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The analysis given by Elder [J. Acoust. SOC. Am. 84, 1554 (1973)] of the mechanism of interaction between 
a time-varying air jet flow velocity and a resonant organ pipe is extended to deal with the case in which a 
jet of fixed flow velocity is deflected to cut a sharp pipe lip. Similar terms arise in the analysis but the 
nonlinearities are less important than in EIder's case. The generation of higher transverse pipe modes by 
the jet asymmetry is considered and it is concluded that such modes may play a significant part in 
coupling ordinary pipe modes to pipe-wall vibrations. 
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INTRODUCTION 

In an important recent paper/ Elder has analyzed 
the way in which a fluctuat:.ng air jet can interact with a 
resonant air column to provide a driving mechanism for 
sound generation, as in orl=•an flue pipes. His treatment 
encompasses the driving interactions discussed earlier 
by Helmholtz, Rayleigh, Cromer, and Coltman and puts 
these into perspective in a more complete theory. 

Elder's model is, however, itself one extreme case 
of a still more general situation, in that he assumes 
the pipe to be driven by an air jet whose velocity varies 
while its cross section remains constant. In a real sit- 

uation, as we see presently, both the velocity and the 
cross section of the jet mav vary and this leads to addi- 
tional complications. It is the purpose of this paper 
first to set up the equation.,; for the general case and 
then to investigate the opposite extreme in which the air 
jet cross section varies while its velocity remains con- 
stant. We find that the driving mechanism is much 
more nearly linear in this extreme than in that dis- 
cussed by Eider. 

Finally we give some consideration to the relation be- 
tween these idealized models and the situation in a real 

pipe. We find that a variety of new effects may enter 
which have a significant influence on pipe speech. 

I. JET MOMENTUM EQUATIONS 

Eider considers a jet with cross section Sj and veloc- 
ity Uj interacting with • resonant combination of a pipe 
of cross section Sp and a pipe-mouth of cross section 
Sin, the velocities in these being U• and U,•, respective- 
ly. Assuming the jet to transfer momentum to the fluid 
in the pipe over a mixing length •x, he then applies 
considerations of momentum flow to relate the various 

velocities and pressures involved. There is, in fact, a 
hidden assumption in this development in that the walls 
of the pipe are assumed to exert no component of force 
along the pipe axis, which can only be true if the total 
cross-section remains constant so that 

The idealized physical situation is therefore as shown 
in Fig. 1, which differs slightly from Elder's arrange- 
ment, as will be discussed below. 

In a real organ pipe, and in our idealized situation, 

the jet is formed by a flue at some distance upstream 
from the mouth plane M. It is therefore reasonable to 
idealize the mouth velocity distribution U,• to be uniform 
over the whole pipe cross section so that the actual ve- 
locity over the jet area S• is not U• but U•+ U,,. This 
minor modification to the model, which is more appro- 
priate to our geometry than to the confined jet assumed 
by Elder, produces a great simplification in the result- 
ing equations. 

We now make use of (1) and of the continuity equation 
(assuming • << X), which can be written 

S•U'•= S,.U,,,+ S•( r.r•+ U•). (2) 

Generalizing Elder's analysis so that both U• and S• 
may vary with time, we find, after a little algebra, in 
place of his Igq. (10), 

p•(dU•/dt) + (p•- p..) = pA•(1 - A•) U•, (3) 

where p is the density of air, p• and p.• are the pres- 
sures at the pipe and mouth surfaces P and M of •, 
respectively, and the A• are areal ratios defined by 

Following Elder we now resolve po and p,• and the ve- 
locities r/0, u,,, and U• into Fourier eompenents at fre- 
quencies rico. The relations between these can be writ- 
ten in phasor notation, as 

p.,=p.• - •_•Z•U,•S•, (5) 
= + (6) 

/ <'•x-•' 
Srn M P 

FIG. 1. Idealized model for the interaction of an air jet of 
velocity US with a resonant pipe of cross section S). An area 
$y of the jet cross section enters the pipe in the mouth-plane 
M. The jet exchanges momentum with air in the pipe over a 
mixing-length A• which is short compared with the sound 
wavelength involved. 
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where Z• and Z• are the values of the complex acous- 
tic impedances at the •h harmonic evaluated along the 
axis of the pipe looking outwards from the control vol- 
ume. Because the velocity component U,•. is uniform 
across the whole pipe cross section, S, occurs in (õ) 
rather than S m as in Elder's corresponding equation. 

Because Eq. (3) is quite general we could now choose 
either Elder's extreme case in which the area Sj is held 
constant and the jet flow varied through variation of Ut, 
or the opposite extreme in which U• is constant and the 
jet flow is varied through variation of S•. This latter 
would correspond to the situation in a real organ pipe 
if the velocity profile across the jet were of "top-hat" 
form. We shall not t•ke up the intermediate case in 

which both S• and U• vary. 

