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A description is developed of the structure of the interface between a crystal and its melt, and of the growth 
of a crystal in such a situation, which concentrates attention exclusively on the liquid side of the interface. 
It is concluded that structural effects extend to at least a distance of 20 A from the interface and that the 
interfacial free energy can be accounted for almost entirely by entropy loss in the liquid. A criterion is 
derived for surface roughness which has some relation to the similar criterion derived by Jackson. The 
theory is then applied to the growth of a crystal from its melt and an expression is derived for the minimum 
defect concentration in the crystal. It is concluded that the defects are largely vacancies or interstitial atoms 
and on this basis a calculation is made of the minimum dislocation density. This quantity is shown to 
increase linearly with growth velocity. Finally the theory is applied to consideration of the possible produc- 
tion of vitreous solids by very rapid freezing. As an illustrative examp!e, calculations are given for the case 

of the water-ice interface. 

1. Introduction 

The growth of single crystals from pure melts ap- 

pears now to be a subject which is well understood from 

the viewpoints of both physics and technology’,‘). The 

structure of the liquid-solid interface is crucial in de- 

termining the details of the crystal growth mechanism 

and key contributions were made to the theory by the 

nucleation mechanism of Volmer3), the dislocation 

growth theory of Burton, Cabrera and Frank4) and 

most recently by the detailed considerations of inter- 

face structure initiated by the work of Jackson’). 

It is notable, however, that all this work concentrates 

nearly exclusively on the structure of the crystal surface. 

The liquid is ignored, or simply considered as a passive 

partner whose role is to transport material to and heat 

away from the growing crystal. The few exceptions 

seem to be in the work of Turnbul16), Nason7) and 

Ewing’) on the structure of the equilibrium interface. 

The object of the present paper is to take an entirely 

contrary approach and to concentrate attention on the 

liquid near the interface. The crystal will be regarded 

simply as a template specifying the structure of the 

solid phase but any other properties it may have will be 

largely ignored. We shall find that we can in this way 

construct a theory of crystal growth which is largely 

complementary to the usual theory, although its realm 
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of applicability is not so large and is certainly confined 

to crystal growth from the melt. 

We must emphasize at the outset that the theory 

lacks rigour in some of its features and is frankly ex- 

ploratory and speculative. The liquid viewpoint has 

been maintained exclusively to emphasize the difference 

from conventional theory but, if the points made are 

accepted as valid, it will be the task of the next genera- 

tion of theories to combine the two approaches into a 

comprehensive description of the interface. 

In this paper the theory will be presented in as general 

a manner as possible and then specific numerical appli- 

cation will be given for the case of the ice-water inter- 

face and the growth of ice crystals from water. 

2. Liquid structure near an interface 

What is usually called the structure of a liquid de- 

pends upon the time scale we have in mind, for the 

atoms or molecules in the liquid continually undergo 

vibrations with a time scale of order lo- l3 s and diffu- 

sive rotations and translations with time scale of order 

IO-’ ’ s. The usual view, and the one to be adopted 

here, is that seen in a time of order lo-*’ s, so that vi- 

bratory motions are averaged out but diffusive mo- 

tions cause slow changes in the structure with charac- 

teristic time z N 1O-‘o s. 

If we consider the liquid structure averaged over a 

time long compared with 5, then the only information 

available is the two-body correlation function n2(r1 ; r2) 
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which gives the probability that there will be an atom 

at I’~, given that there is one at r,. This /~~(r, :r,) is usu- 

ally written in terms of the radial distribution function 

q(r) as 

I~~(Y, : rr) = 4rrr2/7,_y(r). 

where 

(1) 

I’ = / 1’,-1’2 1, (2) 

and 11~ is the number density of atoms in the liquid. For 

a simple liquid like argon or sodium this description is 

adequate for many purposes and the superposition ap- 

proximation can be used to obtain higher order corre- 

lation function like II~(Y,, r2; r,). For associated liquids 

like water, however, the superposition approximation 

is inadequate and a good deal of information about the 

structure of the liquid resides in the three-body corre- 

lation functions /I~(Y,, r 2: r,). For water. for example. 

this function specifies that nearest-neighbours are ar- 

ranged nearly tetrahedrally with a bond angle which 

does not difTer very greatly from the regular tetrahedral 

value. 

From such information, then. we know something 

about the structure of the liquid. The radial distribu- 

tion function g(r), for example, always shows an exclu- 

sion volume near the origin, a nearest-neighbour peak 

and then successively less well defined peaks for more 

distant neighbours, as shown in fig. I. The typical range 

for the “structure” in y(r) is about 10 I!. 

