galileo)did
Possibly the first experiments in acoustics. Soon af-
terwards, Mersenne and others understood that the tradi-
tional ratios are naturally determined by the vibrational
frequency‘ Galileo expressed the idea clearly in the

== Sciences (1638)

"The length of strings is not the direct

and immediate reason behind the forms (ratios)

of musical intervals,nor is their tension,nor
their thickness,but rather, the ratios of the
numbers of vibrations and impacts of air waves
that go to strike our ear ot

It was the identification of pitch with frequency
that introduced the paradox of the overtones, because it
implied that one object was vibrating simultaneously
with a number of frequencies. Mersemne, who had chosen
music as his specialty in the new science, discussed the
problem in the Harmonie Universelle (1636), his encyclo-
paedic work on music and musical instruments. In his
discussion of stringed instruments, Mersemne remarked
that he had no trouble hearing at least four overtones
(whose pitches he identified as the octave, the twelfth,
the double octave, and the seventeenth). But he found
it difficult to account for them:

""(Since the string) produces five or six tones...,
it seems that it is entirely necessary that it
beat the air five, four, three, and two times at
the same time, which is impossible to imagine,
wunless one says that half the string beats it
twice while the whole string beats it once and
that, in the same time, third, quarter, and

fifth parts beat it three, four, and five dmes

a situation that is against experience...."

Higher modes were puzzling to Mersemne even when
they were produced separately, as in the trumpet mar-
ine. This popular stringed instrument used nothing but
overtones (before they became a familiar part of violin
technique). It was played by bowing the string while
touching it at one of the points that later would be
identified as nodal points. Merserme identified the
locations of these points but he was surprised that the
string produced an ugly tone when it was touched at oth-
er places, since a viol string sounded good no matter
where it was s d. Although Merserme himself never
understood higher modes, he appreciated the importance



