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A nearly exact, nonparametric treatment is devised to allow calculation of the transient and steady-state 
acoustic spectra of a flue organ pipe, given the geometry of its construction and the pressure variation in 
its foot. Explicit formulation is given for the fundamental and the first and second upper partials. A scaling 
law is set out, relating the behavior of pipes of different fundamental frequencies, and several illustrative 
calculations are performed. Comparison between theory and experiment for a limited number of cases 
shows satisfactory agreement in semiquantitative terms but indicates that a more careful treatment of air jet 
behavior is required at low jet velocities. 

Subject Classification: [43]75.60. 

INTRODUCTION 

The theory of sound generation in organ pipes has 
been studied previously by many authors, most notably 
by Cremer and Ising • and by Coltman, 2 but these treat- 
ments have dealt almost exclusively with the determina- 
tion of sounding frequency and fundamental amplitude, 
rather than with harmonic development. The basis of 
an approach to calculation of harmonic development was 
set out by Benade and Gens a and applied to a reed-driven 
pipe by Worman. 4 

Application of these ideas to a theoretical treatment 
of the acoustic spectrum of flue pipes in both the steady 
state and during the onset transient has been made in 
two papers by the present author 5'6 which treat some 
parts of the problem with reasonable exactitude but rely 
upon a parametric description of other aspects. The 
presence of these adjustable parameters in the theory 
makes quantitative comparison with experiment impos- 
sible but the theory does predict behavior in good qual- 
itative agreement with observation. For this reason it 
is of interest to develop it further into a fully quantita- 
tive treatment, and this is the objective of the present 
paper. 

Those parts of the original treatment which were 
treated parametrically concerned the interaction of the 
acoustic disturbances in the pipe with the air jet, prop- 
agation of the effects of these disturbances along the 
jet, and interaction of the jet with the air column at the 
pipe lip. None of these matters is yet fully understood 
but the work which has been done since the time of Ray- 
leigh ?-n now allows at least a good semiquantitative 
treatment of the disturbahce of the jet that is free from 
arbitrary parameters. A recent discussion by Elder xa 
of the interaction between a modulated jet and a reso- 
nant column, when modified in some minor but impor- 
tant ways, •a similarly allows this part of the problem to 
be treated realistically. Finally a more detailed con- 
sideration of the mathematical part of the development 
allows us to remove a limitation to small transverse jet 
displacements which was implicit in the earlier treat- 
ments. 

I. GENERAL APPROACH 

Following Cremer and Ising • and our own originat ap- 
proach s'6 we consider the problem in three parts: The 

pipe as a passive linear oscillatory system having nor- 
mal modes at angular frequencies n t that are not gener- 
ally in precise harmonic relation, the air jet along 
which disturbances propagate and are amplified in an 
approximately linear manner, and the highly nonlinear 
coupling between these two systems. 

We suppose that the acoustic displacement in the pipe 
body has the form 

x(t) = • xt(t) = • at sin(cqt +/•t) , (1) 

where the frequencies co• are close to the normal-mode 
frequencies nt, but not in general either equal to them, 
or themselves in exact harmonic relationship. The am- 
plitudes at and phases •t are slowly varying functions of 
time. The acoustic velocity derived from (1), after 
modification by the pipe mouth, interacts with the air 
jet and imposes on it a sinuous motion which increases 
in amplitude as it travels towards the pipe lip, leading 
there to a deflection of the jet core through a distance 
y(t). Clearly y(t) is related to x(t) at some earlier 
time, but the relation is complicated by the dispersive 
nature of wave propagation along the jet. This problem 
has been treated, in essence, by Rayleigh.* 

The displaced jet in its interaction with the pipe 
now gives rise to a fluctuating force F(t) which is cou- 
pled to the oscillations in the pipe and tends to drive 
them with a frequency-dependent phase shift. The anal- 
ysis of this problem is a modified version of that of 
Eider. 12,13 

Finally we shall express the problem as a set of cou- 
pled nonlinear differential equations which we recog- 
nize as related to the Van der Pol equation o'x4 and which 
we solve by the method of slowly varying parameters. 
It turns out that the numerical integration of these equa- 
tions, as well as giving information about the transient 
behavior of the pipe, is also rather more economical of 
computing time than is the direct solution of the steady- 
state problem. For ready reference an outline of this 
solution method is given in the Appendix. 

II. THE DISTURBED JET 

In our earlier discussion of this topic, the jet was 
given little detailed consideration but was treated para- 
metrically. The problem of the acoustically disturbed 
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jet does not appear to have yet been completely solved 
but we can make some progress. 

Rayleigh ? showed that, in the absence of viscosity, 
a plane jet with a square velocity profile F' 0 and thick- 
ness W 0 emerging into still fluid of the same density 
supports the propagation of a sinuous disturbance y with 
wave number k = 2•/• according to the relation 

y=A exp(+('_,kWo)tlakVot)eos[k(«kWoVot-x)] (2) 

provided kW0<< 1. The phase velocity of this distur- 
bance, u =•/k, is then given by 

u = {;kWoVo = («o•WoVo) t•a (3) 
and the amplitude grows exponentially with time. This 
is in qualitative agreement with the observations of 
Brown s but the quantitative agreement is not good. 

The main physical shortcoming of Rayleigh's treat- 
ment seems to arise from its neglect of viscosity, which 
will both modify the square velocity profile and cause 
the jet to spread and slow down. It is reasonable to ap- 
proximate this behavior by assuming a Gaussian veloc- 
ity profile m 

V(y): V exp[- •r(y - yo)Z/4Wa], (4) 

where • - Y0 measures the distance from the jet center 
line Y0. The width of the jet at a distance x from the 
exit slit, or pipe flue, can also be approximated as 

W= W0+ 2x tanq•, (5) 

where • is the semiangle of spread and, by imposing a 
condition of constant momentum transfer along the jet, 
we find for its central velocity 

v= vo(Wo/W)'/L (6) 

Measurements to be described later verify the appro- 
priateness of these assumptions. 