When we consider liquid near a low-index crystal 

face of the same material, we can use the same prin- 

ciples to construct a distribution function for atoms in 

the liquid. Here however there is a two-dimensional 

array of atoms already fixed in position and each of 

these, on the liquid side, should participate in a radial 

distribution function similar to that for bulk liquid. 

This should certainly be true at least for the nearest- 

neighbour shell, and the intersections of the probabi- 

lity distributions of nearest-neighbours for all the atoms 

in the crystal surface can be used to conrtruct a pro- 

bability distribution for the first liquid-like layer above 

the interface. In cases where the three-body correlation 

function is known approximately and this is different 

from that given by the superposition approximation. 

this information should also be used in the construction 

of the liquid probability distribution. 

If we choose J and z axes in the interface and take .Y 

normal to it, then this first-neighbour liquid layer will 

consist of an array of Gaussian probability ellipsoids 

which have, in the.\‘: plane. the symmetry ot the crystal 

surface. This is, of course. a statistical property and 

does not impose such symmetry on atomic arrangement 

in the layer. 

Subsequent liquid-layers have their probability dis- 

tributions determined in a similar way, building upon 

the ellipsoids of the first layer and adding squares of 

the standard deviations involved, as is appropriate fol 
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independent stochastic variables. Where the probability 

ellipsoids overlap. the individual probabilities arc 

summed, so that the distribution eventually becomes 

uniform. 

An example of the distribution function P(.v) is shown 

in fig. 2. There is an obvious layer structure in the 

liquid which extends for a distance of perh:ips 20 A 

away from the interface. It is not surprising that this 

distance is rather longer than the characteristic dis- 

tance in the radial distribution function. The decay of 

the bonding order is stochastic. and thus mathemati- 

cally related to the diffusion equation. so that if the 

radial solution has the form 

C-/ m’exp(Pr,l), (3) 

where Z somehow measures order, then the one-dimen- 

sional case should behave like 

II _ exp (-.v/l). 

which effectively has a longer range. 

(4) 

A somewhat similar discussion of liquid structure 

near an interface has been given by Ewing’) except that 

he has assumed. without discussion, that the distribu- 
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Fig. 2. Probability distribution P(x) for atoms near a crystal- 
liquid interface. The actual examples given are for water mole- 

cules near a (0001) or a (1010) face of ice but simple liquids have 
similar behaviour. 

tion function normal to the interface, P(x), is identical 

with the radial distribution function g(v). There seems 

to be no justification for this assumption. The curves in 

fig. 2 are in fact calculated from the radial distribution 

function of fig. 1 for the case of the water-ice interface, 

using an explicit model for the liquid water structure, 

as we shall discuss later. The distinction between P(x) 

and g(r) is clear and there is no reason why a similar 

distinction should not exist for other liquids. 

3. Interfacial free energy 

For many types of interface it is customary to esti- 

mate the interfacial energy, for example by counting 

broken bonds, and then to make a small adjustment of 

some kind for entropy effects in order to obtain the 

free energy. For crystal-melt interfaces, however, as 

Turnbul15) has pointed out, the entropy contribution 

may be even more important than the energy term. 

This is born out by a calculation made for gold by 

Ewing’), though we have expressed above a reservation 

about some of his assumptions. 

Ewing normalized the probability distribution P(x) 

normal to the interface by dividing by the uniform 

liquid density P, as 

W(.u) = P(x)/P, (5) 

and, integrating over a cylindrical volume with unit 

area in the interface, extending a distance b into the 

liquid and containing N atoms, showed that the con- 

tribution to the interface entropy is 

I 

1 
S = -Nk W(X) In W(X) dX, 

0 

where 

X = x/b. (7) 

Since W = 1 in the bulk liquid, the result is indepen- 

dent of 6. Similarly, since W = 0 in the range 

0 < x < 1.3 A as shown in fig. 2, S is also independent 

of the location of the plane taken to define the interface 

provided only that it lies within this region. The usual 

Gibbs dividing surface would be placed near s = 1.4 A 

so as to cause the surface excess mass to vanish, but 

this concept is not really applicable because of our arti- 

ficial treatment of the crystal surface. We might also 

note that there may be some reservation about using the 

single-particle probability functions to calculate the 

entropy in this way, but we shall not pursue this ques- 

tion here. 

In the more general case of an associated liquid 

where rotational freedom is also considered for each 

liquid molecule, (6) requires generalization. If, as seems 

a reasonable first approximation in some cases, the re- 

lative freedom of molecules in rotational phase space is 

proportional to their relative freedom in translational 

space, then the entropy will be twice the value given by 

(6). It is also really necessary to allow for the variation 

of Win the ,YJJ plane. With these possible extensions in 

mind we will continue to use (6) in its original form for 

the present. 