In most real organ-pipe situations Ajo<< 1, corre- 
sponding to a narrow jet entering a wide pipe, and an 
examination of (3) immediately tells us something about 
relative nonlinearity in the two extreme cases. The 
nonlinearity is, in fact, confined to the right-hand side 
of (3) and is much more important for varying U• than 
for varying Sj (or A j,) if A1, << 1. The nonlinearity in 
the two cases is comparable if A• •- 0.5. 

Our Eq. (3) has fewer nonlinear terms than the cor- 
responding equation in Elder's development in any case 
because of our geometrical assumptions. Much of 
Elder's nonlinearity arises from the change in effective 
duct cross section between the pipe and mouth regions. 
Tn our version this particular form of nonlinearity is 
disassociated from the pipe-drive problem and is con- 
sidered later in connection with the nonlinearity of the 
external pipe mouth. 

II. JET-DRIVE EQUATIONS 

It is now a simple matter to substitute (2), (4), (5), 
and (6) into (3) to derive an expression for the acoustic 
flow in the pipe. This is a simpler expression than that 
for the mouth flow as derived by Eider. If we take 
to be constant and the relative jet area A•, to be modu- 
lated by a whole series of Fourier components 
then the resulting pipe acoustic flow Q•, = U,.S• at fre- 
quency nco is 

Q•= (Q•,)x + (Q•.)n+ (Q,.)n• , (7) 
where 

(Q,. = [ z + ] (8) 

= [ p + z (9) 

(to) 
and Z•, is the pipe impedence evaluated now at plane M 
rather than plane P 

Z•= Z•+jpn•vAx/S•. (11) 
The three terms in (7) are similar to those found by 

Eider. (Q•.)• is a volume-induced flow like that de- 
scribed by Cremer and Ising, (Q•.)x• is a pressure-in- 
duced flow like that treated by Coltman, and (Q•,)xn is a 
new nonlinear flow. In our physical model, in contrast 
to that of Elder, all the nonlinearity is concentrated 

into (Q•)n, and the linear terms (q•)x and (q•.)n have 
simpler form. Clearly the nonlinearity tends to vanish, 
for a given jet volume flow, as the jet flow velocity is 
increased and its cross section decreased. 

As Eider has note• the mouth impedence ne• reso- 
nance is given approximately by 

I zJ)l 
where AL is the end-correction len•h at the pipe 
mouth. The relative importance of the first two terms 
in (7) is therefore given by the ratio 

which, in many practical situations, is usually not f• 
from unity. 

A treatment similar to this could be given for Elder's 
case in which U• varies, or for the more general case 
in which both U• and A]• vary. •e linear terms are 
essentially the same in •l cases and only 
changes. 

III. OTHER NONLINEARITIES 

The results of our analysis are simpler than Elder's 
because we have not considered any nonlinearity arising 
from change in duct cross section near the pipe mouth. 
Any such change in dimensions or flow direction inevi- 
tably produces nonlinearity and mode coupling because 
of the relatively large acoustic velocities involved and 
the basic nonlinearity of the equations for wave propa- 
gation. A complete theory must include such effects 
but, except at extreme acoustic levels, their influence 
on the behavior of the pipe is likely to be small in com- 
parison with other nonlinearities now to be discussed. 

In a real organ pipe or flute the exciting jet generally 
has a bell-shaped velocity profile and sweeps across 
the pipe lip from a position well outside to a position 
well inside the pipe. Even if the deflection of such a 
switched jet is simply sinusoidal, its flow into the pipe 
will give a driving force rich in harmonics. This will 
excite the relevant pipe modes which will in turn inter- 
act with the jet in a way which has been described else- 
where. • In the presence of such extreme nonlinearity 
the contribution of terms like ((•,)n• or of the duct 
cross-section change at the pipe mouth will be over- 
shadowed and can usually be ignored. 

IV. HIGHER PIPE MODES 

It is customary in most discussions of the behavior of 
wind instruments •o consider only the zeroth-order 
transverse mode of the pipe, for which the wave fronts 
are planes normal to the pipe axis. An exception is the 
work of Benade and Jansson • on rapidly flaring horns, 
in which consideration is given to the second axially 
symmetric mode (which they call a p wave, a somewhat 
unfortunate title since by quantum-mechanical analogy 
it should properly be called a 2s wave• 

In the case of musical instruments it is generally a 
good approximation to neglect all the modes with non- 
zero transverse wave number because, with common 
pipe dimensions and sounding frequencies, these modes 
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have imaginary phase veloaities and are very strongly 
attenuated. It is evident, however, that the air jet ex- 
citing an ordinary organ pipe does so in a manner which 
is very for from being uniform over the pipe cross see- 
tion, so that we should expect it to couple strongly to 
some of the higher pipe modes. 