A jet with velocity profile similar, though not identi- 
cal to this has been studied by Savic, •? who has de- 
rived an expression for the.phase velocity, for a neu- 
trally stable disturbance, of the form 

u = O. 55 o•'/aW•/SVZ/a (7) 

which agrees quite well with Brown's experimental data 
for growing disturbances. It is worth noting that, in 
view of (6), u is constant along the length of the spread- 
ing ]et. In our subsequent discussion we adopt (?) as 
appropriate to an organ-pipe jet. 

Rayleigh's equation (2), which assumes a sinuous 
disturbance all along the jet at t = 0, shows that, as 
well as propagating, this disturbance grows with time 
as exp[(«kW)tlakvt]. This can be written in terms of a 
growth with propagation distance x as exp[(«kW) 
Savie did not investigate this aspect of wave behavior 
for his jet but considered only neutrally stable distur- 
bances so that an equivalent expression is not available. 
There are also ambiguities involvecl in attempting to 
adapt Rayleigh's expression because of the relationship 
(3) which applies to his ease but which must be replaced 
by (?) for Savie's jet. The most straightforward sub- 
stttution of Sayit's value for u in the form above gives 
growth a.s exp(px) where 

• = a•o•/SW't/aV ~a/a (8) 

and the value of a is 3. 15. Because of the uncertainty 
surrounding this approximation, however, we will re- 
tain a as a parameter in our theory, specifying only 
that it is probably of order of magnitude unity. We note 
again that, in view of (6), • is constant along the jet. 

One further modification is required to this exponen- 
tial growth law for disturbances on the jet, and this 
arises from the fact that both Rayleigh and Savie assume 
that the amplitude of the displacement is small com- 
pared both with the thickness of the jet and the distur- 
bance wavelength. When the first condition is violated 
the growth law probably tends to linear rather than ex- 
ponential behavior, while violation of the second condi- 
tion may lead to the formation of a vortex street. It 
is quite straightforward to include a transition to linear 
growth in the numerical solution of particular eases, 
and we shall assume that the production of vortices has 
little effect on the pipe behavior if they are entirely in- 
side or outside the pipe lip. 

To evaluate the way in which the acoustic field in the 
pipe mouth interacts with the jet, consider a jet emerg- 
ing from a flue into a transverse acoustic velocity field 
v eos(0•! + •). The jet is displaced bodily back and forth 
by an amount (v/o•) sin(•ol+ fl), except at the flue exit 
x= 0 where the displacement is held zero. This is ef- 
fectively the same as applying a localized displacement 
y(0)=-(v/o•) sin(•ol+fi) to the jet and, by Rayleigh's 
treatment, this displacement propagates along the jet, 
growing exponentially with time, or equivalently with 
x coordinate. Because the behavior is symmetrical 
about x= 0 if we neglect the divergence of the jet, the 
spatial growth factor is eosh(•x), rather than exp(•x). 

Combining these terms we find for the total jet dis- 
placement at position x and time t 

y(x, t) = (v/•o){sin(o•t + •) - cosh(t•x) sin[o•(! - x/,) + fi]} . 
(9) 

The first term is the bodily displacement of the jet in 
the acoustic flow field and the second is the result of 

the displacement produced at the origin a time x/u be- 
fore which propagates with velocity u and grows as 
cosh(px). 

At the pipe lip x= l the factor cosh(px) is generally 
much greater than unity so that, neglecting small terms, 
we can write the jet deflection at the pipe lip contrib- 
uted by the /th mode as 

y• = C•,,, cos[•, (t- 0,) + • - 3•/2], (10). 

where •t is the transit time 

• = t/,• (•) 

for waves of frequency % and G• is the amplification 
along the jet 

G t - cosh(p,1) (12) 

with appropriate modification if •yt > W. The phase 
constant in (10) is 3•/2 because we have chosen to write 
Yi in terms of a cosine function. 

Now the acoustic velocity amplitude v• in the pipe 
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mouth is related to the acoustic displacement ampli- 
tude a i of the ith pipe mode by 

v t =aiwiS•/Sm, (13) 

where S• is the cross-sectional area of the pipe and S m 
that of the mouth. If we assume linearfly in jet behavior, 
which is probably a reasonable approximation compared 
with other nonlinearflies to be considered later, we can 
sum the contributions to the jet-tip deflection from all 
the modes to obtain, in the notation of (1), 

Y0(t) =•..Y• (t) =• (S•/S,,)G,• t (t - 5i - 3•/2•). (14) 
i 

'111. JET-PIPE INTERACTION 

The next part of our problem is to examine how the 
jet, deflected as described by (14), can interact with 
the pipe at its lip to produce a driving force for the pipe 
modes. This was considered by both Cremer and Ising • 
and by Coltman, •' but neither of these treatments is 
adequate for our purpose and we must use instead a 
modification of the more nearly rigorous treatment by 
Eider. m 

The application of Elder's discussion to our present 
problem requires some modification of his basic model 
so that it applies to a jet whose flow into the pipe is 
modified by deflection rather than by a change in jet 
velocity. The necessary modifications to the theory 
have been dealt with elsewhere •s and it has been shown 
that, as far as first-order terms are concerned, the 
results are not very different. They can therefore be 
applied with reasonable confidence to the real situation 
which is somewhere intermediate between these (wo ex- 

treme models. 

As shown in our modification of Elder's treatment, •a 
for the case of a high-velocity jet and a narrow flue, 
we can write the acoustic volume flow in the pipe Q• in 
the form 

Q• -• Q• + Qn , (15) 
where Q• and Qn are given by 

Q• = [Zm/(Z, + Z,•)] Q• (16) 

q[[ = [pV/St,(z , + Z•) ] Q•. (17) 
Here p is the air density, V the jet velocity, and S• the 
pipe cross section. Z• is the pipe impedance measured 
looking inwards from the lip and Z, the mouth impedance 
looking outwards from the same point. As discussed by 
Elder •' and the present author, xa Q• is a flow of the type 
described by Cremer and his co-workers, while Qn is 
that described by Coltman. There is also a nonlinear 
term Q•[[ in both theories but this has been shown • to 
be negligibly small in comparison with other nonlinear- 
flies for a pipe with a narrow flue. 