Now once we have a knowledge of P(x), and we shall 

discuss this for the case of water later, we can evaluate 

the surface entropy. Because the liquid near the inter- 

face is more ordered than is bulk liquid, S is always 

negative. From his calculation for gold, Ewing found 

S v -0.3k per surface atom, while we will see later 

that S N -k per atom for the ice-water interface and, 

in fact, we expect all interface entropies to be of this 

same order. 

The other component of interfacial free energy arises 
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from energy considerations. To first order, let us sup- 

pose that the liquid extends with bulk structure up to 

the interface and that within it the coordination num- 

ber is Z,. and the nearest-neighbour interaction energy 

E,~~ < 0. Similar quantities for the crystal are Z, and 

I:~~. Then by considering the energy changes when bulk 

liquid is separated along a plane, bulk crystal is separ- 

ated along a plane, and liquid and crystal are joined to 

form an interface, we find that the energy associated 

with each molecule in the interface is 

E = :P [Z,.(r:,,s -G.,.) + Z,(Q, - c,,)l. (8) 

where I-:,.~ is the nearest-neighbour interaction across the 

interface and [I, which is approximately $. is the frac- 

tion of nearest neighbour links which extend across the 

interface. If we make the reasonable assumption that 

E,_~ = ~(I-:~~+I:,.,_), then (8) can be written 

E = :/j (Zs-Z,,) (E~,.-EJ. (‘)I 

while the extreme assumption that E,_~ = E,_,_ gives 

E = +pz, (E,~L - c,,). (IO) 

Ewing makes the second assumption and uses the 

result (IO) to derive an energy contribution for the gold 

interface which is very nearly equal to the contribution 

- TS from interface order. This probably represents an 

overestimate. For the water-ice interface, since Z,, N Z, 

due to the associated nature of the liquid, (9) predicts 

E = 0 so that the entropy effect may provide essen- 

tially all the interfacial free energy. 

Nason’) goes rather further than this and considers 

changes in interaction energy over the whole region in 

which the distribution is non-uniform. This is probably 

correct but is likely torepresentarathersmall correction. 

The total interfacial free energy y is given by 

‘i’ = N(E+Ts), (11) 

where N is the number of atoms per unit area of inter- 

face. Since S is negative and -TS > E, we expect y to 

increase quite strongly with increasing temperature. 

The water-ice interfacial free energy has been studied 

both near -40 “C by homogeneous nucleation experi- 

ments and near 0 ‘C by a variety of methods and, as we 

shall discuss later, shows an increase from 22 k 3 to 

35 * IO erg cm-’ over this range, in agreement with 

expectations. 

We conclude, therefore, in support of our original 

thesis, that the equilibrium structure of the liquid near 

a crystalLmelt interface plays an important, and per- 

haps even dominant part in determining the interfacial 

free energy. 

4. Interface structure 

In the conventional approach to crystal growth the 

notion of interface roughness plays a key part, one of 

the simplest theories being that of Jackson’). He con- 

siders a crystal surface for which the fraction of nearest- 

neighbour bonds lying in the surface plane is Y and fat 

which the latent heat of fusion is L per atom at melting 

temperature T,,,. The theory then shows that there are 

two possible cases: either the number of crystal-like 

atoms in the surface layer is nearly 0 or nearly I. in 

which case the interface is “smooth”, or else this num- 

ber is close to 0.5, in which case the interface is “rough”. 

The criterion derived from the theory is that the inter- 

face will be rough if 

L/2kTn, < I ix. (17) 

III the present theory the concept of surface rough- 

ness plays no direct part but it is possible to derive a 

nearly equivalent description of the surface and a cri- 

terion related to (I 2). In our interface model. layer zero 

is unambiguously crystalline but the first layer, though 

considered as liquid, has an entropy lower than the 

bulk liquid. This entropy is a statistical quantity, and, 

if we were to adopt a “mixture” model for the liquid 

structure, could be interpreted as a superposition of 

molecular configurations with crystal-like arrangement 

and others with liquid-like arrangement. The criterion 

that the interface be “rough” in the previous sense is 

therefore that this first layer have an entropy S( I ) which 

is less than half the entropy of the liquid So, the crystal 

having zero configurational entropy. Since we have 

used the liquid entropy So as a calculation base for S. 

this condition can be written 

s, - S( I ) > ; s,, (13) 

Our model is actually a multi-layer one, in contrast 

with Jackson’s single-layer model, so that if S( I ) <SC,, 
in fulfilling ( 13) we will have a very diffuse rough inter- 

face extending over several molecular layers. 