ß he standard analysis of modes in a cylindrical pipe, 
as given for example by Morse and Ingard, 4 shows that 
the pressure associated with the (m, n)th transverse 
mode can be expressed as 

p•.• = ½•(r, q•) exp[j(kz -- cot)], (14) 

where k is the axial wave number, 

2 _ (co/c)2, 
and 

cos 

½•,= (rnq•)d.(q,•r). (18) 
sin 

For a pipe with rigid walls, the transverse eigenvalues 
are determined by the condition that a½•,/0r= 0 at the 
pipe wall r= R, and this condition is modified slightly 
for other wall boundary conditions. If co < •,•c then the 
(m, n) mode will not propagate but is attenuated along 
the pipe axis. If we write •c,•= •r•,,///then the c•,• in- 
crease numerically in the order c•00 , c•10 , •z0, or01, ß ß ß, 
so that, after the fundamental (0, 0), the (1, 0) mode 
[which might properly be called a p-wave from its angu- 
lar dependence (16)] has the lowest cutoff frequency, 
followed by the d-wave (2, 

In an organ pipe the mouth width is generally about 
one quarter of the pipe circumference so that it sub- 
tends an angie of about ,r/2 at the center and the jet 
shonld couple strongly to modes (m, n) with m = 0, 1, 2. 
The jet deflection inside the pipe is usually almost com- 
parable with R so that modes with n = 0 or ! will be most 
strongly coupled. We are therefore led to consider 
primarily the plane-wave mode (0, 0) and the first two 
higher modes (1, 0) and (2, 0). The wavelengths of the 
fundamental and the next few higher modes of a normal 
organ pipe are generally much greater than the pipe 
circumference 2•R an• since •t0- 0.59 and •=0 = 0.97, 
Eq. (15) shows that for these two modes l,•i•ret/R. 
Both modes are therefore nonpropagating and the pres- 
sures along the pipe are all in phase but attenuate in 
amplitude by the factor e 't in axial distances of about 
R/2 and R/3, respectively. 

We now ask what effect, if any, the presence of these 
higher modes may have on the behavior of the let/pipe 
system. Apart from any sraall effects due to viscosity 
or thermal toss to the walls, the modes interact near 
the pipe mouth because of the influence of the jet and of 
the geometrical disturbances caused by the pipe mouth. 
In the main pipe body, however, the higher modes are 

orthogonal to each other and to the plane-wave modes 
and, indeed, most of their influence has already been 
implicitly included through the concept of a mixing 
length Ax and a mouth impedance •,,•. To first order 
then, inclusion of these higher modes does not affect 
the existing treatment. 

For a pipe of reasonabte length and with rigid walls 
there is little contribution to the impedance presented 
to the jet by radiation from higher modes, which in any 
case has a multipote character. Such modes therefore 
present essentially a mass teacrance toad of magnitude 
about" 

Z•.=, =/•c[1 - (c•.•/,•)•] 't• (17) 
per unit area to the driving source. This is much tess 
than Oc, except for co near the mode cutoff frequency 
c•,•, and, since in a formal analysis Z0, • would replace 
Z•, in expressions like (8)-(10) for part of the flow due 
to this mode, the velocity amplitude of higher modes 
near the pipe mouth could be considerable. Because of 
the short attenuation distance for these higher modes, 
however, most of this complication can be encompassed 
in the mixing-length parameter Ax which does not enter 
the final results provided Ax << •. 

The one way in which th•se higher modes could be 
important seems to be through their interaction with 
nonrigid pipe walls. The plane-wave mode (0, O) can 
affect the pipe walls only through a symmetrical change 
in the pipe radius R, and the admittance of the pipe 
walls for such a distortion is very small. The p-type 
(1, O) mode, however, couples to the pipe by means of 
a transverse displacement of the whole pipe body near 
the mouth. Such a displacement has a much larger ad- 
mittance, especially for a thin-walled pipe, and a com- 
plex behavior determined by the transverse modes of 
vibration of the pipe body as a whole. The d-type (2, 0) 
mode similarly can couple to elliptical distortions of 
the pipe crosssection near the mouth and the admittance 
for this process may be large in a thin-walled pipe. 
Controversy about the influence of wall vibrations on 
pipe sound quality, particularly in the transient regime, 
has not yet been conclusively resolved but it appears 
that the coupling chain (0, 0) mode -jet - (m, 0) mode 
-pipe body has not hitherto been considered and may 
prove significant. 
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