Now if Al is the end correction to the pipe at its 
mouth, then 

z (18) 
so that (15) can be written 

[ o(v + (10) 

where 

Z, = Z• + Z,, (20) 

is the impedance of pipe and mouth in series. 

The right-hand side of (20) represents a forcing term 
which is not generally in phase with the jet flow Q• but 
tends to lead it. For a typical pipe system c0Al >> V so 
that the lead is very nearly •r/2. From (14), the phase 
lag of the displacement y0(t) of the jet at the pipe lip 
relative to the acoustic velocity in the pipe mouth is 
co5 - 3•/2 so that the total phase tag around the loop is 
close to co5 - • and the simple feedback loop conditions 
are satisfied when there is about one-half wavelength 
along the jet so that •o5 -• •r. This result was deduced 
from experiment by Coltman • but he did not consider 
the origins of the various phase shifts involved. 

For our subsequent development let us rewrite (19) 
using Q• =S• k and (4) for the jet velocity so that Q• is 
the total flow intercepted below the pipe lip, y = 0, 
across the full jet width D. This gives 

Z•S• ;c= •tQ• =•(t), (2•) 

where F is the effective driving pressure generated by 
the jet. H has magnitude 

H = (p/S•) (V • + •o•'a I •-)uz (22) 

and introduces a phase lead of 

0 = tan'•(•oal/V) (23) 

and the jet flow Q•(t) is given by 

Q• = D vfo •exp[ - •r(y - yo)•/4W z] dy (24) 
with Yo(t) given by (14). We define H i and 01 to be H and 
0 with co• inserted for 

To evaluate H and Q we clearly need to know the end 
correction al at the mouth of the pipe. Various em- 
pirical or simplified theoretical expressions for Al 
have been given, but these are known to hold over only 
limited ranges of mouth geometry? '• The formulas 
given by Ingerslev and Frobenius • are, however, of 
adequate range and accuracy for our purpose. The end 
correction at the mouth is seen to be generally several 
times as large as that at the open end and to increase 
as the mouth area is decreased. A formula of practical 
use for many pipes gives 

al-• 1.3($,/S•)r, (25) 

where S• and S• are mouth and pipe areas, respectively, 
and r is the radius of a circle with the same area as 

the mouth. Knowledge of Al in a more precise way, 
including its variation with frequency, together with the 
pipe length and the end correction at the open end, 
lows us to calculate precisely the passive resonant fre- 
quencies rq for the pipe. All these quantities can, how- 
ever, be obtained directly or indirectly from experi- 
ment. 

IV. THE NONLINEAR JET CHARACTERISTIC 

In the development followed in our earlier papers s'o 
it was assumed that the jet was deflected into or out of 
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the pipe lip by less than about twice its own width so 
that the exponential in an expression rather similar to 
(24) could be represented to adequate accuracy by only 
a very few terms of its series expansion. This may be 
satisfactory for a marginally oscillating system, but 
the photographic studies of Cremer and Ising, • of Colt- 
man," and others make it clear that in normal pipe 
speech the jet is usually fully switched from well inside 
to well outside the pipe lip. To treat this. property it 
is necessary to retain essentially all terms in any ex- 
pansion of the exponential function. It is perhaps worthy 
of note, in passing, that although the jet is usually fully 
switched in normal pipe speech in the steady state, this 
is probably not true in the initial transient stage. It is 
also analytically more difficult to treat the driving force 
as a switch function than it is to perform the necessary 
expansion for an analytic treatment. 

If we substitute (14) in (24), then we have the options 
of either expanding the exponentials first (giving series 
of modified Bessel functions) or of performing the in- 
tegration first giving an error function. The second ap- 
proach leads to more rapidly convergent results. From 
(24) we find 

Qj = (DVW/2) [1 + erf(y0•r•/Z/2W) ], (26) 
where the error function er• z can be expressed as a 
power serie• ø 

erf z. = _--•2• • (- 1)"z•'t (27) •r •-o •!(2u+ 1) 

and Y0 is given by the series (14), which we can write 
in the form 

yo•t/2 /2W =• ' bi cos•, (28) 

where 

b o = ao•r•/Z/2W, b i = (S•/Sm)Gi% a t •rt/•/2W (29) 
are normalized amplitudes for the jet-tip displacement 
and 

•b• =•o• (/-õ•) +(• - 3•/2• 8. (30) 

Substituting (28) into (26) and using (27), it is now easy 
to show that 

Qj = (DVW/2) I1 + Bo(b o) + Bt(bo} E b• cos• 

where 

Bo(z) = e• (z) ' (32) 
and 

1 o(z) (33) - 2.-• dz. 

(- 1) "-• 
- 2,.• a-f•n.• H,_•(z)e "a (34) 

H,•(z) is a Hermite polynomial. z0 The series in (31) 
converges quite rapidly and only a small number of 
terms is required unless some of the b• are very large 
compared with unity. This result is clearly a more 
general statement of the series expansion for the jet 
coefficient used previously. a's 

With these results we can now express Q• as a set of 
quasi-Fourier components for either an open or a 
closed pipe and for an arbitrary number of pipe modes. 
For the illustrative calculations to be carried out here 

we consider an open pipe, so that o•n •- n•o•, and restrict 
our calculation to the first three modes. Addition of 

further modes involves extra algebra but no new effects 
or other difficulties. 