In discussing the structure of this first liquid layer it 

is not necessary, physically, to introduce the idea of 

bonds, except in the case of associated liquids. Since. 

however, each crystal atom at the interface serves as a 
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centre about which the nearest-neighbour distribution 

is constructed using superposed radial distribution 

functions, it is convenient to define a “bond” for our 

present purpose as simply a vector joining nearest- 

neighbour atoms across the interface. 

To evaluate S(1) approximately, we note that the 

nearest-neighbour maximum in a typical radial distri- 

bution function is approximately Gaussian so that the 

intersection of two or more radial distribution func- 

tions leads to an approximately ellipsoidal probability 

distribution for any one atom, which can reasonably be 

approximated by a 3-dimensional Gaussian distribu- 

tion with standard deviations o,, c2, c3. However if the 

coordination number in the crystal is Z and a fraction r* 

of the bonds lie in the plane of the crystal surface, then 

each atom in layer I is constrained by Z( I -x)/2 

“bonds”, in the sense that it belongs to the first-neigh- 

bour correlation shell of this number of atoms in the 

crystal surface. Now the variances C; are approximately 

inversely proportional to the number of constraints, so 

that the standard deviations cri can reasonably be 

written 

CIri = /J’i [Z( 1 - CC)/21 - I’*, (14) 

where the pi are characteristic of the interatomic poten- 

tial and the geometry of the surface. 

We may now use (6) with N = 1 and h = u’L3, where 

u0 is the volume per atom in the liquid, to estimate the 

difference between the entropy of layer I and the bulk 

liquid. The result is 

S,-S(l) N k i In {v’~c(~~‘[(~ -cc)Z/4Tce]“‘}, (15) 
i= 1 

but, because of the approximations made, we must re- 

quire that each i term in C 15) be either positive or zero. 

A more detailed consideration would obviate this diffi- 

culty but is not necessary for our present purpose. 

The values of the quantities p,, uO, Z and CI appearing 

in (I 5) are known, at least in principle, from the radial 

distribution function and the geometry of the crystal 

surface so that we can write 

&,-S(l) = k F(RDF, CC) (16) 

where Fis an undetermined function of order of magni- 

tude unity. Returning to (13), the right side can be 

simply written as L/2T,,,, where L is the latent heat of 

fusion per atom and T,,, the melting temperature, so 

that the criterion that the interface be rough becomes 

L/2 k T,,, < F(RDF, c(). (17) 

The two criteria (I 2) and (I 7) are clearly not iden- 

tical, and even depend on different quantities. The right 

side of (I 7) is, however, of order of magnitude unity 

and decreases as cr increases so that the two results 

show the same general behaviour. We shall see that, 

for the water-ice interface, the criteria ( 12) and ( 17) are 

essentially equivalent. 

One other aspect of interface structure merits brief 

mention here and that is the step. A surface with a step 

can, in fact, be simply defined in our model since it only 

involves a step in the crystal template. Liquid atoms 

near the step will be bonded to crystal positions in the 

step as well as in the face itself so that their configura- 

tional entropy will be further reduced, implying an 

edge free energy associated with the step. Because, how- 

ever, the step entropy can decay diffusively in two di- 

mensions in the liquid rather than just in one, it is likely 

that for steps only a few atomic layers high the free 

energy will be less than that associated with an equal 

area of plane surface. 

5. Structural diffusion and crystal growth 

We now come to apply these ideas to the process of 

crystal growth. In keeping with our philosophy in this 

paper we shall ignore the problem of accommodation 

of atoms in the growing surface and concentrate exclu- 

sively on the structural rearrangements in the liquid 

near the interface. Any rigorous discussion of these re- 

arrangements should consider the unit stochastic pro- 

cesses of atomic translations and, in the case of a mole- 

cular liquid, of rotations as well. Such a description is 

necessarily complicated and we shall see that we can, in 

fact, go a considerable way with the theory by taking a 

more coarse-grained view and treating the problem as 

one of structural diffusion in an ordering field provided 

by the crystal surface. As with all diffusion problems, 

we may expect this approximation to be valid provided 

that the characteristic length associated with the diffu- 

sion gradients is sufficiently much greater than the char- 

acteristic length associated with the elementary stochas- 

tic processes (i.e. the “mean free path”). In the present 

case the length 6 associated with the elementary pro- 

cesses is about one atomic or molecular radius, say 

2 A, while the characteristic structural diffusion length 
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I is about 10 A. The diffusion approximation is there- 

fore reasonable, though we should not expect great 

quantitative accuracy from its predictions. 

In an equilibrium situation there is a gradient of 

order, and hence of configurational entropy, in the li- 

quid near the interface. This entropy gradient is mea- 

sured qualitatively by the amplitude of the density os- 

cillations in the structure function near the interface, as 

shown in fig. 2, and we must now make this concept 

more quantitative. 

Referring to eq. (6), we defined there an entropy 

function S giving the entropy difference between N 

molecules in a cylinder of height X = 1 and base lying 

at the interface, and N molecules of bulk liquid. If in- 

stead of taking this integral over the range X = 0 to I 

we take only the range X to X+d, then the new quan- 

tity Q defined by the integral is the local deviation from 

bulk liquid entropy at distance .X = hX from the inter- 

face. For this prescription to be fully satisfactory we 

require that 0 Q A 4 I and we have seen that it is only 

marginally possible to satisfy this condition for the in- 

terface problem. Nevertheless we continue the develop- 

ment in a heuristic spirit. 

This whole approximation breaks down, however, in 

the case where the interface is really smooth in terms of 

Jackson’s criterion for then, as we discussed earlier, the 

configurational entropy of the first liquid layer is closer 

to that of bulk liquid than to that of solid. In this case 

the characteristic length / is less than the elementary 

length ci so that the whole following theory must be 

recast in terms of elementary stochastic processes. This 

we do not attempt here to do. The theory which follows 

therefore applies only to situations where the interface 

is rough, or nearly rough, in terms of our criterion ( 17) 
or the similar criterion of Jackson. 

A qualitative appraisal of fig. 2 indicates that the 

local entropy function 1 = Q+Lqo rises from zero in 

the crystal to a value C, = S,, characteristic of the 

bulk liquid, in a quasi-exponential manner, as shown in 

fig. 3. We shall examine the construction of this func- 

tion in more detail when we come to consider the 

water-ice interface but for the moment we suppose it to 

have the form 

C = Z, [I -exp (-_y,i/)]. (18) 

Consider now an atomic layer or group of layers at a 

distance .Y from the interface. Their equilibrium local 
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Fig. 3. Behuviour of the local entropy function Z in the liquid 

near an interface. The quantity Q has been evaluated for an 

integration interval A ~~ 2 b. for the cast of Mater near an (0001) 

ice plane and then further smoothed to give,‘. The lower .!- scale 

is relative to the geometrical ice surface while in the upper scale 

(used in the calculations) the origin has been displaced to coin- 

cide with the point where Z 0. 

entropy Z is given by (18) and is maintained in a dyna- 

mic way by processes of bond rearrangement or mole- 

cular diffusion, these processes having a characteristic 

time scale T which is known, from neutron scattering 

experiments, to be of order IO- lo s for most liquids. 

Suppose now that this equilibrium C is upset in some 

way to a new value 1’. We should then expect, on re- 

moval of the disturbing influence, that C’ would decay 

back towards its local equilibrium value according to 

the equation 

&?/it = - (I’ - x)/T. (IO) 

Now let us consider not the static situation but rather 

the case in which the crystal is growing with velocity 1’ 

in the s-direction. If we choose a coordinate system 

moving with the interface, then the differential equa- 

tion for C’. the instantaneous value of C at a distance .Y 

from the interface, becomes 

or, using (I 8) and omitting the prime from z“, 

?‘?I ?Z 

*‘iit = -C+Il,(l -ep”“)+m 
(3 

(21) 

Now we interested is steady solu- 



STRUCTURAL DIFFUSION, INTERFACE STRUCTURE AND CRYSTAL GROWTH 381 

tion of this equation, Z/at = 0, corresponding to a 

steadily advancing interface and satisfying C = 1, at 

x = co. This is 

C = 1, - .ZOe-xif/( I + us/l). (22) 

For positive v the partially ordered region is therefore 

restricted to a slightly closer distance from the interface 

than in its equilibrium state. 

The thing which now interests us is the boundary 

condition at x = 0, which is 

(23) 

Clearly there cannot be a discontinuity in C(X) at any 

point under our continuous diffusion approximation, 

so that we conclude that the configurational entropy of 

the growing crystal is no longer zero but rather Z1. In 

ordinary crystal growth v < 1 cm S-I and we have al- 

ready seen that 5 - IO- ’ a s and I - lo- 7 cm, so that 

(23) suggests 

x1 - 1o-3 UC,, 

when u is in cm s- ‘. 