To evaluate the jet flow component QJ• consisting of 
all terms with frequency close to o•x, we simply select 
from (31) all those terms cos(•b• ñ &i • • •" ') for which 

i+j+ k+ .... ñ 1 (35) 

and obtain the result 

Q•"= (DVW/2){ [B,b• +Bab,(3bZt + 6bzZ+ 6ha a) + Bab,(10b•+ 30ba•+ 30ba•+ 60ba:ba z + 60b•ba a + 120b•b•) +... ]cos&, 
+ [2Bsb,b z + B•b,ba(12b • + lZb• +Z4b•) +-.. ]cos(• - &,) 

+ [2Bzbab a + B•beba(24b • + 12b• + 12b•) +--- ]cos(•a - •) + [3Bab•b a +... ]cos(• - 2•x) 

+ [3Bab•b a +... ]co8(2• - •) +.-. }, (36) 

where B, implies B,(bo). The leVirig terms in each factor have been written out explicitly; terms omitt• at the 
end of the e•ression involve combinations of four or more different fr•uencies •d are relatively smMl unless 
•e b• are considerably greater than unity, corresponding to a jet deflection which is large compared with the jet 
thickness. We shall see, when we come to discuss the ac•M numerical calculations, that it is possible to m•ify 
this e•ression •d those for Q];• and Q•3• so that their behavior is also correct for b• >> 1. 

Proceeding similarly for the jet flow component with frequency near w; we find 

Q]z, = •VW/2){ [B•b; + B3b;(6b • + 3b• + 6b•) + B•b;(lOb• + 30b• + 30b• + 60b•b• + 60b•b• + 120b•b•) +.-. ]cos• 

+ [Bzb• + Bab•(4b• + 12b• + 12b•) +... ]cos2&t + [2Bsbsb • + B4bsb:(12b • + 24b• + 12b•) +.. -]cos(• - •) 

+ [6Bab•bsb 3 +.-- ]cos(• a - &; + &•) +..- } (37) 

while for the component near 

J. Acoust. Soc. Am., Vol. 60. No. 4, October 1976 



930 N.H. Fletcher: Sound production by organ flue pipes 930 

+ +... ]cosS, + +... ]cos( + + +-.. ]cos(2 - +... }. (3a) 
Consideration of (36), (37), and (38) shows that several components, which may be of slighfiy differing fre- 

quencies, contribute to each term. These produce, in general, beat-like effects and a raucous sound. This may 
occur in practice, •t •nerally pipes are voiced to pr•uce a smooth ste•y •eech in which all the components 
are locked together into h•monic relationship 

•. = ,z•, (39) 

the fu•d•ent•[ f•eque•c• • be[n• dete•min• [• • complex •zy by the coupled pipe-m•e equations. 

V. PIPE-MODE EQUATIONS 

The basic oscillation equation (21), which expresses 
the coupling between the nonlinear jet system and the 
pipe modes can be rewritten as 

YQj/S = r,r(t) /s,, (40) 

where Y, = g• • represents the admitartec function for 
the pipe as viewed from outside its mouth. Since this 
is a resonant system, Y• has a number of poles in the 
frequency plane and, since the pipe itself is passive 
and necessarily slightly dissipative, these poles do not 
lie on the real axis but at points co = n• - «jgi in a nota- 
tion in which time variation is represented by exp(jcot). 
If the quantities g• are small in comparison with their 
associated n•, as is in fact the case for the lower reso- 
nances of an organ pipe for which •l/n• < 0. 03, the sys- 
tem exhibits sharp resonances with 3 dB width •i at 
frequencies rq which are maxima for the admittance 
Y•(co) on the real axis. To a good approximation we 
can then write (40) as 

(41) 
and, remembering (1), the individual quasi-Fourier 
components of this equation can be treated separately, 
except for the coupling implied by the nonlinear nature 
of the jet flow Qj. 

For the speech of an open flue pipe, which is our 
present concern, the resonances are nearly, but not 
quite, in harmonic relationship, n i -•i•, and (41) shows 
that the acoustic output should contain components at 
frequencies which are close to hi, the admittance maxi- 
ma. To examine this more closely and to elucidate the 
time variation we must write down the differential equa- 
tions for the individual modes of (41). For the ith mode 
we can write 

• + •,•½• +•x• =•7,?• (t), (42) 

where F• (•) is the pressure component with frequency 
near n• derived from Eqs. (36), (37), and (38) for • 
= 1, 2, 3, and •71 is a constant such that •i/•i is the 
specific acoustic impedance at the pipe mouth at the 
resonance co = •. 

These quantities • and • are in principle calculable 
from the geometry of the pipe and the mechanical and 
thermal properties of air. •[,zz,z• Thus for the case of 
a pipe with radius r much less than the wavelength in- 
volred, when viscous and thermal losses are included sa 
we find the approximate results 

•(• • rzco• /Lc + 5x 10'• ccoV z /r (43) 

•1, = •1 - 2S•/OLS•, (44) 
where L is the pipe length, p the density of air, and c 
the velocity of sound. The approximation of dissipa- 
tion mechanisms other than radiation, however• and 
the restriction to large wavelengths, limits the useful- 
ness of these results. The more complex expressions 
given by Benade 2z are much more generally applicable. 

An alternative approach is to measure the resonance 
curve of the pipe, which yields •i directly as the full 
width in radians per second between 3 dB points for the 
ith resonance. A measurement of the ratio between 

mouth pressure and acoustic velocity in the pipe simi- 
larlygivesg•/• and hence, •/i. Such measurements 
are quite straightforward to perform, the acoustic 
pressure at the mouth at frequency w being maintained 
constant and the acoustic veloci• in the pipe determined 
from measurement of the radiation from its open end. 

Vl. SOLUTION OF EQUATIONS 

The set of Eqs. (42), knowing that F(I) is a nonlinear 
function of all the •c•, as given by (21) and (31), can be 
recognized as a set of coupled equations of Van der Po[ 
type, [a and their approximate solution can be obtained 
by the method of slowly varying parameters. l•'• Be- 
cause we have considered this explicitly before, • we 
quote only the final results (see also Appendix). 

Recalling from (1) the form 

x• =•h sin(co•t + •) (45) 

we find the average values 

(fz,) = (•/co• ) (F• cos(co• t +/3•)> - «• a• (46) 

where, on the right-hand side, Fi means the compo- 
nent of F(t) with frequency near co• and (> implies an 
average in the sense that only the components with fre- 
quencies much less than co• are retained. 

The Eqs. (46) and (47) allow ready numerical evalua- 
tion of the velocity amplitudes a•co• and frequencies 
+/3i of the pipe oscillations as a function of time, once 
the initial conditions and the variation with time of the 

blowing pressure have been specified. 