(24) 

This result tells us nothing about growth kinetics, 

but it does place a lower limit on the defect concentra- 

tion which can be achieved in growth from the melt, 

and predicts that this concentration should vary line- 

arly with growth speed. We do not yet have any infor- 

mation about the kinds of imperfections contributing 

to I,, but it is possible to make some statements about 

these. 

In a liquid the configurational disorder may be of 

many kinds but all may be described geometrically as 

bonding disorders. When this sort of disorder is built 

into the growing crystal it must be largely as point de- 

fects, although of course any disorder which looks like 

a dislocation line normal to the interface will continue 

into succeeding crystal layers. The only point defects 

describable as bond disorders in a pure crystal are va- 

cancies and interstitial atoms and we may therefore 

expect Z, to be derived primarily from these defects. 

Now in general the density of a liquid differs from 

that of its parent solid by 5 to loo/ the liquid being 

less dense than the crystal for closely packed crystals 

and more dense for open crystals having, for example, 

tetrahedral coordination. In the first case, therefore, we 

expect the prime defects incorporated in the crystal to 

be vacancies, while in the second case interstitial atoms 

should predominate. If the mole fraction of such point 

defects, assumed all one kind, in the crystal is c, then 

the entropy associated with them is, for small c, 

C1 N kc In c. (25) 

Substitution in (24) and approximate solution in the 

range lo-” < c < 10-l gives 

c - 1O-4 vC,/k. (26) 

For most simple materials, however, Co can be equated 

to the entropy of fusion which is of order k, so that we 

can write 

c - 1o-4 v, (27) 

or, taking the number of atoms per unit volume in the 

crystal as 10z3 cmP3, we find a total defect density n of 

n - lot9 v, (28) 

where n and v are in c.g.s. units. 

If these vacancies or interstitials are now regarded as 

congregating into discs of radius r which then coalesce 

to form edge dislocations, then a simple calculation 

gives the dislocation density as 

N- lo-l’n/r. (29) 

The final result clearly depends critically upon the 

choice of r, but r - IO-* cm may be typical. Combina- 

tion of (28) and (29) then gives 

N- lo6 v, (30) 

so that, for a typical growth rate of 10m4 cm s- ’ we 

might expect a minimum dislocation density of order 

10’ cm-‘. This is uncertain by at least one order of 

magnitude because of uncertainty in r. It does, however, 

appear to be an estimate in order-of-magnitude agree- 

ment with experimental experience. 

Finally it is interesting to calculate the crystal growth 

rate necessary in order to include almost all the liquid 

disorder X0 in the solid, thus producing a vitreous 

structure. Consideration of eq. (23) shows that this is 

not strictly possible unless u + co, but that 1, = *Co, 

so that half of the disorder is included, if 

v = v* = l/z. (31) 

From the numerical values discussed previously, this 

implies 

v* - lo3 cm s-l. (32) 
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The critical crystallization velocity predicted by (32) is, 

of course, very high, but may not be beyond the realm 

of possibility for a splat-cooling process in which the 

liquid droplet is made to splash to a thin film on a block 

of metal cooled to liquid nitrogen temperature. 

6. Discussion 

The theory which we have presented is quite general 

and should apply to virtually all crystal-melt systems. 

As pointed out in the introduction, the liquid side of the 

interface has been considered almost exclusively and no 

attempt has been made to produce the unified treat- 

ment of both crystal and liquid sides of the interface 

which must almost certainly appear as the final theory. 

Our discussion has given what appear to be fairly 

satisfactory descriptions of interface geometry and free 

energy, and the development has also allowed a predic- 

tion of the minimum defect content of a growing crys- 

tal, a quantity which has not emerged from other treat- 

ments. 

As far as growth kinetics are concerned the theory is 

silent, but so indeed is a theory based solely upon the 

crystal side of the interface. The usual approach is to 

use the crystalline description of the interface simply to 

provide a measure of the number of accommodation 

sites and then to use a diffusion calculation of equili- 

brium flux rates to derive growth velocity. 

It should be possible to apply a somewhat similar 

approach to the present case. There is no consideration 

of the number of accommodation sites in the crystal, 

since all are assumed available, but the diffusion pro- 

cesses near the interface are across a multiple set of 

energy maxima whose properties differ with distance 

from the interface. We should expect a kinetic result 

which is always linear in the supercooling AT=( T,,,- T) 

but whose kinetic coefficient depends upon liquid struc- 

ture near the interface. 

With these qualifications, then, the theory above is 

presented as one possible extreme view of the interface 

between a crystal and its melt. It is hoped that by pre- 

senting this extreme view a synthesis can be provoked 

with existing theory. 

7. The water-ice interface 

In the following sections of this paper we apply the 

general theory developed above to a specific case so 

that more detailed estimates of the various quantities 

involved can be made for comparison with experiment. 

The system chosen for this application is the water-ice 

interface, not because it is a simple system - it is not 

but because it is a system of considerable fundamental 

and applied interest for which a reasonable amount of 

experimental information is available. 

Water is an associated liquid with a coordination 

number near 4. Its structure thus depends importantly 

on the three-body correlation function which specifies 

average bond angles and their fluctuations. A recent 

review of theories of liquid water has been given else- 

where”), from which it is clear that there are two com- 

petitive classes of models ~ the uniform model of 

Pople’ ‘) in which distorted tetrahedral bonding is 

maintained almost everywhere, and the various mix- 

ture models which treat water as composed of clusters 

of molecules with well-defined but differing bonding 

patterns. Both these models are extreme idealizations 

and the truth lies somewhere in between. The two ap- 

proaches agree, however, in assigning a coherence 

length for bonding’“) in liquid water of about 5-10 A. 

It may well be that five-fold rings play a major part in 

water structure’2p’5) but this need not concern us spe- 

cifically here. 

For our present purpose, the uniform, distorted-bond 

model of Pople' ‘) is most convenient for calculation. 

From comparison with the radial distribution function 

near 0 ‘C he deduced that bond lengths are normally 

distributed about a mean of 2.8 A with standard devia- 

tion 6r = 0.26 A, while the standard deviation of bond 

angles from their tetrahedral value is &/I = 36‘. We 

shall adopt these values for our model. 

8. Interface structure and free energy 

Following the method set out above we can now con- 

struct the probability distribution function for liquid 

water near an ice surface. The calculated distributions 

normal to the surface are shown in fig. 2 for the case of 

an (0001) and a (IOTO) interface. It is clear from these 

curves that structural effects extend away from the in- 

terface for a distance of at least 20 A. 

When we come to calculate the entropy deticit and 

hence the free energy of the interface according to eq. 

(6), it is clear that a 3-dimensional integration is really 

involved, not just one over the distributions shown in 

fig. 2. Carrying out this computation as outlined in sec- 

tion 4, we find for the surface entropy deticits 
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S (0001) = - 1 .O k, 5’,,oToj N -0.8 k, (33) 

which, at 0 “C, correspond to interface free energies 

y(oool~ = 40 erg cmm2, Y~,~T~, ‘v 30 erg cm-‘. (34) 

with both these values being proportional to absolute 

temperature. 

Before accepting these as the values to be compared 

with experiments, we must consider two points. The 

first concerns the energy contribution to U. It seems 

reasonable for water, and indeed for most materials, 

to adopt the approximation that the energy of the 

bonds across the interface is close to the mean of the 

solid and liquid interaction energies. Since the coordi- 

nation number for water is almost the same as for ice, 

(9) then suggests that the energy contribution to 0 is 

small. 

The second point concerns the rotational entropy 

loss associated with the interface region. This has cer- 

tainly not been considered and our discussion has sug- 

gested that it may be comparable with the spatial en- 

tropy loss, a conclusion which would double the 0 

values given above. On the other hand the orientational 

entropy of ice allows considerable orientational free- 

dom through proton rearrangement and this is shared 

by molecules in the transition layer, reducing this con- 

tribution to the entropy by a large factor so that it can 

reasonably be neglected. 

Experimental values of the average ice-water inter- 

facial free energy have been determined in various 

ways lo.’ ‘). At -40 “C the probable value is in the 

range 18-25 erg cmm2, while at 0 “C the range is 2.5-40 

erg cm -2. The theoretical values are thus in acceptable 

agreement with experiment considering some of the un- 

certainties involved. y,ooo,, is strongly dependent on 

the bond length fluctuation h/r, so that the difference 

between Y(o~~~, and ~~~~~~~ may not be significant. 

It is perhaps worth note in passing that crystal growth 

experiments by Hillig’ 6, involving a surface nucleation 

process on (0001) surfaces suggested an edge free energy 

only about one third of that which would be expected 

from the step height and the plane surface free energy. 

This is in agreement with the conclusions reached from 

the theory, though there may be other explanations. 