We may take, to a sufficient approximation, the ini- 
tial conditions to be those generated by a sudden rise of 
the pressure in the pipe foot to a value P•. The jet 
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vetoct .ty Vo at the flue is related to the pressure P in 
the pipe foot by 

v0 = (2P/p) 

and this decreases along the length of the jet according 
to (6) and (4). By Eqs. (21)-(24) then, the blowing 
pressure step P• gives rise to a driving pressure step 
of maguilude 

F• = HDVW erfc(- •/2bo/2W) , (49) 

where b o is the static offset of the jet center inside the 
pipe lip and If is derived from P• by Eqs. like (48) and 
(6). IVe interpret erfc (- x) as 1 + err(x) if x > 0. 

This pressure step can be inserted into.the mode 
equations (42), neglecting now any coupling between 
modes. Solving these equations by the method of Lap- 
lace transforms, on the assumption that • << n•, which 
is justified for practical organ pipes, we find 

., (o) (50) 

(0) = - (51) 

w• = 4. (52) 

These initial conditions,. together with the Eqs. (46) 
and (47) would now seem to allow a complete solution 
of the problem. There are, however, several further 
considerations which we must first take up. 

VII. FURTHER CONSIDERATIONS 

In our formulation of the jet flow Eqs. (26)-(34) we 
treated the static offset bo of the jet center line as 
though it were an adjustable physical parameter, deter- 
mined by the geometry of pipe flue.and lip. A little 
thought shows that, while this may be true for the ini- 
tial impact of the jet on the pipe lip, it is not true at 
later times. 

Suppose the jet is directed with a particular offset bo 
so that the steady component of the flow into the pipe 
is ¾Qj where ¾ •< 1. From the work of Coltman 2 and the 
analysis of Eider, • this flow builds up a static excess 
pressure ¾QjIf/S• in the pipe, where If is the jet velocity 
at the pipe lip and S• the cross-sectional area of the 
pipe. This static-pressure component is not greatly 
dependent on the osci[latory motion of the jet once this 
becomes established, for the jet rapidly becomes nearly 
symmetrically switched so that ¾ - 0. 5. 

The fraction of this static jet flow which returns to 

the mouth is probably about S,ff(S,, + S•) and this immedi- 
ately leads to an estimate of the fractional deflection of 
the jet from its initial path by use of P. qs. (6) and (7) as 

- + ](wo/0 v'- ' 
which is typically of order - 0. 1. The pipe is normally 
adjusted so that the jet blows somewhat outside the lip 
in any case (b o < 0), so that this argument tends to set 
an upper limit to normal values of •o. We shall there- 
fore expect •o initially to be negative by a moderate 
fraction of W and use this b0 value for the initial condi- 
tions (50), but then immediately make •0 more negative 
by an amount - 0. 1 for calculating the subsequent be- 
havior. This is important since, if b o = 0, (34) shows 

that Bs = 0 so that there is no second-order coupling 
between modes. In practice this would reduce acoustic 
stability. 

One further difficulty arises from the fact that, in 
normal pipe speech, the jet may be fully switched across 
the pipe lip so that the b• are large compared with unity. 
The expressions (36)-(38) for the components of the jet 
flow then require an inconveniently large number of 
terms to give a good approximation. A simple artifice 
allows us to overcome his difficulty. 

Consider, first, the expansion given explicit•'y in (36). 
The convergence difficulty referred to above occurs for 
each of the expressions in square brackets [ ] since 
they all diverge as the b• increase, instead of approach- 
ing some limiting value. This difficulty arises from the 
truncation of the error-function expansion (27).after a 
finite number of terms • = H and can be avoided if we 

replace the rigorous expansion by an approximant 

err z =•-•. •,z"-• • a,z"(1 + la, z • I) '• (54) 
•-0 nO 

provided that, because of the monotomic nature of the 
error function, the sign of • is positive. This is the 
case for 5/= 1, 5, 9, ß ß ß so the obvious point at which 
to truncate our series is after the fifth term. 

Applying this technique to the expansion Qy given in 
(31), we see that we should replace Qy by the •pproxi- 
m ant 

Q, [1 + ([ B•(b o) • b, b•b•b,b,•cos(•b, + •j + • + •b, + •b,•) [)]" , 

where Q• is now truncated a•ter fifth-order terms and, 
as in (40) and (4?), • • implies an average which retains 
only quantities varying slowly eomparod with nx. The 
justification for performing the average in this way is 
that the neglected high-frequency terms would, if 
transferred into the numerator, lead only to terms of 
order equal to or greater than N, so that they can rea- 
sonably be neglected. 

The major contribution to the denominator of (55) 
now comes, not from those few terms for which i+j 
ß k+ l• m = 0, but rather from the sum of the constant 
terms produced from each oscillatory term by the ac- 
tion of taking its absolute value. It is not possible to 
find an exact value for this result because the oscilla- 

tions are generally highly correlated, but we shall not 
make a very large error if we replace (55) by 

the factor 32/•r arising from consideration of the num- 
ber of permutations occurring in (55) and the average 
value 2/•r contributed by each. It is unlikely that (56) 
will be in error by more than about a factor 2, which 
is not very significant, for large values of the b• and 
of course it becomes accurate for small b !. We shall 
therefore use this form of approximant for Qi and its 
components Q•) in our numerical development. 

From (46), and one of (36), (37), or (38) we see that 
the onty possible steady-state solution (in which the 
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amplitudes • are constant) is one achieved by a locking 
of the frequencies i•i -- • + j• into strict harmonic re- 
lationship so that/2•: i/11. That such frequency locking 
occurs in normal organ pipes is readily verified from 
the steady shape of their output waveform. It is, how- 
ever, possible to envisage a condition in which this 
locking does not occur but several modes are excited 
separately because of appropriate phase relations along 
the jet. The individual amplitudes a/ will then vary at 
relatively low frequencies • ß nf•j ß rnf• such that i ß n] 
+mk = 0. The raucous noise so produced (known as 
"burblin'•'• is familiar to pipe voicers and recorder 
makers and has been reported before in the literature. 2a 
It occurs most commonly in a marginally overblown 
situation when either modes 1 and 2 or else modes 2 

and 3 are simultaneously strongly excited by the jet. 

Finall• we note that all modes are closely coupled 
through the nonlinearfry of the jet interaction, and the 
fundamental frequency of any locked oscillation regime 
(in the sense discussed above) is determined by the 
positions of all the resonances and by the phase shifts 
along the jet at all the harmonics of this fundamental. 
This is the same conclusion as reached by Benade and 
Gans. a 

VIII. NUMERICAL CALCULATIONS 

Examination of the equations of our development 
shows that, with the exception of the viscous loss term 
in (43), they all scale precisely provided that all pipe 
dimensions are changed by a factor •, the blowing pres- 
sure is maintained constant and time is also scaled 

by a factor •. This means that frequencies are scaled 
by •-1, displacement amplitudes by •, and velocity am- 
plitudes are unchanged. The intensity (energy flux den- 
sity) at a given distance from the pipe scales as •' and 
we can overcome the difficulty of Eq. (43) by scaling 
gl by •-1 so that the quality factors of the resonances 
remain fixed. These convenient rules mean that we 

need only carry out our calculations for one pipe length 
(or one fundamental resonance frequency). In practice 
we might expect of course that the scaling will not be 
exact, since the rigorous equations for jet motion may 
not scale as simply as the approximate treatments sug- 
gest 

Specific numerical calculations are now readity car- 
tied out, and integration of the equations is a rapid 
process on a computer of medium speed. For compari- 
son with experiment we have chosen to compute not the 
acoustic velocity components v• in the pipe, but rather 
the sound pressure levels assucmted w•th these com- 
ponents at an axial distance R from the open end of the 

TABLE I. Physical parameters adopted for calculation. 

Pipe mode [requeocies .]: 2020 
Resooance w/dths g•- 40 
Pipe cross section Sp 16 cm • 
Pipe mo•lth width D- 4 cm 
Flue width Wo 0:25, 1.0 mm 
Mouth cut-up I 5, 10. 15 mm 
Jet divergence • 5 ½ 
Jet offset bo- - 0.4 
Jet sens it ivny a • o. 2 

4120 .1 6230 tad sec '• 
-(10 •1 150 tad •iec '1 
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FIG. 1. (a) Calculated and (b) measured sound pressure levels, 
at a distance of I m from the open end, of the spectral com- 
ponents radiated from an organ pipe, as a function of the blow- 
ing pressure P in centimeters of water gauge (1 cm H20 
-• 1 mbar = 100 Pal. The numbers I, II, III, IV are the normal 
mode numbers of the pipe and designate the approximate in- 
tegral multiple of the lowest possible pipe frequency. Mode IV 
has been measured but not calculated. The normal (N) regime 
is shown with solid cur•es; underblown (U) regimes lie to the 
left and o•erblown (O) regimes to the right, each possible re- 
gime being given a distinctive line form. The angular fre- 
quency w (in tadinns per second) has been divided by the mode 
number in each case. Hatched portions of curves indicate in- 
stability or inharmonicity. The oblique line at the top of (a) 

. shows the maximum possible sound pressure level for 100% 
efficiency. In this figure the cut-up l is 5 mm, the flue width 
W 0 is 0.25 ram, and mouth width D is 4 cm. 

pipe. The rms acoustic pressure at this point pro- 
duced by a pipe mode with displacement amplitude • 
and frequency wi is 

Pt (n) 
where p is the densi W of air and S• the c•ss-section• 
area of the pipe. The pres•re mpli•de (57) is just 
h•f that which would be p•uced by a fl•ged pipe, 
• •proximation •uate for our pre•nt pu•ose, 
•d •plies only for R much •eater th• the pi• r•ius. 
We neglect the •proximately •ual r•iation from the 
pipe mouffi since in our experiment• arr•gement this 
is shield• from the mea•remen/microphone. The 
sound pres•re level Lt of this ith component, relative 
to P0 = 20 •Pa, at •ial dist•ce R is •en given by 

L i = 20 log•0[p• (R)/Po] (58) 

The as•m• pipe parameters, chosen to •ree with 
those of • •just•le e•erimenta[ pipe which we de- 
scribe in the next section, are shown in Table I. Sev- 
eral of these par•eters c• • vari• i•ependently 
and only a selection of the •ssible c•culat• results 
is shown in Figs. l(a)-4(a). In each case the ste•y- 
state sound pressure [eve[ •sociat• with each pipe 
m•e at a point on the •is distant I m from the open 
pipe end is calculated, the blowing pressure bei• var- 
ied and the other par•eters held f•ed at the v•ues 
shown in Table I, unless othe•ise stated. 
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] ]o too I to t0o I Io loo I Io Ioo 
P P P P 

FIG. 2. As for Fig. 1 but with cut-up l = 10 turn, flue width FIG. 4. As for Fig. 1 but with cut-up l= 10 ram, flue width 
W0=0.25 rara. V/0 =1.0 ram. 

Also shown in these figures is a line derived from 
the power input to the jet, and hence representing the 
maximum possible power output, as a function of the 
blowing pressure P. This input power II is simply the 
blowing pressure multiplied by the volume flow through 
the flue, which has mouth width D and width W0, so that 

n = PDWoV o. (50) 

The flow velocity V 0 in the flue is given by Bernoulii's 
equation (48) so that 

FI = (21p)l12DWo P312, (60) 

where p is the density of air. This steady input power, 
after conversion to acoustic power in the pipe, is ra- 
diated nearly equally from the open end and the mouth. 
Our measurement microphone, however, was shielded 
from mouth radiation so that the measured radiated 

power has a maximum possible value of II/2. 