When we come to consider the roughness or smooth- 

ness of the interface according to Jackson’s mode15) 

we find c( = 0.75 so that, in (12), 

L/2kT, = I .33 = I/a. (35) 

and the interface is just on the border between rough 

and smooth behaviour. If we follow the prescription of 

eq. (15) we find for a (0001) interface that two of the 

terms in the summation have the negative value -0. I8 

k while the third is + 1.4 k. Setting the two negative 

terms equal to zero we find, in (16), F(RDF, CX) = 1.4 

and again this is approximately equal to the left side of 

(35) so that the interface cannot be characterized clear- 

ly. For a (1010) interface, all three terms are positive 

and F(RDF, c() = 1.2 which is again not significantly 

different from the left side of (35). The new theory thus 

reaches essentially the same conclusion about sharpness 

of the interface as does Jackson. 

9. Crystal growth and perfection 

To apply the theory of crystal growth and perfection 

developed above, we must first evaluate the fine- 

grained entropy function @ defined in section 5. This 

function is plotted, for a (0001) interface after avera- 

ging over a 2 A interval d, in fig. 3. The small oscilla- 

tions in Q show that A should really be larger than this 

but the rather sharp variation of Q with x restricts this. 

Further smoothing gives the function 1, which is also 

shown in fig. 3. The important parameter which emer- 

ges is the structural diffusion length 1 associated with Z, 

which we estimate as I = 3 x IO- 8 cm. This length is 

closely comparable with the bond length and hence 

with the elementary stochastic length for the problem, 

so that diffusion theory is only marginally applicable, 

as indeed we would expect from the indeterminacy of 

the surface roughness. Despite this, we proceed to eva- 

luate the other predictions of the theory in the belief 

that they should be at least of the correct order of 

magnitude. 

The characteristic time r should be the relaxation 

time associated with the Debye dispersion in the dielec- 

tric constant of liquid water’ 7). This has been found to 

occur at an electromagnetic wavelength near 3 cm at 

0 “C, which implies w = 6 x IO’ ’ s- ’ and so 7 N I .7 x 

IO-” s. The other quantity required is Zo, which we 

identify with the entropy of fusion per molecule and 

write as Z, = 2.7 k so that eq. (24), for the entropy of 

disorder built into a crystal growing with velocity v, 

becomes 1, = 8 x 10e4 vk. 

Now water is about 8% more dense than ice so that 

we expect most of this entropy to be built in as interstitial 

molecules. For v in the range 10m5 to 10-j cm s-‘, (25) 
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gives a total interstitial density of II - 3 x 10’ 8 ~1. As- 

suming that these aggregate to discs of radius Y - IOm2 

cm and that these discs then combine to give edge dislo- 

cations implies a dislocation density N of order 

N- IO” 0, (36) 

or about IO cm-2 for a growth velocity of 10d4 cm s- ‘. 

This should be interpreted as the lowest obtainable 

dislocation den.sity, since dislocations can be introduced 

during growth from a variety of other sources. 

Higashi”) has reported the growth of ice crystals of 

high perfection by several methods. The Czochralski 

method gave dislocation densities about 3 orders of 

magnitude larger than predicted by (36), though the 

dislocation density was proportional to growth rate. 

These dislocations are presumably nearly all extrinsic. 

A modified Bridgman method achieved N - IO2 cm-2 

for L’ _ 10m5 cm ss’, which is about two orders of 

magnitude larger than given by (36). The predictions of 

the theory are thus reasonable in terms of giving a min- 

imum dislocation content, although they may be low 

by an order of magnitude. 

Finally we examine the possibility of producing a 

vitreous ice structure by rapid growth as in splat coo- 

ling. From eq. (31) the critical velocity is pi* = l/7 - 

2 x IO3 cm s-‘. Now the average growth rate when a 

film of thickness d is cooled on a block of infinite con- 

ductivity held at temperature r,, is approximately 

u N 2K( T,, - T,)/L,tl, (37) 

where L, is the latent heat per unit volume and K is the 

thermal conductivity of ice. lnserting appropriate va- 

lues in (37) for T, = 77 K, we find for the critical tilm 

thickness (1 = I x lO-4 cm. It seems impracticable to 

try to produce a splat film as thin as this with ordinary 

techniques so that this method of producing vitreous 

ice is probably not feasible. 

10. Conclusions 

The semi-quantitative application of our theory to 

the water-ice interface demonstrates that its predic- 

tions are generally in accord with experience. This does 

not, of course, guarantee the correctness of the assump- 

tions but does give an increased measure of confidence. 

The theory as set out here is only the first exploratory 

step towards a development with satisfactory rigor. 

The rather small ratio between the elementary stochas- 

tic length and the structural diffusion length makes a 

microscopic theory almost mandatory in such a devel- 

opment. A proper working out of these mechanisms at 

the atomic level together with proper inclusion of 

effects on the crystal side of the interface together con- 

stitute the next part of the programme. 
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