Sound radiation from the pipe end, which is much les.• 
than one wavelength in dimension, is nearly isotropic, 
so that the maximum possible acoustic intensity (or 

P P 

I,'IG. 3. As for I,'iK. 1 but with cut-up l 15 min. flue width 

ergy-flux density) at a distance R from the open end is 

I.•= - ll/8•rR z. (61) 

Because of the anechoic conditions of the measurement, 
the sound field is nearly a spherical wave so that sound 
pressure at a distance R is simply related to intensity 
at that point by 

I--/•/pc. (62) 

If the air density and speed of sound are assumed to be 
those for an ordinary room temperature and barometric 
pressure, with distances in meters and pressure P in 
pascals, a convenient relation results for the maximum 
sound pressure level, in decibels, 

Lm= -• 107 + 10 logio(DWo/R z) + 15 lograP (63) 
in dB relative to 20 gPa. It is this relation that is 

shown in the figures, except there the unit of P is ap- 
proximately 100 Pa. 

The theory contains only three unknown parameters, 
all related to the jet behavior: the gain coefficierit fi of 
(8), the limiting deflection up to which the exponential 
growth law applies, and the rate of growth for the sub- 
sequent linear growth. Variation of the last two of 
these over reasonable ranges has very little effect on 
the calculated results. Variation of ot has little effect 

on the calculated behavior in the normal or overblown 

regimes but does markedly affect the underblown re- 
gime. The value a 0. 2 adopted for calculation shows 
moderate development of the underblown regime while 
for ot < 0. I it is suppressed entirely. The limit for ex- 
ponential growth was taken equal to the spread width W 
of the jet at the pipe lip, and the subsequent linear 
growth to give an envelope with a semiangle of about 15 ø 

IX. EXPERIMENTS 

For the purposes of this study a flue pipe with ad- 
justable geometry was constructed. This is shown in 
section in Fig. 5 with the sense of the adjustments in- 
dicated. The pipe was of about normal flute pipe scale, 
having inside dimensions 4x4 cm and length about 46 
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lip cut-up •flue 

to pressure •-/ 
gauge ' d •to w,n supply 

FIG. 5. Experimental organ pipe with the main components 
and the sense of their adjustments shown. 

cm so that it sounded a fundamental near 330 Hz (about 
E4)o The languid was of the inverted type, as shown, 
with a bevel angle of about 60 ø, and entire construction 
was in perspex 6 mm thick. 

The pipe was adjusted for normal speech with a cut-up 
near 1 cm and the form of the air jet was then examined 
by probing it with a fine capillary •ube connected to a 
pressure sensor. Plots of this pitot-lube pressure 
(proportional to V 2) for traverses taken at various dis- 
tances from the flue and for two different flue widths 

are shown in Fig. 6. It is clear that the transverse 
pressure distribution (and hence also the velocity dis- 
tribution) is bellshaped, in good accord with our assump- 
tion (4). It is also evident that the jet spreads and 
slows down approximately in accord with (5) and (6), 
and the derived spreading angle is about qb = 5 ø. Checks 
show this angle to be almost independent of flue width. 
Finally we note that the jet center line is directed well 
outside the pipe lip (a0 < 0) as we have assumed. For 
this particular adjustment of the pipe we find, from Fig. 
6 and the definition (29), that bo • - 0. 4 in both cases 
shown. 

The resonance frequencies n i and resonance widths 
% for the pipe were determined for a lip cut of 1 cm by 
driving the mouth with a swept-frequency wave of con- 
stant sound pressure level and measuring the sound 
pressure radiated from the open end. These measure- 
ments were perforn{ed in an anechoic chamber, the 
mouth end of the pipe being further enclosed in an iso- 
lating box with a loudspeaker driver and control micro- 
phone. Table I shows the measured resonance fre- 
quencies ,• and 3-dB widths •i for the pipe. The inhar- 
monicity is appreciable, as expected, and the ai values 
agree moderarely well with those suggested by (43). 

Finally the acoustic spectrum radiated by the blown 
pipe under various conditions was measured by sounding 
the pipe in an anechoic chamber, sampling the radiated 
sound with a calibrated pressure microphone placed on 
the pipe axis at a distance of 1 m from the open end and 
shielded from the mouth radiation by a ba/fle, and ana- 
lyzing the resultant signal with a narrow-bandwidth wave 
analyzer. 

The result of these measurements are shown in Fig. 
l(b)-4(b) alongside the relevant calculated curves. 
The measurements and calculations are all given on 
an absolute basis and no adjustable parameters are in- 
volved. 

X. DISCUSSION 

A comparison of the theoretical and experimental 
curves in Figs. 1-4 immediately shows good semiquan- 
titative agreement for the normal (N) and overblown (O) 
regimes, but there is considerable disagreement for 
the underblown (U) regime. Disregarding this latter 
for the moment, we note the following features which 
are common to both theoretical and experimental results. 

(i) Increased blowing pressure leads from the normal 
N x regime to the second mode O n and the third mode 
Oin regimes. Metastable overlap of these regimes oc- 
curs. 

(it) The transition pressures between Nz, Oz, , and 
O•x regimes increase as the cut-up of the pipe lip is 
increased. 

(iii) The maximum SPL attainable in a given regime 
increases as the cut-up is increased. 

(iv) The sounding frequency in each regime increases 
as blowing pressure is increased. 

(v) A wide flue gives higher SPL and lower over- 
blowing transition pressures than does a narrow flue. 

(vi) The relative strength of upper partials in the N 
regime increases with increasing blowing pressure. 

(vii) The ma_ximum efficiency with which the blowing 
power of the jet is converted to acoustic radiation in 
the N and O regimes is of order 1%. 

The existence of two or more stable oscillation modes 

in particular pressure ranges is expected from experi- 
ment and predicted by the theory. The particular mode 

V 2 

-4 -2 0 

FIG. 6. Pitot-tube pressure, proportional to squared jet 
velocity l/•, as a function of transverse displacement y 
relative to the pipe lip for a jet emerging from a flue of width 
•0 equal to (a) 1.00 and (b) 0.25 min. The parameter on each 
curve gives thedownstreamdisplacement x •mm} away from the 
flue exit. Units for V • are not specified. 

J. Acoust. Soc. Am., Vol. 60. No. 4, October 1976 



935 N.H. Fletcher: Sound production by oran flue pipes 935 

excited depends on the initial conditions and on the time 
variation of pressure. Thus in the overblown region 
On we can find either a pure second-mode oscillation, 
or a similar oscillation accompanied by low-level un- 
coupled oscillations of both modes I and II or, in the 
overlap region of N• and O m a coupled mode in which 
the fundamental predominates. In practice, small ad- 
justments of tip and flue influence these transitions and 
there is similar sensitivity to the precise assumptions 
made about jet behavior in the theory. 

There are, however, several points of discrepancy 
between theory and experiment. The most serious are 
as follows: 

(i) The observed low-pressure limit of the N regime 
is about a factor of 3 lower than calculated, and the 
cut off more gradual. 

(it) The measured julup in sounding frequency on 
transitions between regimes is significantly less than 
the required harmonic ratio, while in the calculations 
no such effect is shown. 

(iii) The calculated sound pressure produced in the 
U regime is much greater than that observed, partic- 
ularly for the case of a large lip cut up, and some U 
modes are calculated which do not occur in practice. 

The origin of these defects in the treatment is easy to 
find and lies primarily with the Eqs. (7) and (8) for the 
jet behavior. Apparently (7), while satisfactory at 
higher frequencies and pressures, predicts too low a 
disturbance velocity for the fundamental at very low 
blowing pressures. Our two earlier discussions, S'e 
both based on a nondispersive jet behavior, were at 
least free from defect (iii), though the pressure range 
for the N regime was probably still too restricted. • 

We have already mentioned that the behavior in the 
U regime is strongly influenced by the jet amplification 
parameter a. A more or [ess satisfactory suppression 
of this regime can be achieved by decreasing a to 0. 1 
or less, but this probably hides the difficulty rather 
than solving it. The U regime corresponds to a situa- 
tion in which the jet length is approximately 3•/2, 5)•/2, 
... for lhe particular mode involved, while the N and 
O regimes have jet length near •/2, where X is the dis- 
turbance wavelength on the jet. The discrepancy prob- 
ably arises because the simple theory of the jet sup- 
poses its displacement to remain sinusoidal whatever 
its amplitude, whereas in a real situation it breaks up 
into a double set of vortices once the displacement am- 
plitude becomes comparable with the disturbance wave- 
length. a Clearly the interaction of such a vortex street 
with the pipe lip will be very different from that of a 
simple displaced jet. 

Despite these shortcomings it is clear that the theory 
does go a long way towards describing the details of the 
sound production mechanism in flue pipes and the ef- 
fect of pipe scale and of the various possible voicing 
adjustments z• on the acoustic output. 

Xl. TRANSIENT BEHAVIOR 

The nature of the initial acoustic transient when mr 

pressure is applied to the pipe foot was discussed in 

an earlier publication e and our present development adds 
little to that treatment. Furthermore the particular 
pipe constructed for the experiments showed no very 
interesting behavior and, in particular, did not respond 
with a 'chiff' when set to a low lip cut up as in baroque 
voicing. This p•Lrticular form of chiff, developed large- 
ly with slider chests which allow a rather slow build up 
of wind pressure, is distinct from the overblown lran- 
stent produced by plosive application of wind pressure 
which was discussed before. e The baroque chill seems 
to be closely related to pipe behavior in the U regime 
and cannot therefore be well calculated until this region 
of jet behavior is better understood. 

The transition from normal to overblown regimes is 
not' very well reproduced by the present theory--not so 
well, in fact, as in our simpler treatment. a The lower 
modes tend to continue sounding in nonharmonic rela- 
tion below the dominant upper mode unless some steps 
are taken to remove them by starting the pipe sound as a 
nearly pure upper mode. It seems likely that there is an 
additional nonlinearity in jet behaviorwhich aids the tran- 
sition once a dominant mode has become established. 

Xll. CONCLUSIONS 

This attempt to formulate a complete description of 
flue pipe behavior has proved only partly successful 
but has served to show up the areas of most critical 
inadequacy in our knowledge. It is not surprising to 
find that these are associated primarily with the be- 
havior of the acoustically disturbed jet, which is the 
most complex component of the system. 

More specifically we find that the descriptions of 
wave motion on the jet given by Rayleigh and by Savic 
appear to be inadequate, particularly for low stream 
velocites and low frequencies, for the particular mag- 
nitudes of other physical parameters encountered in 
organ pipes. We further note that the jet propagation 
is almost certainly very nonlinear once the disturbance 
amplitude exceeds the jet thickness and even more so 

when it approaches the disturbance wavelength. We 
have had to neglect or at least approximate both of these 
effects, but it seems that they may be important for a 
full understanding of mode stabilization in the over- 
blown region and of the whole behavior in the under- 
blown region. 

APPENDIX 

Consider the equation 

where F(t) is a nonlinear function of all the k•. We ex- 
pect for %i a solution of the form 

•l = a• sin(co• t+ i•), (A2) 

wherea• and/• are slowly varying functions of time. 
To restrict the freedom allowed by this specification, 
we also require that 

• =a•co• cos(co, t+ •) (A3) 

which imposes the condition 

h/. sin(co i t + fi/) + a• • cos(co/t+/•) = 0 . (A4) 
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Substitution of (A2) and (A3) into (A1), with the use of 
(A4), then gives 

ji = _ •iF(t) - • • sin(% t+ p•) 

+• - wl sina(•t+ •). (A6) 

If we neglect the small variation of a• •d & over a 
single peri• 2•/w• •d aver• (A5) •d (A6) over •ch 
a peri•, again neglecting all •t the slowly yawing 
terms, •en we find the averse v•ues 

= cos(, t + &)) - 
(•) = - (•/%wi)(F• sin(w• t+ &)) + (• - w•)/2w,, (•) 

where F• implies the com•nent of F(t) yawing wt• 
frequency near w•. 

*This ;york is part of a program of study of the acoustics of 
traditional musical instruments that is supported by the 
Australian Research Grants Committee. 
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